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Abstract: We prove a formula for the Taylor functional calculus for functions
analytic in a neighbourhood of the splitting spectrum of an n–tuple of commuting
Banach space operators. This generalizes the formula of Vasilescu for Hilbert space
operators and is closely related with a recent result of D. W. Albrecht.

Let A be an n–tuple of mutually commuting operators in a Banach space X. The
existence of the functional calculus for functions analytic in a neighbourhood of the
Taylor spectrum is one of the most important results of the spectral theory [4], [5].
The formula giving the calculus, however, is rather inexplicit. Better situation is for
commuting Hilbert space operators where an explicit formula was given by Vasilescu
[6],[7].
The aim of this paper is to show that for such a formula is essential the equality

between the Taylor and the splitting spectra for operators in Hilbert spaces. We gen-
eralize the Vasilescu formula for commuting Banach space operators and for functions
analytic in a neighbourhood of the splitting spectrum.
The results are closely related with the paper of D. W. Albrecht [1]. He proved the

Vasilescu formula under the assumption of existence of a certain ”smooth generalized
inverse”.
We show that a smooth generalized inverse with similar properties exists every-

where in the complement of the splitting spectrum, what enables to construct the calcu-
lus. Another difference is that we do not assume the existence of the Taylor functional
calculus.

Let X,Y be Banach spaces. We say that an operator T : X −→ Y has a generalized
inverse if there is an operator S : Y → X such that TST = T and STS = S.
We shall use the following easy characterization (see e.g. [2]):

Proposition 1. Let X,Y be Banach spaces, let T : X → Y be an operator. The
following conditions are equivalent:
(1) T has a generalized inverse,
(2) There exists an operator S : Y → X such that TST = T ,
(3) ImT is closed and both kerT and ImT are complemented subspaces of X and Y ,
respectively.

Proof. Clearly (1)⇒ (2).

(2)⇒ (1): Let TST = T for some operator S : Y → X. Set S ′ = STS. It is easy
to check that TS′T = T and S′TS′ = S′.
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(1)⇒ (3): Let TST = T and STS = S. Then TS : Y → Y is a bounded projection
and ImT ⊃ ImTS ⊃ ImTST = ImT , so that TS is a projection onto ImT .
Similarly ST is a bounded projection with kerST = kerT .

(3) ⇒ (1): Let X = kerT ⊕M and let P ∈ B(Y ) be a bounded projection onto
ImT . Then T |M : M → ImT is a bijection. Set S = (T |M)−1P . Then TST =
T (T |M)−1PT = T and STS = (T |M)−1PT (T |M)−1P = (T |M)−1P = S.

We repeat now the basic notations of Taylor [4].
Denote by Λ(s) the complex exterior algebra generated by the indeterminates s =

(s1, . . . , sn). Then

Λ(s) =

n
⊕

p=0

Λp(s),

where Λp(s) is the set of all elements of degree p in Λ(s).
Let X be a Banach space. Then we denote by Λ(s,X) = X⊗Λ(s) and Λp(s,X) =

X ⊗ Λp(s). Thus the elements of Λp(s,X) are of form

∑

1≤i1<···<ip≤n

xi1,...,ip
si1 ∧ · · · ∧ sip

where xi1,...,ip
∈ X.

Let A = (A1, . . . , An) be an n−tuple of mutually commuting operators in X.
Define operator δA : Λ(s,X)→ Λ(s,X) by

δA(xsi1 ∧ · · · ∧ sip
) =

n
∑

j=1

(Ajx)sj ∧ si1 ∧ · · · ∧ sip
.

Denote by δp
A = δA|Λ

p(s,X). Then the Koszul complex K(A) is the sequence

0 −→ Λ0(s,X)
δ0A−→Λ1(s,X)

δ1A−→· · ·
δn−1

A−→Λn(s,X) −→ 0.

