Vasilescu-Martinelli formula for operators in Banach spaces

V. Kordula and V. Miiller

Abstract: We prove a formula for the Taylor functional calculus for functions
analytic in a neighbourhood of the splitting spectrum of an n—tuple of commuting
Banach space operators. This generalizes the formula of Vasilescu for Hilbert space
operators and is closely related with a recent result of D. W. Albrecht.

Let A be an n—tuple of mutually commuting operators in a Banach space X. The
existence of the functional calculus for functions analytic in a neighbourhood of the
Taylor spectrum is one of the most important results of the spectral theory [4], [5].
The formula giving the calculus, however, is rather inexplicit. Better situation is for
commuting Hilbert space operators where an explicit formula was given by Vasilescu
[6,[7].

The aim of this paper is to show that for such a formula is essential the equality
between the Taylor and the splitting spectra for operators in Hilbert spaces. We gen-
eralize the Vasilescu formula for commuting Banach space operators and for functions
analytic in a neighbourhood of the splitting spectrum.

The results are closely related with the paper of D. W. Albrecht [1]. He proved the
Vasilescu formula under the assumption of existence of a certain "smooth generalized
inverse”.

We show that a smooth generalized inverse with similar properties exists every-
where in the complement of the splitting spectrum, what enables to construct the calcu-
lus. Another difference is that we do not assume the existence of the Taylor functional
calculus.

Let X, Y be Banach spaces. We say that an operator 7': X — Y has a generalized
inverse if there is an operator S : Y — X such that TST =T and STS = S.
We shall use the following easy characterization (see e.g. [2]):

Proposition 1. Let X,Y be Banach spaces, let T : X — Y be an operator. The
following conditions are equivalent:

(1) T has a generalized inverse,

(2) There exists an operator S : Y — X such that TST =T,

(3) ImT is closed and both ker T' and ImT" are complemented subspaces of X and Y,
respectively.

Proof. Clearly (1) = (2).

(2) = (1): Let TST =T for some operator S : Y — X. Set S’ = ST'S. It is easy
to check that TS’T =T and S'TS" = 5'.
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(1) = (3): Let ST =T and STS = S. ThenT'S : Y — Y is a bounded projection
and Im7T D Im7T'S D ImTST =ImT, so that T'S is a projection onto Im 7.
Similarly ST is a bounded projection with ker ST" = ker T'.

(3) = (1): Let X =kerT & M and let P € B(Y) be a bounded projection onto
Im7. Then T|M : M — ImT is a bijection. Set S = (T|M)~'P. Then TST =
T(T|M)=*PT =T and STS = (T|M)~*PT(T|M)~'P = (T|M)~'P = S.

We repeat now the basic notations of Taylor [4].
Denote by A(s) the complex exterior algebra generated by the indeterminates s =
(S15--+,5n). Then

A(s) = @D AP(s),

where AP(s) is the set of all elements of degree p in A(s).
Let X be a Banach space. Then we denote by A(s, X) = X ® A(s) and AP(s, X) =
X ® AP(s). Thus the elements of AP (s, X) are of form

E Tiy,..ipSiy N N S,
1<ip < <ip<n

where z;, . ;, € X.
Let A = (Ay,...,A,) be an n—tuple of mutually commuting operators in X.
Define operator d4 : A(s, X) — A(s, X) by

n

Sa(wsiy N+ Nsy,) = Z(ij)sj Nsiy N N Sg,.
j=1

Denote by 6%y = d4|AP(s, X). Then the Koszul complex K (A) is the sequence

6}4 6n—1

0
0 — A%(s, X)2HAY (s, X) 24 . AL AR (s, X) — 0.

Then (64)% =0, i.e. 5%52_1 = 0 for each p (for convenience we define A~!(s, X) =
A" l(s, X) =0).

We say that the n—tuple A = (A4,..., A,) is Taylor-regular if the Koszul complex
K(A) is exact (i.e. Imds = kerds). The Taylor spectrum op(A) is the set of all
n—tuples A = (A1,...,A\,) € C" such that A — X = (41 — A\q,..., A, — \p) is not
Taylor-regular.

