Stability of index for semi-Fredholm chains

V. Miiller*

Abstract. We extend the recent stability results of Ambrozie for Fredholm essential
complexes to the semi-Fredholm case.

Let X,Y be Banach spaces. By an operator we always mean a bounded linear
operator. The set of all operators from X to Y will be denoted by £(X,Y"). Denote by
N(T) and R(T) the kernel and range of an operator 7' € L(X,Y).

Recall that an operator 7' : X — Y is called semi-Fredholm if it has closed range
and at least one of the defect numbers a(7") = dim N(7T), 5(T") = codim R(T") is finite.
If both of them are finite then 7' is called Fredholm.

The index of a semi-Fredholm operator is defined by ind (T') = «(T') — (7).

We list the most important classical stability results for semi-Fredholm operators:

Let T': X — Y be a semi-Fredholm operator. Then

(1) There exists € > 0 such that ind7” = ind T for every (semi-Fredholm) operator
T € L(X,Y) with |T" = T|| < e.

(2) There exists € > 0 such that o(7") < «a(T) and S(T") < B(T) for every (semi-
Fredholm) operator 77 € L(X,Y) with ||T" - T|| < e.

(3) ind (7”) = ind(T) for every (semi-Fredholm) operator 7" € L(X,Y) such that
T — T’ is compact.

(the condition that 7" is semi-Fredholm is satisfied automatically for operators close

enough to T’; this will not be the case in more general situations).

These results were generalized for Banach space complexes. By a complex it is
meant an object of the following type:

4] 1) On— On—
K: 0— Xp— X4 - o0 228X, 125X, —0

where X; are Banach spaces and §; operators such that §;,;0; = 0 for every 1.
The complex K is semi-Fredholm if the operators 9; have closed ranges and the
index of IC,

ind () = Z(—l)iozi(lC)7 where «;(K) = dim(N(6;)/R(d;i—1))

1=0

is well-defined.

It was shown in [1], [14] that the index and the defect numbers «; of semi-Fredholm
complexes exhibit properties (1) and (2). Property (3) proved to be surprisingly diffi-
cult. Some partial results were obtained in [11] and for Fredholm complexes (or better
to say for Fredholm essential complexes) it was proved recently by Ambrozie [2], [3].

The aim of this paper is to extend the above mentioned results to semi-Fredholm
chains (for the definition see below).

* The research was supported by the grant No. 201/96/0411 of GA CR.
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We are going to use frequently the following elementary isomorphism result.
Lemma 1. Let U,V be subspaces of a Banach space X. Then

dim(U + V)/V = dimU/(U N V).

Proof. The required isomorphism U/(UNV) — (U +V)/V is induced by the natural
embedding U - U + V.

If U and V are subspaces of a Banach space X then we write for short Ucv
(U is essentially contained in V) if dimU/(UNV) < oo. If UCV and VCU then we
write U=V,

Let X be a Banach space. For closed subspaces M7, My of X denote

d(My, My) = sup dist {m, Ms}
meMq
lml| <1

and the gap between M; and My by
O(My, My) = max{d(My, My),6(Ma, My)},
see [9]. Clearly 6(My, M) = 0 if and only if My C Ms.
For convenience we recall the following result of Fainshtein [7]:

Theorem 2. Let R, R, N, N7 be closed subspaces of a Banach space X and let R C N.
(a) If 6(R, R1) < 1/3 and 6(N1,N) < 1/3 then

dile/(RlﬂNl) Sdln’lN/R—l—dlle/(RlﬂNl)
(b) If §(R, Ry) < 1/9 and §(Ny, N) < 1/9 then

dlle/(Rl ﬂNl) = d1mN/R+d1mR1/(R1 ﬂNl).

We start with the following generalization of the previous result:

Theorem 3. Let R, N be closed subspaces of a Banach space X, let RCN. Then there
exists € > 0 such that, for all closed subspaces R; and N; of X with §(R, R;) < ¢ and
d(N1,N) < e, we have

dim R/(RNN) + dim Ny /(R1 N Ny) < dim Ry /(Ry N Ny) + dim N/(RN N).

Proof. For R C N this is the first statement of the previous theorem. We reduce the
general situation to this case.



Choose a finite dimensional subspace F' C R such that (RN N) @ F = R. Let
dim F =k < oo and let fi,..., fx be a basis in F' with || f1]| = --- = ||fx]| = 1. Clearly
FNnN ={0}.