Then (δA)
2 = 0, i.e. δp

Aδ
p−1
A = 0 for each p (for convenience we define Λ−1(s,X) =

Λn+1(s,X) = 0).
We say that the n−tuple A = (A1, . . . , An) is Taylor-regular if the Koszul complex

K(A) is exact (i.e. Im δA = ker δA). The Taylor spectrum σT (A) is the set of all
n−tuples λ = (λ1, . . . , λn) ∈ C

n such that A − λ = (A1 − λ1, . . . , An − λn) is not
Taylor-regular.
Closely related to the Taylor spectrum is the splitting spectrum. We say that A =

(A1, . . . , An) is splitting-regular if ker δA = Im δA and the space ker δA is complemented
in Λ(s,X). The splitting spectrum σs(A) is the set of all λ ∈ C

n such that A − λ is
not splitting-regular. Clearly σT (A) ⊂ σs(A). It is well-known that the properties of
the splitting spectrum are similar to those of the Taylor spectrum — it is a compact
subset of C

n and it possesses the spectral mapping property.
The following result characterizes the splitting-regular n−tuples of operators.

Proposition 2. Let A = (A1, . . . , An) be a Taylor-regular n−tuple of mutually com-
muting operators in a Banach space X. The following conditions are equivalent:

2



(1) A is splitting-regular,
(2) ker δp

A is a complemented subspace of Λ
p(s,X) (p = 0, . . . , n− 1),

(3) there exist operators V1, V2 : Λ(s,X)→ Λ(s,X) such that V1δA + δAV2 = IΛ(s,X),
(4) there exist an operator V : Λ(s,X) → Λ(s,X) such that V 2 = 0, V δA + δAV =
I and V Λp(s,X) ⊂ Λp−1(s,X) (p = 0, . . . , n) (i.e. there are operators Vp :

Λp+1(s,X) → Λp(s,X) such that Vp−1Vp = 0 and Vpδ
p
A + δ

p−1
A Vp−1 = IΛp(s,X) for

every p.

Proof. (4)⇒ (3) is clear.

(3) ⇒ (1): If V1δA + δAV2 = I then δAV1δA = δA, so that δA has a generalized
inverse, i.e. ker δA is complemented.

(1) ⇒ (2): Denote by Jp : Λ
p(s,X) → Λ(s,X) the natural embedding, Qp :

Λ(s,X)→ Λp(s,X) the natural projection and let P : Λ(s,X)→ ker δA be a bounded
projection onto ker δA.
Clearly Qp(ker δA) = ker δ

p
A. Then QpPJp is a bounded projection onto ker δ

p
A.

(2) ⇒ (4): Let Mp be a subspace of Λ
p(s,X) such that ker δp

A ⊕Mp = Λ
p(s,X).

The operator δp
A|Mp : Mp → Im δp

A = ker δ
p+1
A is a bijection. In the decompositions

Λp(s,X) = ker δp
A ⊕Mp, Λ

p+1(s,X) = ker δp+1
A ⊕Mp+1 we have

δ
p
A =

(

ker δp
A Mp

Im δp
A 0 δ

p
A|Mp

Mp+1 0 0

)

.

Set

Vp =

(

Im δp
A Mp+1

ker δp
A 0 0

Mp (δp
A|Mp)

−1 0

)

.

Then Vp−1Vp = 0 since ImVp ⊂Mp ⊂ kerVp−1. For x ∈Mp we have

(Vpδ
p
A + δ

p−1
A Vp−1)x = Vpδ

p
Ax = x.

For x ∈ ker δp
A we have

(Vpδ
p
A + δ

p−1
A Vp−1)x = δ

p−1
A Vp−1x = x.

Thus Vpδ
p
A + δ

p−1
A Vp−1 = IΛp(s,X) for each p. (For p = 0 and p = n this reduces to

V0δ
0
A = IΛ0(s,X) and δ

n−1
A Vn−1 = IΛn(s,X)).

