On the topological boundary of the one-sided spectrum

V. Miiller*

Abstract. It is well-known that the topological boundary of the spectrum of an op-
erator is contained in the approximate point spectrum. We show that the one-sided
version of this result is not true. This gives also a negative answer to a problem of
Schmoeger.

Denote by L£(X) the algebra of all bounded linear operators acting in a Banach
space X. For T' € L£(X) denote by o(T"), 0y(T") and o,(T) the spectrum, left spectrum
and the approximate point spectrum of 7', respectively:

o(T) ={X € C:T — X is not invertible},
o1(T) ={\ € C: T — X is not left invertible},
o.(T)={X € C:T — X is not bounded below}.

It is well-known that do(T) C 0,(T) C 0;(T) C o(T). This implies in particular that
the outer topological boundaries (= the boundaries of the polynomially convex hull) of
o(T),01(T) and o, (T) coincide.

The aim of this paper is to show that the inner topological boundaries of o; and
or can be different.

The author wishes to express his thanks to G. Pisier for the proof of Proposition 3.

We use the following notations. If X is a closed subspace of a Banach space Y
then we denote ¢(X,Y) = inf{||P|| : P € L(Y) is a projection with range X} (if X is
not complemented in Y then we set ¢(X,Y) = o0).

For Banach spaces X and Y denote by X®Y and X®Y the projective and injective
tensor products (see [2]). Thus X®Y and X®Y are the completions of the algebraic
tensor product X ® Y endowed with the projective (injective) norms

lullxay = nf{ > ol - yill s =" 25 @y |
i i
and
lull xgy = sup{|(z” @ y")(u)] : 2™ € X*,y" € Y™, [l2”|| < 1, [|ly"]| < 1}.
Clearly elements of Y &X* can be identified with the trace class operators X — Y
(with the trace norm).

If {Y;} is a family of Banach spaces then we denote by €, Y; the direct sum of Y;’s
with the ¢; norm, ||@ il = >, [lvill-

* The research was supported by the grant No. 201/96/0411 of GA CR.
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Lemma 1. Let X;,Y; (i € Z) be Banach spaces, X; C Y;. Then
(D X D Vi) = supfe(X;, Vi)

Proof. Denote X =@, X; and Y =, V;.
<: If P, € L(Y;) are projections with ranges X; and sup, || P;|| < oo then P = @, P,
is a projection onto X with the norm ||P|| = sup, || ;|-

>: Suppose P € L(Y) is a projection with range X. Denote P, = QxPJy, (k € Z)
where J : Y — Y is the natural embedding and Q). : X — X}, the canonical projection.
It is easy to check that Py is a projection with range X and ||Px| < [|P|| so that
C(Xka Yk) < C(X7 Y)

Lemma 2. Let E be a finite dimensional subspace of a Banach space X. Then
(B, X) = sup{[tr(S)| : S € L(E),[|JS| xgp- <1}

where J : E — X is the natural embedding.
Proof. >: Let P be a projection from X onto E and let S € L(E). Then

tr(S) = ltr(PJS)| < [|PIS||pg - < IPIl- 175 x¢ -

<: Consider M = {JS : S € L(E)} as a subspace of X®FE*. Define f € M* by
f(JS) = tr(S). The norm of f is equal to k = sup{|tr(S)| : S € L(E), ||JS||xgp- < 1}
By the Hahn-Banach theorem there exists an extension g € (X®E*)* with the same
norm k. Since (X®E*)* is isometrically isometric to £(X, E) (see [2], p.230), there
exists P € L(X, E) with [|[P|| = k and, for all z € X and e* € E*, < Pz, e* >= g(z®e*).
In particular, for e € E and e* € E*,

< Pe,e* >=gle®e’)=fle®@e") =tr(e®e”) =<e,e" >
so that Pe = e and P is a projection with range F. Hence ¢(F, X) < k.

Proposition 3. Let X; and X5 be Banach spaces, let F; C X; and Fs C X5 be finite
dimensional subspaces. Then

c(E1®Ey, X10X3) = ¢(E1, X1) - ¢(Eq, X3).