For f = Z?Zl a;fi € F (o € C) consider three norms: | f]|, dist {f, N} and
Zle |a;|. Since these three norms are equivalent, there exists ¢ > 0 such that

k k k k
C'Z|ai|§di5t{zaifi7N}§ Hzaifi §Z|Oéi|
i=1 i=1 i—1 i1

for all aq, .. ak € C. Clearly ¢ <1.
Set ¢ = 5=. Let Ry and N; be closed subspaces of X such that §(R, R1) < ¢ and
5(N1, N) < 5

For i = 1,...,k find elements g; € Ry such that ||f; — ¢;|| < €. Then ||gi]| <
1+e (i=1,...,k). Denote by G the subspace of Ry generated by g1, ..., g.
We prove that dim G = k. Indeed, if Zle a;g; = 0 for some «; € C then

k k k k k
0= HZaz‘gz‘ > HZOéifi - HZai(gi—fi) ZcZ|ai|—5Z|ai| = 19Cz:|az|
i=1 i=1 i=1 i=1 i=1

so that oy = --- = a = 0.
Further G N N; = {0}. Indeed, if Zle a;g; € N7 for some a; € C then

k k
-1 -1 : - — s 1 .-
ZZ: la;] < e dist {Z a;fi, N } <c [;%Hﬁ gi|| + dist {; azg“N}]
+5)> .zk:|ai| < %iw
i=1 i=1

e g1
<c” 52|azl +c HZa@gZ d(N1, N) < <E +
sothat ; =0 (i=1,...,k).
Denote N’ = N—l—F and N{=N; +G. Clearly N =N+ RDR.
We prove that (N7, N’') < 1/3. Let ny + Zi:l a;g; € N{ where n1 € Ny, oy €
C (i=1,...,k) and ||ny + 325, augill = 1. Then ||ny|| < 1+ (1+¢) 35, |ai|. There
exists n € N such that ||n1 —n|| <e¢||ni|| <e+e(l+¢) Zle |a;|. We have

k k k
CZ|O%| < dist {Zaifi,N} < HZ%JCZ —I—nH
<Hzaz gz

+ HZ a;g; + an + ||n - ’I”L1||
=1

k k
<e ) il +1+e+e(l+e) Z|al|<1+5—|—352|az|
=1 =1 =1
Thus i
1+¢ 4
;‘al’_c—%_?)c



and

K K
dist {nl + Zaz‘gin/} < ny —nfl + HZ a;(fi — 9i)
=1

=1

k k
<ete(l+e)) Joul+e) |l <1/3.
=1 =1

Hence §(N7, N’) < 1/3 and, by Theorem 2,

dimN{/(RlﬂN{) SdimN’/R—l—dile/(RlﬂN{). (1)
We have
dlle/(RlﬂNl) :dlm(N1+R1)/R1 (2)
:dim(N{ -+ Rl)/Rl = dlmN{/(Rl N N{)
and
dimN/(RﬂN)=dim(N—|—R)/R=dimN//R. (3)
Further
dim R/(RNN) = k (4)
and

+dim(N; + G)/Ny = dim(Ny + Ry)/Ny + k = dim Ry /(Ry N Ny) + k.
Thus, by (1)—(5), we have

dim R/(RN N) + dim N1 /(R; N N1) = k + dim N7 /(R; N Ny)
<k +dim N'/R + dim Ry /(Ry O N}) = dim Ry /(Ry 0 Ny) + dim N/(R 0 N).

Let X,Y be Banach spaces and let T € L(X,Y"). Denote by v(7T') the Kato reduced
minimum modulus [9],

v(T) = inf{||Tz|| : dist {z, N(T)} = 1}

(if T = 0 then y(T') = o0). It is well-known that 7" has closed range if and only if
v(T) > 0. Further, if 0 < s < 4(T) and y € R(T') then there exists x € X with Tx =y
and [z]] < 57|yl

The following lemma is well-known, cf. [7]. For convenience we include the proof.

Lemma 4. Let X,Y be Banach spaces and let 7,71 € L£(X,Y) be operators with
closed ranges. Then
(a) O(N(T1), N(T)) < (1)~ T — Ta],
(b) 3(R(T), R(T1)) < v(T)~HT = Tu.
Proof. Let 0 < s < y(T).

