On the Kato decomposition of quasi-Fredholm
and B-Fredholm operators

V. Miiller*

Abstract. We construct a Kato-type decomposition of quasi-Fredholm operators on
Banach spaces. This generalizes the corresponding result of Labrousse for Hilbert space
operators. The result is then applied to B-Fredholm operators.

Denote by B(X) the set of all bounded linear operators acting on a Banach space
X. For T € B(X) denote by N(T) ={z € X : Tx =0} and R(T) = T X its kernel and
range, respectively.

Let T € B(X). For n > 0 set a,(T) = dim N(T"™)/N(T") and 3,(T) =
dim R(T™)/R(T™1). For n = 0 these numbers reduce to the well-known defect num-
bers ag(T) = dim N(T') and 5o(T") = codim R(T).

It is possible to show that o, (T') = dim(N(T) N R(T™)), and similarly, §,,(T) =
codim (R(T) + N(T™)). This implies that the sequences a,,(T') and 3,(T) are non-
increasing.

Further we define the ”difference sequence” k., (T'), see [4], by

ky(T) = dim(R(T™) N N(T))/(R(T™) n N(T)).

Equivalently,
kn(T) = dim(R(T) + N(T"*)) /(R(T) + N(T™)).

From this one can see easily that k,(T) = @, (T) — a,11(T) whenever the difference has
meaning, i.e., if ay,4+1(7") < oo. Similarly, &k, (T") = Bn(T) — Bn+1(T) if Bry1(T) < 0.

The numbers o, (T"), 5,(T) and k,(T") enable to define many interesting classes
of operators that have been studied by many authors. For a survey of such classes see
[10].

One of the most important classes is that of semiregular operators. An operator
T € B(X) is called semiregular if R(7T) is closed and k;(T") = 0 for all i > 0. Semi-
regular operators have been studied intensely, see e.g. [3], [5], [9], [11], [12].

Let T € B(X) be a semiregular operator. It is well-known that N(T%) C R(T”) for
all 4, 5. Further T is semiregular and 7™ is semiregular for all n. Conversely, if T" is
semiregular for some n > 1, then 7T is semiregular.

In the present paper we concentrate on classes of quasi-Fredholm and B-Fredholm
operators.

Definition 1. Let d > 0. An operator 7' € B(X) is called quasi-Fredholm of degree d
if k,(T) =0 (n > d), and subspaces N(T9) + R(T) and N(T) N R(T?) are closed.
An operator is quasi-Fredholm if it is quasi-Fredholm of some degree d.

* Partially supported by the grant No. 201/00/0208 of GA CR

1



Definition 1 is due to Labrousse [8] who introduced and studied quasi-Fredholm
operators on Hilbert spaces. The same definition can be used for Banach space opera-
tors. The assumption that the subspaces N(T?) + R(T) and N(T) N R(T?) are closed
can be replaced by other equivalent conditions.

First we need the following lemma.

Lemma 2. Let T' € B(X) be a quasi-Fredholm operator of degree d and let j > 1.
Then N(TV) N R(T%) C N2, R(T™).

Proof. We prove the statement by induction on j.

Since k;(T) =0 (j > d), we have N(T)NR(T%) = N(T)NR(T"*1) = -- .. Hence
N(T)NR(TY) C oy R(T™).

Suppose that the statement is true for some j > 1. Let z € N(T7+1) N R(T¢) and
let n > d. Then Tz € N(T7)NR(T%) C R(T"*1), and so Tx = T"* 1y for some y € X.
Thus x — T"y € N(T) and = T"y + u for some u € N(T). Clearly also u € R(T%),
and so z € R(T™) + (N(T) N R(T%)) C R(T™).

This finishes the proof.

Proposition 3. Let T € B(X), d > 0 and let k,(T") = 0 for all n > d. The following
statements are equivalent:
(i) T is quasi-Fredholm, i.e., R(T) + N(T¢) and N(T) N R(T¢) are closed;
(i) R(T9t!) is closed;
(iii) R(T™) is closed for all n > d;
(iv) R(T%)+ N(TV) is closed for all i, j with i +j > d.
Proof. The equivalences (ii)<>(iii)<(iv) were proved in [10].

The implication (iv)=-(i) is trivial.

(i)=(ii): We shall use repeatedly a lemma of Neubauer, see [8], Proposition 2.1.1:
if M, N C X are paracomplete subspaces (= ranges of bounded operators) such that
both M NN and M + N are closed, then M and N are closed.

To show that R(T?*1) is closed, it is therefore sufficient to prove that R(T+1) +

N(T%) and R(T41) N N(T?) are closed.
(A) We prove by induction on j that N(7Y) + R(T?) is closed. This is true for j = 1.
Let 7 > 1 and let N(T9) N R(T%) = N(T7) N R(T%!) be closed. Then the space
T-H(N(T9) N R(T**Y)) = N(T) + (N(I*') N R(T?)) is closed. Further N(T) N
(N(T71) N R(TY)) = N(T) N R(T%) is closed and the space N(TV') N R(T?) is
paracomplete. By the lemma of Neubauer, N(771) N R(T?) is closed.