Theorem 3. Let A = (A1, . . . , An) be an n−tuple of mutually commuting operators in
a Banach space X. Let µ ∈ C

n and suppose that A is splitting-regular, i.e. ker δµ−A =
Im δµ−A and δµ−A has a generalized inverse. Then there exists a neighbourhood U of µ
in C

n and an analytic function V : U → B(Λ(s,X)) such that V (λ)δλ−A+δλ−AV (λ) =
IΛ(s,X) for every λ ∈ U .
Moreover, we may assume that V (λ)2 = 0 (λ ∈ U) and

V (λ)Λp(s,X) ⊂ Λp−1(s,X) (λ ∈ U, p = 0, . . . , n).
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Proof. By the previous proposition there exists an operator V : Λ(s,X) → Λ(s,X)
such that V 2 = 0, δµ−AV +V δµ−A = IΛ(s,X), and V Λ

p(s,X) ⊂ Λp−1(s,X) for every p.
For λ ∈ C

n denote by Hλ = δλ−A − δµ−A. Let U be the set of all λ ∈ C
n such that

‖Hλ‖ < ‖V ‖−1. Clearly U is a neighbourhood of µ in C
n and, for λ ∈ U , the operators

I + HλV and I + V Hλ are invertible. We have V (I + HλV ) = (I + V Hλ)V , so that
(I + V Hλ)

−1V = V (I +HλV )
−1. For λ ∈ U set V (λ) = (I + V Hλ)

−1V . Then

δλ−AV (λ) + V (λ)δλ−A

=(δµ−A +Hλ)V (I +HλV )
−1 + (I + V Hλ)

−1V (δµ−A +Hλ)

=(I + V Hλ)
−1

[

(I + V Hλ)(δµ−A +Hλ)V + V (δµ−A +Hλ)(I +HλV )
]

(I +HλV )
−1.

The expression in the middle is equal to

δµ−AV +HλV + V Hλδµ−AV + V H
2
λV + V δµ−A + V Hλ + V δµ−AHλV + V H

2
λV

=(I + V Hλ)(I +HλV ) + V (Hλδµ−A + δµ−AHλ +H
2
λ)V

=(I + V Hλ)(I +HλV ) + V
(

(δµ−A +Hλ)
2 − (δµ−A)

2
)

V = (I + V Hλ)(I +HλV )

since (δµ−A)
2 = 0 and (δµ−A +Hλ)

2 = (δλ−A)
2 = 0. Thus

δλ−AV (λ) + V (λ)δλ−A = IΛ(s,X) (λ ∈ U).

Further
V (λ)2 = (I + V Hλ)

−1V · V (I +HλV )
−1 = 0.

Finally V (λ) =
∑∞

i=0(−1)
i(V Hλ)

iV where

(V Hλ)Λ
p(s,X) ⊂ Λp(s,X) (p = 0, . . . , n),

so that
V (λ)Λp(s,X) ⊂ Λp−1(s,X) (λ ∈ U, p = 0, . . . , n).

Corollary 4. Let A = (A1, . . . , An) be an n−tuple of mutually commuting operators
in a Banach space X. Denote by G = C

n − σs(A). Then there exists an operator-
valued C∞−function V : G → B(Λ(s,X)) such that δλ−AV (λ) + V (λ)δλ−A = IΛ(s,X),
V (λ)2 = 0 and

V (λ)Λp(s,X) ⊂ Λp−1(s,X) (λ ∈ G, p = 0, . . . , n).

Proof. For every µ ∈ G there exists a neighbourhood Uµ of µ and an analytic operator-
valued function Vµ : Uµ → B(Λ(s,X)) such that Vµ(λ)δλ−A + δλ−AVµ(λ) = IΛ(s,X),
Vµ(λ)

2 = 0 and

Vµ(λ)Λ
p(s,X) ⊂ Λp−1(s,X) (λ ∈ Uµ, p = 0, . . . , n).
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Let {ψi}
∞
i=1 be a C

∞−partition of unity subordinated to the cover {Uµ, µ ∈ G} of G,
i.e. ψi’s are C

∞−functions, 0 ≤ ψi ≤ 1, suppψi ⊂ Uµi
for some µi ∈ G, for each µ ∈ G

there exists a neighbourhood U of µ such that all but finitely many of ψi’s are 0 on U
and

∑∞

i=1 ψi(µ) = 1 for each µ ∈ G. For λ ∈ G set

P (λ) =
∞
∑

i=1

ψi(λ)δλ−AVµi
(λ).