Closely related to the Taylor spectrum is the splitting spectrum. We say that A =
(Aq,...,A,) is splitting-regular if ker 54 = Im J4 and the space ker d 4 is complemented
in A(s, X). The splitting spectrum o4(A) is the set of all A € C" such that A — X is
not splitting-regular. Clearly or(A) C o5(A). It is well-known that the properties of
the splitting spectrum are similar to those of the Taylor spectrum — it is a compact
subset of C" and it possesses the spectral mapping property.

The following result characterizes the splitting-regular n—tuples of operators.

Proposition 2. Let A = (Ay,...,A,) be a Taylor-regular n—tuple of mutually com-
muting operators in a Banach space X. The following conditions are equivalent:
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(1) A is splitting-regular,
(2) ker 6’} is a complemented subspace of AP(s,X) (p=0,...,n—1),
(3) there exist operators V1, Vs : A(s, X)) — A(s, X) such that V154 + 64Va = Iz(s,x),
(4) there exist an operator V : A(s, X) — A(s, X) such that V2 =0, Vi + 04V =
I and VAP(s,X) C AP 1(s,X) (p =0,...,n) (i.e. there are operators V),
APtl(s,X) — AP(s, X) such that V, 1V, = 0 and V,65 4+ 6% 'V, 1 = Ipw(s,x) for
every p.
Proof. (4) = (3) is clear.

(3) = (1): If V1da + 04Vo = I then 64V164 = d4, so that d4 has a generalized
inverse, i.e. ker d 4 is complemented.

(1) = (2): Denote by J, : AP(s,X) — A(s,X) the natural embedding, @, :
A(s, X) — AP(s, X) the natural projection and let P : A(s, X) — kerd4 be a bounded

projection onto kerd 4.
Clearly Q,(kerd4) = ker 6%y. Then Q,P.J, is a bounded projection onto ker ¢%.

(2) = (4): Let M, be a subspace of AP(s, X) such that ker 6 & M, = AP(s, X).
The operator 6% |M, : M, — Imd" = ker (52“ is a bijection. In the decompositions
AP (s, X) = ker 0%, ® M,, Ap+1(s,X) — ker 0% @ M, we have

ker 6%} M,
6p:Im5£ 0 6% | M,
AT My \ 0 0 )
Set
Iméi Mp+1

Vo ker 6% 0 0
v=or, @) o )
Then V,_1V},, = 0 since ImV,, C M,, C ker V,,_,. For v € M, we have
Vool + 0% 1V r=V,0hr =ux.
( A
For x € ker 8%, we have
Vool + 0% 1V T =04 1V_1x::1;.
(Vp

Thus V,0% + 0% 'V, = Ipv(s,x) for each p. (For p = 0 and p = n this reduces to
VO(S% = IAO(S’X) and 52_1‘/”_1 = IA7L(S7X)).

Theorem 3. Let A = (Ay,...,A,) be an n—tuple of mutually commuting operators in
a Banach space X. Let i € C" and suppose that A is splitting-regular, i.e. kerd, 4 =
Imd,—4 and 6,,— 4 has a generalized inverse. Then there exists a neighbourhood U of p
in C" and an analytic function V : U — B(A(s, X)) such that V(A)dx—a+0x—aV(A) =
Ips,x) for every A € U.

Moreover, we may assume that V(\)2 =0 (XA € U) and

VIVAP(s, X) C AP H(s,X) (ANeUp=0,...,n).
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Proof. By the previous proposition there exists an operator V : A(s, X) — A(s, X)
such that V2 =0, 6,4V +V4,_4 = Ip(s,x), and VAP(s, X) C AP~1(s, X) for every p.
For A\ € C" denote by Hy = dx_4 —0,—4. Let U be the set of all A € C" such that
|Hy| < |[V||7t. Clearly U is a neighbourhood of x in C" and, for A € U, the operators
I + H,\V and I + VH) are invertible. We have V(I + H\V) = (I + VH,)V, so that
(I+VH\) YW =V({I+H\V)™t For \e Uset V(\) = (I +VH,) V. Then