This proves that N(77) N R(T?) is closed for all j > 1. In particular, N(T%) N
R(T?) = N(T9) N R(T*!) is closed.

(B) We show first that N(T9+1) ¢ R(T7) + N(T¢) for each j > 1. Let z € N(T9*1)
and j > 1. Then 7%z € N(T)NR(T?) = N(T)NR(T*7). Thus T9x = Ty for some
y € X and x—T7y € N(T9). Hence z € N(T9)+R(T7) and N(T*!) ¢ N(T?)+R(T7).

Consider the operator 7' : X/N(T%) — X/N(T%) induced by T. The previous
inclusion gives that N(7) C ﬂjil R(T9). Further R(T) + N(T%) is closed and thus
R(T) is a closed subspace of X/N(T%). Hence T is semiregular and, consequently,
R(T9*1) is closed. Let Q be the canonical projection @ : X — X/N(T%). Then the
space R(T4H1) + N(T4) = Q ' R(T%1) is closed.

This completes the proof.



Lemma 4. Let T' € B(X) be quasi-Fredholm of degree d. Then T* € B(X™) is
quasi-Fredholm of the same degree d.

Proof. Since R(T%1) is closed, the space R(T*¢*1) is also closed.
Let j > d. We have N(T*) + R(T*) C (R(T9) N N(T)) ™. Thus

R(THYAN(T) =+ ((R(Tj) N N(T))L> c L(N(T*) + R(T*)) = R(T?) 0 N(T).

Therefore

ki (T*) = dim(N(T™*1) + R(T*)) /(N(T*) + R(T™))
= dim(R(T7) " N(T))/(R(T’*") N N(T)) = k;(T) = 0.

Hence T™* is quasi-Fredholm of degree d.

The main result of Labrousse [8] is that any quasi-Fredholm operator T on a
Hilbert space admits a Kato-type decomposition T' = T ¢ T5 with T nilpotent and 75
semiregular. We prove an analogues result for Banach space operators under an addi-
tional assumption that the subspaces that appear in the definition of quasi-Fredholm
operators are complemented. For Hilbert space operators this condition is satisfied
automatically.

Theorem 5. Let T' € B(X) be a quasi-Fredholm operator of degree d and let the
subspaces R(T) + N(T9) and N(T) N R(T%) be complemented. Then there are closed
subspaces X1, Xo such that X = X1 ® Xo, TX; C X; (i=1,2), 7% X, =0 and T| X,
is semiregular.

Proof. Let T € B(X) be a quasi-Fredholm operator of degree d. By Lemma 2 and
Proposition 3, R(T?) is closed and N(T%) N R(T?) c R(T’) for all i,j > 0.

If d = 0 then T is semiregular and the decomposition is trivial. In the following
we assume that d > 1.

By the assumption, there exists a closed subspace L such that X = (R(Td) N
N(T)) & L.

We define closed subspaces N; (j =0, ...,d) inductively by Ny = {0} and N, 11 =
TN, NL (j<d).

Clearly T'Nj11 C N; N R(T'). Conversely, let z € N; N R(T). Then x = Tu for
some u € X. Express u = [ +v with I € Land v € N(T)NR(T?%). Then u —v =1€ L
and T'(u —v) =Tu =z. Thusu —v € N;y; and © € TNj4;.

Hence

TNj_|_1 :NJQR(T) (]<d)

We prove by induction on j that N; C N;;q. The statement is clear for j = 0.
Suppose that j > 0, N; C Nji1, and let * € Nj;1. Then Tx € N; C Njiq, and so
x € T7'N;41. Since also x € N;j 1 C L, we conclude that = € N, .

Hence

NjCNj+1 (j:O,l,...,d—l).

Also one can see easily that N; C N(7Y) for all j.
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We prove now by induction on j that

N(TV) € N; + N(T9) 0 R(T?). (1

~—

The inclusion is clear for j = 0. For j = 1 we have N(T) = N(T)NL+ N(T)NR(T?) =
N + N(T) N R(T?). Let j > 1, N(T?) C N; + N(T7) N R(T%) and let z € N(T7+!).
Then Tz € N(T7), and so Tz = v; + vs for some v; € N; and vy € N(T7) N R(T?) =
N(T7) N R(TY) = T(N(T7TY) N R(T?)). Thus v; € N; N R(T) =TN;;1 and

z € Njp1 + N(TVY) N R(TY) + N(T)
= Nji1 + NTHYNR(T + N(T)N L+ N(T) N R(TY)
— N1+ N(T) 0 R(T,
This proves (1).
Finally, we prove by induction on j that N; N R(T¢) = {0}. This is clear for j = 0.
Let j > 0, N; N R(T¢) = {0} and let x € Nj1 N R(T?). Then Tz € N; N R(T?) and

so, by the induction assumption, Tz = 0. Thus x € N(T) N R(T¢) and z € N, 41 C L.
Consequently, z = 0. Hence

N;NR(TY ={0}  (j <d).