Clearly ImP (λ) ⊂ Im δλ−A and, for x ∈ Im δλ−A, we have

P (λ)x =

∞
∑

i=1

ψi(λ)x = x,

since δλ−AVµi
(λ) is a projection onto Im δλ−A (Vµi

(λ) is a generalized inverse of δλ−A).
Thus P (λ) is a projection onto Im δλ−A (λ ∈ G). Further

P (λ)Λp(s,X) ⊂ Λp(s,X) (λ ∈ G, p = 0, . . . , n).

Set

V (λ) =
∞
∑

i=1

ψi(λ)(I − P (λ))Vµi
(λ)P (λ) (λ ∈ G).

Clearly V is a C∞−function, V (λ)2 = 0 and

V (λ)Λp(s,X) ⊂ Λp−1(s,X) (λ ∈ G, p = 0, . . . , n).

It remains to show that δλ−AV (λ) + V (λ)δλ−A = IΛ(s,X). If x ∈ Im δλ−A then

(

δλ−AV (λ) + V (λ)δλ−A

)

x = δλ−AV (λ)x =

∞
∑

i=1

ψi(λ)δλ−A(I − P (λ))Vµi
(λ)P (λ)x

=
∞
∑

i=1

ψi(λ)δλ−AVµi
(λ)x =

∞
∑

i=1

ψi(λ)
(

I − Vµi
(λ)δλ−A

)

x =
∞
∑

i=1

ψi(λ)x = x.

If x ∈ kerP (λ) then

(

δλ−AV (λ) + V (λ)δλ−A

)

x = V (λ)δλ−Ax =

∞
∑

i=1

ψi(λ)(I − P (λ))Vµi
(λ)P (λ)δλ−Ax

=
∞
∑

i=1

ψi(λ)(I − P (λ))Vµi
(λ)δλ−Ax =

∞
∑

i=1

ψi(λ)(I − P (λ))
(

I − δλ−AVµi
(λ)

)

x

=
∞
∑

i=1

ψi(λ)(I − P (λ))x =
∞
∑

i=1

ψi(λ)x = x.

Hence
δλ−AV (λ) + V (λ)δλ−A = IΛ(s,X) (λ ∈ G).
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In the rest of the paper we shall fix a commuting n−tuple A = (A1, . . . , An)
of operators in a Banach space X, G = Cn − σs(A) and a C

∞−function V : G →
B(Λ(s,X)) with properties of Corollary 4. Denote by C∞(G,X) the space of all X-
valued C∞−functions defined in G.
We shall consider the space C∞(G,Λ(s,X)). Clearly this space can be identified

with the set Λ(s, C∞(G,X)).
Function V : G→ B(Λ(s,X)) induces naturally the operator (denoted by the same

symbol) V : C∞(G,Λ(s,X))→ C∞(G,Λ(s,X)) by

(V y)(µ) = V (µ)y(µ)
(

µ ∈ G, y ∈ C∞(G,Λ(s,X))
)

.

Similarly we define operator δ : C∞(G,Λ(s,X))→ C∞(G,Λ(s,X)) by

(δy)(µ) = δµ−A y(µ)
(

µ ∈ G, y ∈ C∞(G,Λ(s,X))
)

.

Clearly V 2 = 0, δ2 = 0, V δ + δV = IΛ(s,C∞(G,X)) and both V and δ are ”graded”, i.e.