(a) Suppose z € N(T3) and ||z|| < 1. Then Tz € R(T) and ||[Tz| = (T —T1)z| <
|7 — Ty|| so that there exists 2’ € X with T2’ = Tx and ||2’|| < s YT — Ty||. Since
x — ' € N(T) we have dist {x, N(T)} < ||2'|| < s7|T - T1|.
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Thus 6(N(T1), N(T)) < s7Y|T — Ty||. Since s was an arbitrary positive number,
s < v(T), we have (a).

(b) Let y € R(T), ||y|]| < 1. Then there exists x € X with Tz = y and ||z| < s71
Thus dist {y, R(T1)} < |ly — Tiz|| = |(T — Ty)z|| < s7Y|T — T1||. Asin (a) we get the
statement.

We are going to use the construction introduced by Sadoskii/Buoni, Harte and
Wickstead [12], [5], [8]. For a Banach space X denote by ¢°°(X) the Banach space of
all bounded sequences of elements of X (with the sup-norm). Let m(X) be the set of
all sequences {z;}°, € £*°(X) such that the closure of the set {x; : i = 1,2,...} is
compact. Then m(X) is a closed subspace of £>°(X). Denote X = £>°(X)/m(X).

If T'e L(X,Y) then T defines pointwise an operator 7 : {*°(X) — (>(Y) by
T°{x;}2,) = {Tx;}2,. Clearly T°°m(X) C m(Y). Denote by T:X — Y the
operator induced by 7°°. N N

We summarize the basic properties of the mappings X +— X and T — T, see [5],
[6], [8], [10], [12].

Theorem 5. Let X,Y,Z be Banach spaces, let S,5" € L(X,Y), T € L(Y,Z) and
a € C. Then

(1) S=0& S is ‘compact,

(2) S—I—S’-S—f—S’ aS = as,

(3) TS =TS,

(4) 1SII < 1181,

(5) if M C X is a subspace of a finite codimension, then ||S|| < 2[|S|M]|,

(6)

(7)

if R(T) is closed then R(T) is closed,
if S and T have closed ranges then

R(S)CN(T) < R(S)CN(T) < R(S)
N(T)CR(S) & N(T)CR(S) & N(T)

Theorem 6. Let X, Y, Z be Banach spaces, let Yy be a closed subspace of Y and let

S:X —Y and T : Yy — Z be operators with closed ranges such that R(S)&Yg. Then
there exists 7 > 0 such that

dim R(S)/(R(S) N N(T)) + dim N(Ty)/(R(S1) N N(T3))

<dim R($1)/(R(S1) N N(T})) + dim N(T)/(R(S) N N(T)) (6)

for all operators S : X — Y, T} : Yy — Z with closed ranges such that |77 — T|| < n
and ||S1 — S| <.

Proof. (a) Suppose dim R(S)/(R(S) N N(T)) < co. Set R = R(T) and N = N(T)
and let ¢ be the number constructed in Theorem 3. Set n = ¢ - min{~y(7),~v(S)}. If
|7y — T|| < n and ||S; — S| < n then §(N(T1),N(T)) < € and §(R(T), R(1T1)) < € so
that Theorem 3 for N3 = N(71) and Ry = R(S;) gives the required inequality.
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(b) If dim R(S)/(R(S)NN(T')) = oo and dim N(T")/(R(S) N N(T')) = oo then the
statement is clearly true.

(c) Suppose dim R(S)/(R(S) N N(T)) = oo and dim N(T")/(R(S) N N(T)) < oo,
ie. N(T)ER(S). Denote Y/ = R(S) + Yp. Let 7" be any extension of 7' to a bounded
operator 7" : Y/ — Z (since Y/ = Yy @ M for some finite dimensional subspace M, we
can define 7'|M = 0).

We show first that the range of 7"S is closed. We have N(T’)éN(T)ER(S). Let F
be a finite dimensional subspace of N(7”) such that N(T") C R(S) + F. It is sufficient
to show that R(T"S) + T'F is closed.

Let z, € X, fr € F (k=1,2,...) and let T"Sxy +T" fi, — z for some z € Z. Since
R(T') is closed we have z = T"y for some y € Yo + R(S). Thus T"(Szy + fr —y) — 0.
Consider the operator 7" : (Yo + R(S))/N(1") — Z induced by 7". Clearly R(1") =
R(T') and T" is injective, hence bounded below. Thus Szy + fr —y + N(T') — 0 in
Y/N(T"). So there are elements y, € N(T") such that Szy + fr +yr — y (in Y).
Thus y € R(S)+ F and z =T'y € R(T'S) +T'F. Consequently R(1"S) is closed.