Proof. It is well-known that F;&FE, is a subspace of X;@X5 (see [2], p.225).
<:If P, € L(X;) is a projection with range F; (i = 1,2) then it is easy to check
that P1 & PQ € ,C(X1®X2) is a pI‘OjGCtiOIl onto E1®E2 with ||P1 X P2|| S ”P1|| . HP2||
>: Denote by J; : E; — X; (i =1,2) the natural embedding. Then J = J; ® J,
is the natural embedding of F1®FE5 into X;®X5. Let ¢ > 0. By Lemma 2 there exist
Si € ,C(EZ) (’L = 1,2) such that ||JZSI||X1®E: =1 and |t7”(SZ)| > C(EZ‘,XZ‘) — £ (’L =
1,2). Consider S = 51 ® Sy € L(F1®FEs). It is easy to check that

tr(S) =tr(S1) - tr(Sz2) > (c(F1,X1) —¢) - (c¢(Fa, X3) — €) (1)
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and
HJSH(X1®X2)®(E1®E2)* < HJ151HX1®EfHJ2S2H®X2®E; =L (2)
To see (2), observe that if & > 0, J1S1 = >, z1; ® e]; and JoS2 = >, w25 ® €3;

for some x1; € X1, zo5 € Xo, €]; € Ef, e € E3, Zszle el <1+ 6 and
Zi ||x2j|| : ||e§j|| <1+ 6 then

JS = Z(xlz ® x2;) ® (e1; @ €3;)
i,
where z1; ® 125 € X19X3, e]; ® 5, € (E1®Fz)* and
S Nl ® w3l xs0s - 16k © €3 linpmny- < (1+6)%
i,

Thus we have (2) and together with (1) and Lemma 2 we obtain for ¢ — 0 the required
inequality
(E1@Es, X10X2) > ¢(F1, X1) - ¢(E2, X2).

Theorem 4. There exists a Banach space Z and an operator 7' € L(Z) such that
dist {0, 0,(T)} > dist {0,0,(T")} > 0.

Proof. Fix a Banach space X and a finite dimensional subspace £ C X such that
c¢(E,X)=a>1 (it is well-known that such a pair exists, see e.g. [11], § 32). Set

Yo=XPXRXPXRXRX D ---,
Yi=FE®0ERX ®EQXRX P -,
Yo=E® EQE ® EQEQRX & -- -,

Yk=@E®---®E®3{®---®)§

i=1 rnin?k,i} max{;,—k,O}
We can consider Yj 11 as a subspace of Y; so that Yy D Y; D Y; D ---. By Lemma 1

and Proposition 3, ¢(Y;,Yy) =a’ % (k<j). Set Z=---0Yy® - 0Y,0Y10Y2®---
and let T' € L£(Z) be the shift operator to the left,

T(-yos ® Y 18U By S y2- ) = (g2 ®y_1 ® yo®[U1]Sye- )

(the box denotes the zero position). Clearly T is an isometry so that o.(7) = {\ € C:
|A| =1} and dist {0,0,(T)} = 1.
Further

ATHZ,Z) = (- Y 1®| Yy |@Ye1 @ -+, - YoB| Yo |8Y1 & ) = aF.




In particular T'Z is complemented in Z so that T is left invertible.
Denote ¢t = dist{0,0;(T)} and U = {A € C : |A] < t}. By [1] there exists an
analytic function F': U — L(Z) such that F(A\)(T'— ) =1 (A€ U). Let

F(\) = i FA (AeU)

be the Taylor expansion of F. Since F(A\)(T — \) = I we have FyT = [,FT =
F,_1 (i >1)sothat ;T =1 (i=0,1,...). It is easy to check that T**1F; is a
projection onto 7°t1Z. Thus

o' =c(T"2,Z) < ||T'Fia]| = | Fi-all
so that the radius of convergence of the function F(X) = > "2 F;\" is

t = (limsup HFiﬂl/i)i1 <al<l.

11— 00

Hence 0 < dist {0,0,(T)} < dist {0,0,(T)}.
Corollary 5. In general doy(T') ¢ o,(T).

Remark 6. An operator 7" € £(X) is called semiregular if 7" has closed range and
ker(T) C (),,»027"X. A semiregular operator with a generalized inverse (i.e, with
ker(T) and the range T'X complemented) is called regular. Semiregular and regular
operators have been studied by many authors, see e.g. [4], [6], [7], [8], [9], [10].

Denote by os-(T) = {A : T — Xis not semiregular} and o,.4(T) = {A : T —
A is not regular} the corresponding spectra. The sets o5, (1) and 0,¢4(T") are nonempty
compact sets and 00(T") C 04 (T) C 0req(T) C o(T).