V Λp(s, C∞(G,X)) ⊂ Λp−1(s, C∞(G,X)) and

δΛp(s, C∞(G,X)) ⊂ Λp+1(s, C∞(G,X)).

Consider now another indeterminates dz̄ = (dz̄1, . . . , dz̄n) and the set
Λ(s, dz̄, C∞(G,X)). We define the operator

∂̄ : Λ(s, dz̄, C∞(G,X))→ Λ(s, dz̄, C∞(G,X))

by

∂̄fsi1 ∧ . . . ∧ sip
∧ dz̄j1 ∧ . . . ∧ dz̄jq

=

n
∑

k=1

∂f

∂z̄k

dz̄k ∧ si1 ∧ . . . ∧ sip
∧ dz̄j1 ∧ . . . ∧ dz̄jq

.

Clearly ∂̄2 = 0.
Operators V and δ can be ”lifted” from Λ(s, C∞(G,X)) to Λ(s, dz̄, C∞(G,X)) by

V (y ∧ dz̄i1 ∧ . . .dz̄ip
) = (V y) ∧ dz̄i1 ∧ . . .dz̄ip

and

δ(y ∧ dz̄i1 ∧ . . .dz̄ip
) = (δy) ∧ dz̄i1 ∧ . . .dz̄ip

(

y ∈ Λ(s, C∞(G,X))
)

.

Clearly the properties of V and δ are preserved: V 2 = 0, V δ + δV = I and both V
and δ are graded. Note also that δ∂̄ = −∂̄δ and if U is an open subset of G and
η ∈ Λ(s, C∞(G,X))

(

= C∞(G,Λ(s,X)
)

with η|U ≡ 0, then ∂̄η|U ≡ 0, δη|U ≡ 0 and
V η|U ≡ 0.

Theorem 5. There exists an operator W : Λ(s, dz̄, C∞(G,X))→ Λ(s, dz̄, C∞(G,X))
such that W 2 = 0, W (δ + ∂̄) + (δ + ∂̄)W = I and

WΛp(s, dz̄, C∞(G,X)) ⊂ Λp−1(s, dz̄, C∞(G,X)) (p = 0, . . . , 2n)

(i.e. W ”splits” δ + ∂̄).
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Proof. Clearly V : Λ(s, dz̄, C∞(G,X)) → Λ(s, dz̄, C∞(G,X)) decreases by 1 the de-
gree in s1, . . . , sn and ∂̄ does not decrease this degree. Thus (∂̄V )

n+1 = 0. Hence
(I + ∂̄V )−1 exists and (I + ∂̄V )−1 =

∑n
j=0(−1)

j(∂̄V )j . Similarly (I + V ∂̄)−1 =
∑n

j=0(−1)
j(V ∂̄)j . Since V (I+ ∂̄V ) = (I+V ∂̄)V we have (I+V ∂̄)−1V = V (I+ ∂̄V )−1.

Set W = (I + V ∂̄)−1V = V (I + ∂̄V )−1 =
∑n−1

j=0 (−1)
jV (∂̄V )j. Clearly

W 2 = (I + V ∂̄)−1V · V (I + ∂̄V )−1 = 0

andW decreases the (total) degree by 1. It remains to prove that (δ+∂̄)W+W (δ+∂̄) =
I, i.e.

(δ + ∂̄)V (I + ∂̄V )−1 + (I + V ∂̄)−1V (δ + ∂̄) = I.

It is sufficient to show

(I + V ∂̄)(δ + ∂̄)V + V (δ + ∂̄)(I + ∂̄V ) = (I + V ∂̄)(I + ∂̄V )

or
δV + ∂̄V + V ∂̄δV + V δ + V ∂̄ + V δ∂̄V = I + V ∂̄ + ∂̄V.

The last equality follows from the relations δV + V δ = I and ∂̄δ + δ∂̄ = 0.