5)\_AV()\) + V()\)(S)\_A
=(8pn +HO)VI + H\V) P+ (I +VH\) 'V (6,—a+ Hy)
=(I+VH\) '[(I+VH\)(8u—a+H\)V + V(6 +H)I + H\V)|(I+H\V)™

The expression in the middle is equal to

$uaAV + H\V +VH, AV +VHV+VS, a+VH\+ VS, aH\V +VHV
=(I+VH\(I+H\V)+V(H\6,-a+0,_aHy+ H3)V
=(I+VH){I +H\V)+V((0u—a +H\)? = (6,—a)*)V = (I +VH\)(I + H\V)

since (0,-4)%> =0 and (6,4 + Hx)*> = (0x—4)? = 0. Thus
oa-aAVA) +V(N)or-a=Irsx)y  (AeU).

Further
VN =T +VH)'WV.-VI+HV)!'=o0.

Finally V(X) = >_.2(=1)"(VH\)"V where
(VH))AP(s,X) C AP(s,X) (p=0,...,n),

so that
VIVOAP(s, X)C AP Hs,X)  (AeUp=0,...,n).

Corollary 4. Let A = (A4,...,A,) be an n—tuple of mutually commuting operators
in a Banach space X. Denote by G = C" — 04(A). Then there exists an operator-
valued C*°—function V : G — B(A(s, X)) such that 0x_ 4V (A) + V(A)dr—a = Ir(s,x),
V(\)? =0 and

V(ANAP(s,X) C AP (s, X) ANeG,p=0,...,n).

Proof. For every y1 € G there exists a neighbourhood U, of ;» and an analytic operator-
valued function V), : U, — B(A(s, X)) such that V,(A)dx—a + 0rx—aVu(A) = Iaes, x)s
V,(A\)? =0 and

V. (A)AP(s, X) C AP (s, X) AeU,,p=0,...,n).
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Let {1;};2, be a C*°—partition of unity subordinated to the cover {U,,p € G} of G,
i.e. 1;’s are C°°—functions, 0 < 1; <1, supp; C U, for some p; € G, for each p € G
there exists a neighbourhood U of such that all but finitely many of v;’s are 0 on U

and >, ¥;(p) =1 for each p € G. For X € G set

sz )ox—aVyu, (V).

Clearly Im P(\) C Imd)_ 4 and, for x € Imdy_ 4, we have

ANz = Zwi()\):z; =z

since dx— 4V}, ()) is a projection onto Imdx—4 (V),, (A) is a generalized inverse of 6x— ).
Thus P()) is a projection onto Imdy_4 (A € G). Further

POAP(s, X) C AP(s,X) (AeG,p=0,....n).

Set

=Y iU = POV, (NPR) (A eq).
i=1
Clearly V is a C° —function, V' (\)? = 0 and
V(NAP(s,X) C AP (s, X) ANeG,p=0,...,n).

It remains to show that dx_ 4V (A) +V(A)drx—a = Ir(s,x). If 2 € Imdy_ 4 then
(Or—aV(N) + V(N)dr—a)z = dr-aV( Nz = sz )or_a(I = POV, (N P(N)z
= 2 Vi(N)Or—aVy, (N = iw(x) (I =V, (N)dr—n)zx = ;m(x)x =
If 2 € ker P()\) then
(Br_aVN) + V(N)r_a)z = V(\)dr_az = f: bi(N)(I = POV, (A P(A)dx_az

=3 iU = POV, (s az = sz P))(I = 0x-aVu, (V)

oa-aAVA) +V(N)or-a =z x)y  (AEG).
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In the rest of the paper we shall fix a commuting n—tuple A = (Ay,...,A,)
of operators in a Banach space X, G = C" — 04(A) and a C*°—function V : G —
B(A(s, X)) with properties of Corollary 4. Denote by C*°(G, X) the space of all X-
valued C*°—functions defined in G.

We shall consider the space C>°(G, A(s, X)). Clearly this space can be identified
with the set A(s, C>(G, X)).