Set N = Ng. Then TN C N and N C N(T%). Further N(T9) C N + R(T%) and
N N R(T?) = {0}. Note also that the space N + R(T?) = N(T?) + R(T?) is closed.
Since T* is quasi-Fredholm of degree d, we can use the same construction for

T*. Moreover, since R(T) + N(T¢) is complemented and N(T*) N R(T*%) = (R(T) +

L
N(Td)> , we can choose a w*-closed space L’ such that (N(T*) N R(I*%)) & L' = X*.
As above, construct subspaces M C X* by M} = {0} and M,;y; = T*"1M; N

L' (0<i<d-1). Clearly all speces M, are w*-closed. Set M’ = M),. Thus we have
T*M' ¢ M’ C N(T*%),
M' N R(T*?) = {0} and
N(T*% ¢ M + R(T*%).

Further M’ + R(T*?) is a closed subspace.
Set M =-+M’'. Then TM C M and

M =*+M > +N(T*?) = R(T?),
M+ N(T% =+M ++R(T*) =+(M'nR(T*")) = X, and
R(T%) = +N(T*") > +(M' + R(T*%)) = *M' n+R(T*") = M N N(T?)

(the equality * M’ + +R(T*%) = +(M' N R(T*?)) follows from the fact that the space
M’ + R(T*%) is closed, see [7], p. 221). Thus

M+NDODM+RTY+NDODM+NTY) =X

4



and
MOANCMONTH)NN c R(T*)N N = {0}.

Hence X =N @ M, TN C N, TM C M and (T|N)¢ = 0.

Let Ty, = T|M.

If z € N(Ty) then z € N(T)NM C N(THNM c MnN(TYnRTY C
MNNZ, R(TY = N2y R(TE). Further R(TY) = T¢M = R(T?), and so R(T4) is a
closed subspace. Thus T¥ is semiregular and so is also 75.

We apply the previous result to B-Fredholm operators.

Definition 6. An operator 7' € B(X) is called B-Fredholm if there exists d > 0 such
that R(T?) is closed and the restriction T|R(T?) is Fredholm.

B-Fredholm operators were introduced and studied by Berkani [1], [2]. In [1] it was
proved that an operator T' is B-Fredholm if and only if 7' = T} & T with 77 nilpotent
and T Fredholm. The proof, however, is based on the decomposition of quasi-Fredholm
operators of Labrousse [8], which was proved only for Hilbert space operators.

Theorem 7. Let T be an operator on a Banach space X. The following statements
are equivalent:
(i) T is B-Fredholm;
(ii) there are closed subspaces X7, X such that X = X; & Xy, TX,; C X; (i =1,2),
T'|X; is nilpotent and 7| X2 Fredholm.

Proof. (ii)=-(i): Let X = X1 & X5, TX, C X; (i =1,2), T|X; nilpotent and T'| X5
Fredholm. Let 7"|X; = 0. Then R(T™) = R(T™|X2), which is of finite codimension in
Xo. Therefore R(T™) is closed. It is easy to see that T|R(T™) is Fredholm.

(i)=(ii): Let n > 0 satisfy that R(7T™) is closed and the restriction Ty = T|R(T™
is Fredholm. Then o, (T) = dim N(T) N R(T"™) = dim N(Tp) < oo and (,(T) =
dim R(T™)/R(T™') = codim R(Tp) < oo. Since the sequences a;(T) and 3;(T) are
non-increasing, they are constant for j large enough, i.e., there exists d such that
ad(T) = ag41(T) = -+ < o0 and F4(T) = Bg+1(T) = -+ < oo. This means that
ki (T) = a;j(T)—c;+1(T) = 0 for j > d. Further dim(N(T)NR(T?)) = aq(T) < co and
codim (R(T) + N(T?)) = Ba4(T) < oo, and so these two subspaces are complemented.

Thus T is quasi-Fredholm of degree d and, by Theorem 5, X = X; & X, where
X1, X5 are closed subspaces, TX; C X; (i = 1,2), (T|X1)? = 0 and Ty = T|X> is
semiregular. Further aq(72) = aq(11) + aq(12) = aq(T) < oo and Bq(12) = Ba(11) +
Ba(T2) = Ba(T) < oo. Since k;(T3) = 0 for all j, we conclude that ao(T2) = aq(T2) < o0
and [op(T2) = Ba(T2) < oo, and so T4 is Fredholm.
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