The previous example shows that in general 00,.4(T") ¢ 05-(T). Indeed, let T be
the operator constructed in Theorem 4. For |A| < 1 the operator T' — X is bounded
below and so semiregular. Further 7" has a left inverse so that it is regular. On the
other hand there exists p € C with |u| = a=! < 1 such that T'— p is not left invertible.
This means that the range of T' — p is not complemented and so 1" — p is not regular.
Hence dist {0, 05} > dist {0,0,¢4} > 0 and 00,.4(T") ¢ 05-(T). This gives a negative
answer to Question 1 of [11] (note that by [5], dist {0, 04.(T)} = limy(7™)*/™ where ~
denotes the Kato reduced minimum modulus).

Remark 7. Let A be a unital Banach algebra and a € A. Denote by

oi(a) = {A: A(a —\) # 1}

and

n(a) = {)\ cinf{||(a — Nz|| sz € A, ||z]| = 1} = o}

the left spectrum and the left approximate point spectrum of a, respectively. The right
spectrum o, and the right approximate point spectrum 7, can be defined analogously.
For the algebra £(X) of operators in a Banach space X, 7; coincides with o, and T,
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coincides with o5. Thus in general doy(a) ¢ 7(a) and 0o, (a) ¢ 7.(a). In fact, it is much
simpler to construct the corresponding example in the context of Banach algebras:

Let A be the Banach space of all formal power series u = Y ._, a;;a'b’ in two

i,j=0
variables a, b with complex coefficients a;; such that

o

lull = > |ai;[2" < oo.

i,j=0
The algebra multiplication in A is determined uniquely by setting ba = 14 so that

o i+k—jbl k>4
17 . kil — a' ) ( _j)a
(CL b ) (CL b) {asz—j—k (k < ])

With this multiplication A becomes a unital Banach algebra.

Clearly ||a|| =2, ||b|| = 1 and a is left invertible since ba = 1. Further ||az| = 2||z||
for every x € A so that dist {0, 7(a)} = 2.

We show that dist {0,0;(a)} = 1. Since ba = 1 and [|b|| = 1 it is easy to check
that dist {0,0;(a)} > 1. On the other hand we show that a — 1 is not left invertible.
Suppose on the contrary that

( i ozijaibj)(a -1)=1 (3)

i,j=0
for some a;; with ) |;;|2" < co. This means

[&.9]

1= Z aibj(ozi,jqu — aij)

i,j=0
so that a; ;11 = ay; if either 7 or j is nonzero. Since ), ; |v;j|2° < oo we conclude that
a;; =0 for (4,7) # (0,0). This leads to a contradiction with (3).

On the other hand, the following "mixed” result can be proved in a standard way:

Theorem 8. Let a be an element of a unital Banach algebra A. Then do;(a) C 7.(a)
and do,(a) C 7(a).

Proof. Let A € doy(a), let A\, ¢ o;(a) and A, — A. Then b,(a — \,) = 1 for some
b, € A. We distinguish two cases:
(a) Suppose sup ||b,|| = co. Then ¢, = ngll satisfies ||¢,|| = 1 and

ala =1 _ Ibn(@=2l - 15nOw =N _ 1
Cn\aQ — M= < < +
e [ o o o

A — Al — 0

so that A € 7.(a).
(b) Suppose sup ||b,|| < co. Then

bu(a —A) = bp(a—Ap) +bn(An — A) = 1+ b (An — A)
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and b, (A, —A) — 0 so that b,(a — \) is invertible for n big enough. Thus a — A has a
left inverse, a contradiction with the assumption A € do;(a) C o;(a).

Corollary 9. Let a be a left invertible element of a unital Banach algebra A. Then
dist {0, 0, (a)} < dist{0,7.(a)} < dist {0,0;(a)} < dist {0, 7(a)}.

If a has a right inverse then
dist {0, 0y(a)} < dist {0, 7(a)} < dist {0,0,(a)} < dist {0, 7,-(a)}.

(if a is invertible then all these four numbers are equal).

Added in proofs. As another example of an operator T' with 0oy(T) ¢ o,(T) may
serve the operator constructed by A. Pietsch, Zur Theorie der o-Transformationen
in lokalconvexen Vektorrdumen, Math. Nachr. 21 (1960), 347-369, see p. 367-368.
This operator is bounded below but not left invertible. Further (see L. Burlando,
Continuity of spectrum and spectral radius in algebras of operators, Ann. Fac. Sci.
Toulouse 9 (1988), 5-54, Example 1.11), T'— X is left invertible for all A in a punctured
neighbourhood of 0.

The author is indebted to L. Burlando for drawing his attention to the above cited
papers.
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