Function V' : G — B(A(s, X)) induces naturally the operator (denoted by the same
symbol) V : C*°(G, A(s, X)) — C*°(G, A(s, X)) by

(Vy)(u) = V(w)y(p) (k€ Gy e C™(G,A(s,X))).
Similarly we define operator & : C°(G, A(s, X)) — C®(G, A(s, X)) by
(0y) (1) = b—a y(p) (1€ G,y e C®(G, A(s, X))).
Clearly V2 =0, 6 = 0, V6 + 6V = Iy (s.c~(c.x)) and both V and 6 are "graded”, i.e.

VAP(s,C>®(G, X)) C AP"!(s,C>*(G, X))  and
SAP(s,C°(G, X)) C APTl(s,C®(G, X)).

Consider now another indeterminates dz = (dzy,...,dZ,) and the set

A(s,dz,C*(G, X)). We define the operator
0 :A(s,dz,C™(G, X)) — A(s,dz, C°(G, X))

by

n

= 0
afsilA...Asip/\dzjlA.../\dzjq:Za—idzkAsil/\...As%AdzﬁA...Adzjq.
k=1

Clearly 0% = 0.
Operators V and § can be "lifted” from A(s,C>*(G, X)) to A(s,dz, C*°(G, X)) by

Viyndz, A...dz,) = (Vy) AdZ, A...dZ, and

Sy ndz, A...dz) = (by) Adz, A...dZ, (y € A(s,C>(G, X))).
Clearly the properties of V and ¢ are preserved: V2 =0, V3+ 6V =TI and both V
and ¢ are graded. Note also that 0 = —9d0 and if U is an open subset of G and
n € A(s,C®(G, X)) (=C>(G,A(s, X)) with 5|U = 0, then 9n|U = 0, én|U = 0 and
VU = 0.

Theorem 5. There exists an operator W : A(s,dz, C>°(G, X)) — A(s,dz, C(G, X))
such that W2 =0, W(§ +0) + (6 + 9)W = I and

WAP(s,dz, C®(G, X)) C AP~ (s,dz,C¥(G, X))  (p=0,...,2n)

(i.e. W 7splits” § + 0).



Proof. Clearly V : A(s,dz, C(G, X)) — A(s,dz,C°(G, X)) decreases by 1 the de-

gree in si,...,s, and O does not decrease this degree. Thus (oV)ntl = 0. Hence

(I +0V)~" exists and (I + V)=t = Y7 ((=1)/(9V)’. Similarly (I + V9)~! =

Yo o(=1)1 (V). Since V(I+0V) = (I+ V)V we have (I+V9) 'V =V (I+9V) .
Set W= (I+V) 'V =V({I+dV)t=3""7(-1)V(V)’. Clearly

W2=(I+Vo) 'V.VI+aoV) =0
and W decreases the (total) degree by 1. It remains to prove that (§4+9)W +W (6+0) =

I,1ie.
F+NVI+V) L+ T +VI) 'V +0) =1

It is sufficient to show
I+VO+OV+V(E+)I+0V)=(I+VI)(I+IV)

or

SV +OV+VIV +Vi+VI+ VsV =1+VI+9V.
The last equality follows from the relations 6V + V§ = I and 09 + 60 = 0.

Denote by P the natural projection P : A(s,dz, C*°(G, X)) — A(dz,C=(G, X)).
Let M : X — A" 1(dz,C*°(G, X)) be the operator defined by

Mz = (—-1)""'PWas,

where we write shortly s = s; A--- A s,. Since

n—1
W=V-S (~1)/(@V) =V =VV 4+ (1) V(@V)",
i=0
0 does not decrease the degree in (s1,...,s,) and V decreases it by 1, we can see that

Mz =V (OV)" tus.

Proposition 6. OMxz = 0 for every z € X.
Proof. We have (0 + 0)zs = 0 so that

(64 0)Wazs= (6 + )W + W (5 + )]s = ws.