Denote by P the natural projection P : Λ(s, dz̄, C∞(G,X)) → Λ(dz̄, C∞(G,X)).
Let M : X → Λn−1(dz̄, C∞(G,X)) be the operator defined by

Mx = (−1)n−1PWxs,

where we write shortly s = s1 ∧ · · · ∧ sn. Since

W = V ·
n−1
∑

i=0

(−1)i(∂̄V )i = V − V ∂̄V + · · ·+ (−1)n−1V (∂̄V )n−1,

∂̄ does not decrease the degree in (s1, . . . , sn) and V decreases it by 1, we can see that

Mx = V (∂̄V )n−1xs.

Proposition 6. ∂̄Mx = 0 for every x ∈ X.

Proof. We have (δ + ∂̄)xs = 0 so that

(δ + ∂̄)Wxs =
[

(δ + ∂̄)W +W (δ + ∂̄)
]

xs = xs.

Let Wxs = PWxs + η, where η ∈ Λ(s, dz̄, C∞(G,X)) consists of terms of degree at
least 1 in s1, . . . , sn.
Thus

(δ + ∂̄)Wxs =
[

(δ + ∂̄)η + δPWxs
]

+ ∂̄PWxs

where ∂̄PWxs consists of terms of degree 0 in s1, . . . , sn. Thus

0 = Pxsn = P (δ + ∂̄)Wxs = ∂̄PWxs.
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Let U be a neighbourhood of σs(A). It is possible to find an open subset ∆
containing σs(A) such that ∆̄ is compact, ∆̄ ⊂ U and the boundary ∂∆ is a smooth
surface. Let f be a function analytic in U . Define the operator f(A) by

f(A)x =
1

(2πi)n

∫

∂∆

Mf(z)x ∧ dz (x ∈ X), (1)

where dz stands for dz1 ∧ · · · ∧ dzn. By the Stokes formula

f(A)x =
1

(2πi)n

∫

∂̄ϕMf(z)x ∧ dz

where ϕ is C∞− function equal to 0 on a neighbourhood of σs(A) to 1 on C
n −∆.

To show the correctness of the definition of f(A) we need the following simple
proposition (see [6]).

Proposition 7. Let η ∈ Λn(s, dz̄, C∞(G,X)) be a differential form with a compact
support disjoint with σs(A) such that (δ + ∂̄)η = 0. Then

∫

Pη ∧ dz = 0.

Proof: Set ξ =Wη. Then (δ + ∂̄)ξ = η and

Pη = P (δ + ∂̄)ξ = P ∂̄ξ = ∂̄P ξ.

Hence, for a suitable surface Σ we have

∫

Pηdz =

∫

∂̄P ξdz =

∫

Σ

Pξdz = 0.

We show now that the definition of f(A) does not depend on the particular choice
of ϕ. Indeed, if ϕ1 and ϕ2 are two C

∞− function with required properties, then
(δ + ∂̄)(ϕ1 − ϕ2)Wf(z)xs satisfies the properties of Proposition 7. Thus

0 =

∫

P (δ + ∂̄)(ϕ1 − ϕ2)f(z)Wxs ∧ dz =

∫

P ∂̄(ϕ1 − ϕ2)f(z)Wxs ∧ dz =

= (−1)n−1
∫

∂̄(ϕ1 − ϕ2)f(z)Mx ∧ dz.

This means also that f(A) does not depend on the choice of the set ∆.

Finally we show that f(A) does not depend on the choice of the generalized inverse
V which determines W and M .
Suppose that W1,W2 are two operators satisfying

(δ + ∂̄)Wi +Wi(δ + ∂̄) = I (i = 1, 2).
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Then (δ + ∂̄)Wif(z)xs = f(z)xs. For those z where ϕ ≡ 1 we have

(δ + ∂̄)ϕ(W1 −W2)f(z)xs = 0

so that the form (δ + ∂̄)ϕ(W1 −W2)f(z)xs satisfies the conditions of Proposition 7.
Hence

0 =

∫

P (δ + ∂̄)ϕ(W1 −W2)f(z)xs ∧ dz =

∫

P ∂̄ϕ(W1 −W2)f(z)xs ∧ dz =

=

∫

∂̄ϕP (W1 −W2)f(z)xs ∧ dz = (−1)
n−1

∫

∂̄ϕf(z)(M1 −M2)x ∧ dz

where
Mix = (−1)

n−1PWixs (i = 1, 2).