Further dim R(T"S) = oo (otherwise R(S)EN (T")=N(T) which contradicts to
the assumption that dim R(S)/(R(S) N N(T')) = o), so that 7”5 is not compact. If

S:X — Y’ and T": Y’ — Z are the operators defined above then TS # 0.

Set n = mm{HSH, %} Let S; : X — Y and Ty : Yo — Z be operators
with closed ranges such that ||S; —S|| < nand |73 —T'|| < n. To prove (6) it is sufficient
to show

dim R(S1)/(R(S1) N N(T1)) = oo. (7)
We may assume R(S’l)EYO; otherwise
dim R(S1)/(R(S1) N N(T1)) > dim R(S1)/(R(S1) NYp) = 00

and (7) is satisfied.

Denote Y1 =Y’ + R(S1) = Yo + R(S) + R(S1). Then Y’ is a subspace of Y7 of a
finite codimension. Let J : Y’ — Y7 be the natural embedding and let P : Y1 — Y’
be a projection onto Y'. Let T1 be any extension of T1 to an operator T : Y7 — Z.

—

Consider operators Sl X - Yl, T Y1 — Z J: Y Y1 and P : Y1 — Y’. We have

15 =(IP)(JS) + (IP)(S1 = JS) + (1] = T'P)S,
ZTIS—i—(T/P)(Sl—JS) ( 1— )Sl,

ISy — JS|| <n, |T{ = T"P|| < 2||Ty — T|| < 2 and |T"P|| < ||T7|| - | P|| < 2||T. Thus
|T;S1 || > (|T7S|| — 20| T|| — 2nl1S4]| > ||T7S|| — 2n(||S|| + n) — 20| T|| > 0
so that 77S; is not compact.

Consequently we have (7) (otherwise R(Sl)éN(Tl)éN(Tl’) and dim R(7751) <
00). This finishes the proof of Theorem 6.

Fredholm pairs of operators were defined in [2].
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Definition. A Fredholm pair in (X,Y) is a pair (S,7T) of operators S : Xg — Y and
T :Yy — X where Xy and Yj are closed subspaces of X and Y, respectively, such that
R(S)EN(T) and R(T)=N(S). The index of a Fredholm pair is defined by

ind (S, T) =dim N(S)/(R(T) N N(S)) — dim R(T)/(R(T) N N(S)) .
— dim N(T)/(R(S) N N(T)) + dim R(S)/(R(S) N N(T)).

Note that if (S,T') is a Fredholm pair then the ranges of S and T are closed.
This suggests the definition of semi-Fredholm pairs.

Definition. By a semi-Fredholm pair we mean a pair (5,7) of operators S : Xg — Y
and T : Yy — X where Xy and Y| are closed subspaces of X and Y, respectively, such
that
(1) R(S)CY, and R(T)C X,
(2) S and T have closed ranges,
(3) either

dim N(S)/(R(T)NN(S)) + dim R(S)/(R(S)NN(T)) < o0

or

dim N(T)/(R(S)NN(T)) + dim R(T)/(R(T) N N(S)) < .
For a semi-Fredholm pair (5,7") we define the index of (S,T") by (8).

Lemma 7. Let X,Y be Banach spaces, let S: X — Y and T : Y — X be operators
with closed ranges such that R(S) = N(T) and R(T') C N(S). Then there exists ¢ > 0
such that

dim N (S)/R(T) + dim R(T})/(R(T1) N N(S1)) = dim N(S1)/(R(T1) N N(S1))

for all operators S; : X — Y and T : Y — X with closed ranges such that ||S;—S|| < e,
Ty —T|| < e and R(Sy) C N(Ty).

Proof. The sequence X —-Y ——X is exact in the middle. By [14], Lemma 2.1 and
[13], Corollary 2.2 there exist positive constants €1 > 0 and ¢ such that R(S7) = N(71),
~v(S1) > ¢ and y(T1) > c for all operators S; : X — Y, T7 : Y — X with closed ranges
satisfying ||S1 — S| < &1, ||Th — T|| < e1 and R(S1) C N(T1).

Set ¢ = min{eq, g} Let S; and T be operators with closed ranges satisfying
I1S1 =S| <& Ty —T|| < € and R(S1) C N(T1). Then, by Lemma 4, we have
S(N(S),N(S1)) < ¢ Y|Sy — S|| < 1/9 and §(R(T), R(Ty)) < ¢ YTy — T|| < 1/9. By
Theorem 2 (b), we have the required equality.