Let Was = PWaxs + n, where n € A(s,dz,C*°(G, X)) consists of terms of degree at
least 1 in sq,...,s,.
Thus
(6 4+ 0)Was = [(6+ 0)n+ 6PWxs| + OPWxs

where OPW xs consists of terms of degree 0 in sq,...,s,. Thus
0 = Pxs, = P(6 + 0)Wzs = OPWus.
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Let U be a neighbourhood of o4(A). It is possible to find an open subset A
containing o4(A) such that A is compact, A C U and the boundary 0A is a smooth
surface. Let f be a function analytic in U. Define the operator f(A) by

1
(27i)"™ Jon

where dz stands for dz; A --- A dz,. By the Stokes formula

f(A)x =

Mf(z)x ANdz (x € X), (1)

1
(2mi)n

f(A)z = /&oMf(z)x Ndz

where ¢ is C°°— function equal to 0 on a neighbourhood of 05(A) to 1 on C" — A.
To show the correctness of the definition of f(A) we need the following simple
proposition (see [6]).

Proposition 7. Letn € A"(s,dz, C*°(G, X)) be a differential form with a compact
support disjoint with os(A) such that (6 + 0)n = 0. Then

/Pn/\dz:O.

Proof: Set ¢ = Wn. Then (§ + )¢ = n and
Pn= P(6 + 0)¢ = PO¢ = OPE.

Hence, for a suitable surface > we have

/ Pndz = / OP&dz = /Z Pédz = 0.

We show now that the definition of f(A) does not depend on the particular choice
of ¢. Indeed, if ¢; and o are two C°— function with required properties, then
(6 + 0)(p1 — w2)W f(2)xs satisfies the properties of Proposition 7. Thus

0= /P(5 +0)(p1 — p2) f(2)Was Adz = /Pé(gol —p2)f(z)Wxs ANdz =
= (1" [ (o1 - ) f @M A d

This means also that f(A) does not depend on the choice of the set A.

Finally we show that f(A) does not depend on the choice of the generalized inverse
V' which determines W and M.
Suppose that W7, W, are two operators satisfying

(§+O)W; + W;(§+0) =1 (i=1,2).
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Then (6 + )W, f(z)xs = f(z)xs. For those z where p = 1 we have
(6 +0)p(W1 — Wa) f(z)zs =0

so that the form (6 + 0)p(Wy — Ws) f(z)zs satisfies the conditions of Proposition 7.
Hence

0= /P((5 + 0)p(Wy — Wa) f(2)zs Adz = /Pégp(Wl —Wo)f(z)zs Ndz =

= /&pP(Wl —Wo)f(2)zs Adz = (—1)" ! /5gof(z)(M1 — My)x ANdz

where
Mz = (-1)""'PW,;xs (i=1,2).

Clearly f(A) is a bounded linear operator and the mapping f — f(A) is linear.
To show that f +— f(A) is the functional calculus it is necessary to prove that

flA) =1 if f=1,
f(A) =A4; if f(z) =2 (i=1,...,n)

and the multiplicativity of the mapping f +— f(A).
As the proof is rather technical and it is described elsewhere (see [6], [3]), we just
outline the main steps.

1) If n = 1 then M is just the inverse Mxz = (A — A;) ', so that the described
calculus coincides with the ordinary calculus for one operator.

Set
1

W= G

(=1)" (6 + )W — 1], (2)

so that
f(A)z = /f(z)PWxs Ndz.

2) Let (A,B) = (Ay,...,A,,B1,...,B,) be acommuting (n+m)—tuple of operators
in X, let A, A’ be open neighbourhood of o5(A), o5(B) with compact closures and
with smooth boundaries. Let f be a function analytic in a neighbourhood of

A x A'. Let Wn,Wm,Wn+m be operators defined by (2) for tuples A, B and
(A, B), respectively. Then

/f(z, w)P(WmLm —W"Was At Adz A dw =0,

where t = (t1,...,tm), dw = (dw,...,dw,,) are indeterminates corresponding to
B. This follows from considerations similar to the proof of Proposition 7.

3) If f(z,w) = fi1(2) - fa(w) then, by the Fubini theorem and by 2), f(A,B) =
f1(A) f2(B).



4)

Consider the n—tuple A = (Ay,..., A,) and the identity function f : C" — C,
f = 1. Then 3) together with 1) gives f(A) = 1.
Similarly f(A) = A; for f(2) = 2 (i=1,...,n).