Clearly f(A) is a bounded linear operator and the mapping f 7→ f(A) is linear.
To show that f 7→ f(A) is the functional calculus it is necessary to prove that

f(A) = I if f ≡ 1,
f(A) = Ai if f(z) = zi (i = 1, . . . , n)

and the multiplicativity of the mapping f 7→ f(A).
As the proof is rather technical and it is described elsewhere (see [6], [3]), we just

outline the main steps.

1) If n = 1 then M is just the inverse Mx = (λ − A1)
−1x, so that the described

calculus coincides with the ordinary calculus for one operator.

Set

W =
1

(2πi)n
(−1)n−1

[

(δ + ∂̄)ϕW − I
]

, (2)

so that

f(A)x =

∫

f(z)PWxs ∧ dz.

2) Let (A,B) = (A1, . . . , An, B1, . . . , Bm) be a commuting (n+m)−tuple of operators
in X, let ∆,∆′ be open neighbourhood of σs(A), σs(B) with compact closures and
with smooth boundaries. Let f be a function analytic in a neighbourhood of

∆̄ × ∆̄′. Let W
n
,W

m
,W

n+m
be operators defined by (2) for tuples A,B and

(A,B), respectively. Then

∫

f(z, w)P (W
n+m

−W
m
W

n
)xs ∧ t ∧ dz ∧ dw = 0,

where t = (t1, . . . , tm), dw = (dw1, . . . , dwm) are indeterminates corresponding to
B. This follows from considerations similar to the proof of Proposition 7.

3) If f(z, w) = f1(z) · f2(w) then, by the Fubini theorem and by 2), f(A,B) =
f1(A)f2(B).
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4) Consider the n−tuple A = (A1, . . . , An) and the identity function f : C
n → C,

f ≡ 1. Then 3) together with 1) gives f(A) = I.
Similarly f(A) = Ai for f(z) = zi (i = 1, . . . , n).

5) Consider the 2n−tuple (A,A) = (A1, . . . , An, A1, . . . , An). Let f, g be functions
analytic in a neighbourhood of σs(A). Then

f(A)g(A)x =

∫

f(z)PW
z
(

∫

g(w)PW
w
xt ∧ dw

)

∧ s ∧ dz =

=

∫

f(z)g(w)PW
z
W

w
xs ∧ t ∧ dz ∧ dw =

∫

f(z)g(w)PW
z,w
xs ∧ t ∧ dz ∧ dw

and, by 2),

(fg)(A) = (fg)(A) · id(A) =

∫

f(z)g(z)PW
z,w
xs ∧ t ∧ dz ∧ dw.

Thus it is sufficient to show

∫

f(z)(g(z)− g(w))PW
z,w
xs ∧ t ∧ dz ∧ dw = 0.

Since g(z)−g(w) =
∑n

i=1(zi−wi)hi(z, w) for some analytic functions hi(z, w), the
previous integral is equal to

n
∑

i=1

∫

f(z)hi(z, w)(zi − wi)PW
z,w
xs ∧ t ∧ dz ∧ dw =

=

n
∑

i=1

∫

f(z)hi(z, w)(zi − Ai)PW
z,w
xs ∧ t ∧ dz ∧ dw−

−

n
∑

i=1

∫

f(z)hi(z, w)(wi − Ai)PW
z,w
xs ∧ t ∧ dz ∧ dw.