Theorem 8. Let X,Y be Banach spaces, Xo C X, Yy C Y closed subspaces, let
S:Xo— Y and T : Yy — X be operators and let (S,T) be a semi-Fredholm pair.
Then there exists ¢ > 0 such that ind (S1,77) = ind (S,T") for every semi-Fredholm
pair (S1,71) of operators S7 : Xg — Y and T3 : Yy — X satisfying |57 — 5| < € and
||T1 — TH < €.



Proof. Denote
a(S,T) =dim N(S)/(R(T)NN(S)) —dim R(T)/(R(T) N N(S))

and
B(S,T) =dim N(T)/(R(S)NN(T)) — dim R(S)/(R(S) N N(T)).

Then ind (S, T) = a(S,T) — 5(S,T).

By Theorem 6, «(S1,71) < «(S,T) and B(S1,T1) < B(S,T) if (S1,T1) is close
enough to (S5, 7).

We distinguish three cases:

(a) Let a(S,T) = —oo. Then «a(S1,71) = —oo for every semi-Fredholm pair
(S1,T7) close enough to (S,7T). In particular ind (S1,71) = ind (S,T) = —
Similar considerations can be done if 3(S,T) = —oc.

In the rest of the proof we assume «(S,7T) # —oo and ((S,T) # —oo so that
R(S)CN(T) and R(T)CN(S).

Denote X’ = Xo+ R(T) and Y’ = Yy + R(S) and fix any projections P : X' X,
and Q : Y’ OntOYO Consider operators S )/(vo Y and T : % — X’ and denote
$=QS:Xo— Ypand T = PT : Yy — X,. Since R(QS)=R(S)CN(T)<N(PT), we
have R(S) C N(T) and similarly R(T) C N(S).

Analogously, for a semi-Fredholm ‘pair of operators Sy : Xo — Yy + R(Sl) and
T YO — X() -+ RQTI denote Sl lel XO — Yo and T1 P1T1 YO — XO where
P Xo+ R(Tl)—>X0 and @1 : Yo + R(Sl)—>Y0 are any (fixed) projections. Since
S~1(Yy) N S;(Yp) is a subspace of a finite codimension in Xy, by Theorem 5 (7) we
have ||S — §1|| < 2||S — Sy||. Similarly |7 — 71| < 2||T — T3]

(b) Let a(S,T) = oco. Since the pair (S, T) is semi-Fredholm and 3(S,T) # —oo,
B(S,T) is finite, so that R(S)=N(T) and R(S) = N(T).

The equality ind (51,71) = ind (S,T) = oo is true for every semi-Fredholm pair

(S1,T1) with 3(S1,T1) = —oo. If B(S1,T1) # —oc then R(Sl)éN(Tl) so that R(S1) C
N(Ty). If (Sy,T1) is close enough to (S,T') then, by the previous lemma,

oo = dim N(S)/R(T) = dim N(S;)/(R(Ty) N N(S1)) — dim R(T})/(R(T1) N N(S1)).

Hence dim N (S1)/(R(T1) " N(S1)) = oo so that dim N(Sy)/(R(Ty) N N(S1)) = oo and
ind (SlyTl) = ind (S, T) =

Similar considerations can be done in case of 3(5,T) = occ.

(c) It remains the case |a(S,T)| < oo and [3(S,T)| < co. Then (S,T) is a Fred-
holm pair, i.e. R(S) = N(T) and R(T) = N(S). Since (S;,T}) is semi-Fredholm,
either «(51,71) # —oo or 3 (Sl,T 1) # —oo. Without loss of generality we can assume
B(S1,T1) # —oo so that R(S;) € N(T1). By [13] or [14], for (S1,T1) close enough to
(S,T), we have R(S;) = N(T1). Further a(S;,T1) # oo so that N(S1)CR(T}), i.e
N(S1) € R(T1). By Lemma 7 we have

0 =dim N(S;)/(R(Ty) N N(S1)) = dim N(T3)/(R(S1) N N(T1)).
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Consequently N(S;) = R(T}), i.e. N(S1)=R(T1) and (S1,T1) is also a Fredholm
pair.

The equality ind (51,71) = ind (5, T') for Fredholm pairs (S7,7}) close enough to
(S,T) was proved in [2] and [3].