Consider the 2n—tuple (A, A) = (A1,...,A,, A1,..., Ay). Let f,g be functions
analytic in a neighbourhood of o4(A). Then

Az = /f(z)PWZ (/g(w)Pwat A dw) NsNdz =
/f w)PW' W xs/\t/\dz/\dw—/f (w)PW ™ zs At Adz A dw
and, by 2),

(F9)(A) = (fg)(4) - id /f Yos At Ade A duw.

Thus it is sufficient to show

/f ))PW “zs At Adz Adw = 0.

Since g(z) — g(w) = Y7 (z; — w;)hi(z, w) for some analytic functions h;(z, w), the
previous integral is equal to

Z / F(2)hi(z,w) (2 — w))PW " xs At Adz A dw =
i=1
= Z / F(2)hi(z,w)(z — A)PW " zs At Adz A dw—

_ Z / F(2)hi(z,w)(w; — A)PW "“zs At Adz A dw.
i=1
Thus it is sufficient to show that
/f(z)h(z, w)(z; — A)PW “zs At Adz Adw =0

for every analytic function h(z,w). The last integral is equal to (up to multiplica~
tion by a constant)

/h(zz — A)P(+ ) pWas At Adz A\ dw = /hégoP(zi —A)Was ANt ANdz A dw.

By checking the definition of W it is possible to show that
P(z; — A)Was ANt Adz A dw = O
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for some ¢ so that
/ hOpOE = / OpOhé = ohé = 0.
oA
Concluding remarks

If X is a Hilbert space, then A(s, X) can be given naturally a Hilbert space
structure, so that the splitting spectrum coincide with the Taylor spectrum. For
A & 05(A) the operator (0x—a + 0% 4) : A(s, X) — A(s, X) is invertible and

(Or—a +05_a) "6xea +0a—a(Orea+05_4) " = Ings x)-

Clearly the function A — (dx_4 +6%_4)~! is C* and although it does not satisfy
all the conditions of Corollary 4, it is possible to take it instead of the operator
ViA(s,C®(G,X)) — A(s,C°(G, X)). The remaining conditions of Corollary 4
(V2 = 0 and that V is ”graded”) are not essential for the construction of the
functional calculus and only make the considerations easier. On the other hand
the formula obtained for f(A) using the function A — (6x_a + &% 4) 7! is quite
explicit (see [6], [7]).

Let
ViA(s,C*(G, X)) = A(s,C(G, X))
be an operator with the properties of Corollary 4. Then (6 + V)™ ! = §+ V and
PG+ V) [0+ V)" zs = PV(OV)" s

so that the functional calculus constructed here coincides with the construction of
Albrecht [1].

If A= (A;....,A,) has areal Taylor spectrum, or(A) C R", then it is possible to
show that o5(A) = o7 (A). Indeed, if A € C" — o7 (A) it is possible to find a point
p € C" — (or(A) U{A}) and a rational function f(z) = (Zl_lﬂl) (z'n_lﬂn) such

that |f(\)| > max{|f(2)|,z € or(A)}. Consider the operator f(A). If A € o4(A)

then, by the spectral mapping theorems for o and o, we have

max{|z|, z € or(f(A))} < max{|z],z € 05(f(A))},

which contradicts to the fact that o and o, coincide for single operators. Thus
the functional calculus for functions analytic in a neighbourhood of the splitting
spectrum coincide with the Taylor functional calculus.

In general o7 (A) C 05(A). It is an open problem whether it is possible to find an
n—tuple A = (Ay,..., A,) of mutually commuting operators in a Banach space X
such that op(A) # o5(A).

The Taylor functional calculus can be constructed similarly as the calculus for the

splitting spectrum constructed here. It is well-known that the sequence

PO (s,d2, O (G, X)) FON (5.2, 0 (G, X)) 2

is exact (see e.g. [8], Propositions II1.2.4, 2.5, 2.8). If f is a function analytic in a
neighbourhood of o7 (A), it is possible to take instead of Wxs in formula (1) the
form & € A"~1(s,dz, C*(G, X)) such that (§ + 9)¢ = zs. It is not possible to see
at the first glance that the operator f(A) defined in this way is bounded. This can
be shown by choosing £ not too big in the norm (cf. [3]).
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