Thus it is sufficient to show that

∫

f(z)h(z, w)(zi − Ai)PW
z,w
xs ∧ t ∧ dz ∧ dw = 0

for every analytic function h(z, w). The last integral is equal to (up to multiplica-
tion by a constant)

∫

h(zi − Ai)P (δ + ∂̄)ϕWxs ∧ t ∧ dz ∧ dw =

∫

h∂̄ϕP (zi −Ai)Wxs ∧ t ∧ dz ∧ dw.

By checking the definition of W it is possible to show that

P (zi − Ai)Wxs ∧ t ∧ dz ∧ dw = ∂̄ξ
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for some ξ so that
∫

h∂̄ϕ∂̄ξ =

∫

∂̄ϕ∂̄hξ =

∫

∂∆

∂̄hξ = 0.

Concluding remarks

1) If X is a Hilbert space, then Λ(s,X) can be given naturally a Hilbert space
structure, so that the splitting spectrum coincide with the Taylor spectrum. For
λ 6∈ σs(A) the operator (δλ−A + δ

∗
λ−A) : Λ(s,X)→ Λ(s,X) is invertible and

(δλ−A + δ
∗
λ−A)

−1δλ−A + δλ−A(δλ−A + δ
∗
λ−A)

−1 = IΛ(s,X).

Clearly the function λ 7→ (δλ−A + δ
∗
λ−A)

−1 is C∞ and although it does not satisfy
all the conditions of Corollary 4, it is possible to take it instead of the operator
V : Λ(s, C∞(G,X)) → Λ(s, C∞(G,X)). The remaining conditions of Corollary 4
(V 2 = 0 and that V is ”graded”) are not essential for the construction of the
functional calculus and only make the considerations easier. On the other hand
the formula obtained for f(A) using the function λ 7→ (δλ−A + δ

∗
λ−A)

−1 is quite
explicit (see [6], [7]).

2) Let
V : Λ(s, C∞(G,X))→ Λ(s, C∞(G,X))

be an operator with the properties of Corollary 4. Then (δ + V )−1 = δ + V and

P (δ + V )
[

∂̄(δ + V )
]n−1

xs = PV (∂̄V )n−1xs

so that the functional calculus constructed here coincides with the construction of
Albrecht [1].

3) If A = (A1. . . . , An) has a real Taylor spectrum, σT (A) ⊂ R
n, then it is possible to

show that σs(A) = σT (A). Indeed, if λ ∈ C
n − σT (A) it is possible to find a point

µ ∈ C
n −

(

σT (A) ∪ {λ}
)

and a rational function f(z) = 1
(z1−µ1)

· · · 1
(zn−µn)

such

that |f(λ)| > max{|f(z)|, z ∈ σT (A)}. Consider the operator f(A). If λ ∈ σs(A)
then, by the spectral mapping theorems for σT and σs, we have

max{|z|, z ∈ σT (f(A))} < max{|z|, z ∈ σs(f(A))},

which contradicts to the fact that σT and σs coincide for single operators. Thus
the functional calculus for functions analytic in a neighbourhood of the splitting
spectrum coincide with the Taylor functional calculus.

4) In general σT (A) ⊂ σs(A). It is an open problem whether it is possible to find an
n−tuple A = (A1, . . . , An) of mutually commuting operators in a Banach space X
such that σT (A) 6= σs(A).

5) The Taylor functional calculus can be constructed similarly as the calculus for the
splitting spectrum constructed here. It is well-known that the sequence

· · ·
δ+∂̄
−→Λp(s, dz̄, C∞(G,X))

δ+∂̄
−→Λp+1(s, dz̄, C∞(G,X))

δ+∂̄
−→· · ·

is exact (see e.g. [8], Propositions III.2.4, 2.5, 2.8). If f is a function analytic in a
neighbourhood of σT (A), it is possible to take instead of Wxs in formula (1) the
form ξ ∈ Λn−1(s, dz̄, C∞(G,X)) such that (δ + ∂̄)ξ = xs. It is not possible to see
at the first glance that the operator f(A) defined in this way is bounded. This can
be shown by choosing ξ not too big in the norm (cf. [3]).
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