The next result — the stability of index under finite dimensional perturbations —
is an easy consequence of the corresponding result for Fredholm pairs, see [3], Theorem
3.10. We give a simpler proof.

Theorem 9. Let X,Y be Banach spaces, Xy, Yy their subspaces and 5,57 : Xg — Y,
T,T; : Yo — X operators. Suppose that (5, 7) is a semi-Fredholm pair and that S — S

and T' — Ty are operators of finite rank. Then (S7,7}) is a semi-Fredholm pair and
ind (Sl, Tl) = ind (S, T)
Proof. Clearly N(S)=N(S;), N(T)=N(T:), R(S)=R(S;) and R(T)=R(T:). So
dim N(S)/(R(T) N N(S)) = oo if and only if dim N(S71)/(R(1T1 N N(S1)) = oco. Similar
equivalences are true also for the remaining terms appearing in the definition of the
index (8). Thus (S7,7T1) is a semi-Fredholm pair. Further ind (S,7") = o0 if and only
if ind (Sl7 Tl) = Fo00.

Thus we can assume that ind (S, T) is finite, i.e., N(S)=R(T) and N(T)=R(S)
and both (S,T") and (S1,77) are Fredholm pairs.

It is sufficient to show that ind (S,7") = ind (51,7). Indeed, from the symmetry
we have also ind (S1,7T) = ind (S1,T1).

Denote

M = N(S)NN(S1) N R(T), M’ = N(S)+ N(S1) + R(T),
L =R(S)NR(S1)NN(T), L' = R(S)+ R(S1) + N(T).

Clearly M C Xy, L C Yy, dim M'/M < oo and dim L'/L < co. Then

ind (S, T) =dim N(8)/(N(S) N R(T)) — dim R(T)/(N(S) N R(T))
— dim N(T)/(N(T) N R(S)) + dim R(S)/(N(T) N R(S))
= dim N(S)/M — dim R(T)/M — dim N(T)/L + dim R(S)/L

and similarly
ind (S1,7) = dim N(S1)/M —dim R(T')/M — dim N(T")/L + dim R(S1)/L.
Thus
ind (S,T) —ind (S1,T) = dim N(S)/M — dim N(S1)/M + dim R(S)/L — dim R(S1)/L.

Define operators S, Sy : Xo/M — L' by S(z 4+ M) = Sz, Si1(z+ M) =Sz (z+M €
Xo/M). Clearly R(S) = R(S), R(51) = R(S1), dim N(S) = dim N(S)/M < oo and
dim N (S;) = dim N(S;)/M < oo. Thus S, S; are upper semi-Fredholm operators and
S — 5] has finite rank.

Further
dim L'/L = dim L'/R(S) + dim R(S)/L = dim L' /R(S;) + dim R(S;)/L.
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Hence
ind (S,T") — ind (S1,7T)

=dim N(S)/M — dim N(S;)/M — dim L'/R(S) + dim L'/ R(S1)
= dim N(S) — codim R(S) — dim N(S;) + codim R(S})
—ind (S) — ind (S1) = 0.

Theorem 10. Let X,Y be Banach spaces, let S, K : X — Y and T,L : Y — X be
operators, let K and L be compact and let (S,7") and (S+ K, T+ L) be semi-Fredholm
pairs. Then ind (S + K,T + L) =ind (S, T).

Proof. We use the approach of Ambrozie, see [3] or [4]. Set C' = C(0,1). Since R(K)
and R(L) are separable Banach spaces, there exist isometric embeddings i : R(K) — C
and j : R(L) — C. Consider the spaces X & C and Y & C with ¢'-norms and let
G(~i) = {y ® (~iy),y € R(K)} and G(—) = {x & (~ja),z € R(E)} be the graphs
of —i and —j, respectively. Let £ = (X & C)/G(—j) and F = (Y & C)/G(—i). Let
a:X — Fand 3:Y — F bedefined by ax = (x®0)+G(—j) and By = (y®0)+G(—1).
Since ¢ and j are isometries, it is easy to check that a and 3 are isometries. Denote
X"=R(a) C Eand Y = R(f) C F. Thus X’ and Y’ are "copies” of X and Y.
Denote by S, T, K', L’ copies of S,T,K,L. More precisely, let S", K’ : X' — Y’
and 7", L' : Y' — X’ be defined by S’ = gSa~!, K' = fKa™!, T' = oT3~! and
L' =alp™ .

Clearly ind (S’,7") = ind (S,T) and ind (S’ + K/, 7" + L') = ind (S + K,T + L).
Since operators i1K : X — C and jL : Y — C are compact and C has the approximation
property, there exist finite dimensional operators U, : X — C and V,, : Y — C (n =
1,2,...) such that ||U, —iK|| — 0 and ||V,, — jL|| — 0.

Define operators v : C — F and § : C — E by yv¢ = (0 ® ¢) + G(—i) and
de=(0@c)+G(—j) (ceC). It is easy to check that v and § are isometries. Define
U X' -Fand V! :Y' - Eby U, =qU,a ! and V! =6V, (n=1,2,...).

Since ind (5", T") = ind (S' + U,,, T" + V') for every n, by Theorem 8 it is sufficient
to show that |K' —U/| = ||(S"+ K') — (S’ + U})|| — 0 and |[L' — V|| — 0. Let a’
be an element of X’ with [|z/|| = 1. Let 2’ = az = (x ® 0) + G(—j) for some = € X,
||| = 1. Then

I(K" = Up)2'| = |(BK = yUn)z|l = |[(Kx © 0) + G(—)] = [(0® Unz) + G(=1)]|
=[[(Kz & (=Unz)) + G(=i)|| = [0 ® (K = Un)x + G(=i)|| = [N ((iK — Un)z)|
=[[((K — Un)z|| < [liE = Unll.

Thus [|[K’ — U} || — 0 and similarly ||L’ — V,!|| — 0. This finishes the proof.

Definition. A chain is a sequence K = {X;,d;}7_, where Xy, X1, ..., X,, are Banach
spaces and 6; : X; — X,;11 operators. Formally we set X; = 0 for ¢ < 0 or ¢ > n and
;=0 (i<0ori>n).
Thus a chain is an object of the following type:
K: 0—Xo2ux, 2 o 22X, 0.

We say that IC is a semi-Fredholm chain if
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(1) the operators dy, ..., d,—1 have closed ranges,
(2) either

3" dimN(8)/(R(0i-1) NN(8) + Y dim R(6,-1)/(R(8;-1) N N(6))

i even i odd

or

> dim N(6;)/(R(6—1) NN (6;)) + > dim R(6;-1)/(R(8i—1) N N(5;))

i odd 1 €Ven

For a semi-Fredholm chain and for 0 < ¢ < n define

and the index of K,

n

ind (K) =) (~1)’a;(K).
i=0
(Simply, a chain K is semi-Fredholm if the operators ¢; have closed ranges and the
index is well-defined.)

Remark. A semi-Fredholm chain IC with |ind ()| < oo was called a Fredholm essential
complex in [4] and [11]. In the present notation it would be logical to call it a Fredholm
chain.

For a chain K = {X,,d;}}_, denote

X=@P xi&, Y=P X;, S= P 6 and T= P 0.

i even i odd i even i even

It is easy to see that the chain K is semi-Fredholm if and only if the corresponding
pair (S,T) is semi-Fredholm and ind (K) = ind (S,7"). Thus we get the following
perturbation properties of semi-Fredholm chains:

Theorem 11. Let K = {X;,0;}", be a semi-Fredholm chain. Then there exists
e > 0 such that, for every semi-Fredholm chain KXK' = {X;, 8}, with [|0] — 6;|| <
e (1=0,...,n—1) we have

(1) @) < as(K) (i =0,....n),

(2) ind (K') = ind (K).

Theorem 12. Let £ = {X,,d;} , and K = {X], 6.}, be semi-Fredholm complexes

1771

such that ] — J; are compact for i =0,...,n — 1. Then ind (K’) = ind (K).

Remark. It is necessary to assume that X' is semi-Fredholm.
Let H be a separable infinite dimensional Hilbert space and consider the following

complex: s s s
KC: 0—H—>H®H—H®H—=H—0

11



where the mappings §; are defined by doh =h @0, 61(h®g) =0 g, d2(h D g) = h. Tt
is easy to check that K is exact.

(a)
(b)

Let A: H — H be an operator with a small norm and non-closed range. Then
01 : H® H — H @ H defined by 01(h ® g) = Ah @ g has not closed range.

Let ¢ be a small positive number. Define 8 : H&H — H&H by 01 (h®g) = ch@®yg.
Then 7 has closed range but the chain

17

K':  0—HXHeHSHe H2H—0

is not semi-Fredholm.
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