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Abstract

Arithmetic circuits can be used to represent the process of probabilistic inference in
Bayesian networks using methods for which the structure and complexity of the process
does not depend on the evidence. For example, for the well-known junction tree meth-
ods, there is an arithmetic circuit which represents calculation with the same complexity
(Darwiche, 2003). However, arithmetic circuits are more flexible and also allow represen-
tation of calculations using different types of computational savings, for example when
the conditional probability tables of the Bayesian network have a certain local structure
(Darwiche, 2002).

In this paper we use the size of arithmetic circuits to compare the effect of prepro-
cessing Bayesian networks with noisy-or gates using parent divorcing and tensor rank-one
decomposition. For this purpose, we use the inference methods implemented in Ace by
Chavira and Darwiche for several examples of two-layered networks with noisy-or gates
(BN20 type networks) in two situations. First, we use Ace on the original network directly,
which means that a kind of parent divorcing is used. Second, before the application of
Ace the network is preprocessed using a noisy-max decomposition, originally proposed by
Diez and Galan and generalized as tensor rank-one decomposition by Savicky and Vomlel.
The size of the resulting circuits depends mainly on the size of the largest clique in the
triangulated graph of the network. The treewidth of the optimally triangulated graph of
the transformed model is provably never larger than the treewidth of the model prepro-
cessed using parent divorcing. Hence, one may expect that tensor rank-one decomposition
produces circuits which are usually not larger than the ones from parent divorcing, even
if heuristic triangulation is used. Our experiments with Ace confirm this conclusion on
average. However, there are also cases where the transformed network provides a signifi-
cantly larger circuit. Using a better triangulation computed by Hugin instead of the one
computed by Ace we reduced the deterioration factor to at most three. This is much
smaller than the best improvement factors, which exceed 100.



1 Introduction

Noisy-or models are probably the most popular
examples of canonical Bayesian network mod-
els. The canonical models differ from general
Bayesian network (BN) models in that they
have a certain local structure within the con-
ditional probability tables (CPTs). Canonical
models were introduced by Pearl in (Pearl, 1988,
Section 4.3.2). In literature they are also called
causal independence models or models of inde-
pendence of causal influence (ICI).

A basic task solved by BNs is the probabilis-
tic inference, typically, the computation of all
one-dimensional marginals of the joint proba-
bility distribution (represented by a BN) given
evidence on a subset of network variables. The
conditional independence structure of the mod-
els enables efficient probabilistic inference using
the standard methods, e.g. the junction tree
method (Jensen et al., 1990). It was observed
by several authors that one can also benefit from
the local structure of the CPTs and further im-
prove the computational efficiency of the prob-
abilistic inference.

In this paper we focus on the noisy-or models.
A well-known family of noisy-or models are two-
level noisy-or networks, abbreviated as BN20
networks. A BN20O network is a BN having the
structure of a bipartite graph with all edges di-
rected from one part (the top level) toward the
other (the bottom level) and where all CPTs
are noisy-or gates. See Figure 1 for an example
of a BN20 network structure. An example of
a real BN20 network is the decision theoretic
version of the Quick Medical Reference model
(QMR-DT) (Shwe et al., 1991). This model
consists of approximately 600 nodes correspond-
ing to diseases (top level) and 4000 nodes corre-
sponding to findings (bottom level). Each find-
ing has a subset of diseases as its parents. An
algorithm tailored for the BN20 networks is the
Quickscore algorithm (Heckerman, 1990), where
the computations are optimized with respect to
evidence on findings.

A different approach that does not assume
evidence to be known in advance and that can
benefit from the local structure of CPTs is
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Figure 1: An example of a BN20 model struc-
ture.

the compilation of a BN into an arithmetic
circuit (AC) (Darwiche, 2003). An AC is a
rooted, directed acyclic graph whose leaf (in-
put) nodes correspond to circuit inputs (vari-
ables) and whose other nodes are labeled with
multiplication and addition operations. The
root (output) node corresponds to circuit out-
put. The variables are evidence indicators and
parameters of the CPTs. An arithmetic cir-
cuit may be used to represent the computation
determined by a junction tree (Jensen et al.,
1990) in a clustering method, which consists of
a fixed sequence of elementary arithmetic oper-
ations (additions and multiplications) with real
numbers. However, arithmetic circuits are more
flexible and may be used to represent different
types of computational savings, if they are pos-
sible due to specific properties of the initial BN.
We use the two methods for constructing an AC
implemented in Ace, namely c2d and tabular,
see (Chavira and Darwiche, 2006; Chavira and
Darwiche, 2007) for more detail. The size of the
circuit is used as a measure of complexity of the
inference, which is more objective than the run-
ning time; the latter is influenced not only by
the algorithm, but also by the efficiency of its
software implementation.

In this paper we investigate transformations
of CPTs representing a noisy-or model before
the BN is compiled to a circuit. The stan-
dard approach to this problem is parent divorc-
ing (Olesen et al., 1989). We propose to use a
transformation based on the decomposition pro-
posed in (Diez and Galan, 2003; Vomlel, 2002).
It is a special case of tensor rank-one decom-
position of CPTs and, according to the result



of (Savicky and Vomlel, 2007), it uses the min-
imum possible number of additive components
in the case of noisy-max. We show that prepro-
cessing of BN using the above-mentioned trans-
formation before a compiler from BN to AC is
used may significantly reduce the size of the re-
sulting circuit obtained by Ace. We system-
atically tested a range of parameters of artifi-
cial networks with randomly generated edges
and compared the size of the resulting circuit
with parent divorcing as implemented in Ace
and with tensor rank-one decomposition. In
most cases, the transformed network provided
a smaller model. Sometimes, the improvement
ratio exceeds 100. There were also cases where
the transformed network provided a larger cir-
cuit. Analysis of these cases revealed that the
tabular method is quite sensitive to the choice
of an elimination order of the variables, whereas
Ace uses a suboptimal order. Hence, we re-
calculated some of the cases with the largest
deterioration using the optimal order provided
by Hugin. Using this more careful method, the
transformation never caused an increase of the
size of the circuit compared with parent divorc-
ing by a factor larger than 3.

The paper is organized as follows. Necessary
notation is introduced in Section 2. Section 3
describes the suggested transformation of a BN
as a preprocessing step before an AC compiler
is used. In Section 4 we present the necessary
information on arithmetic circuits (ACs) and
give an example of an AC for the noisy-or gate.
In Section 5 we present the experiments which
demonstrate the effect of the preprocessing step
on the size of the resulting circuit in several ran-
domly chosen examples. Section 6 contains con-
clusions and a remark on possible directions of
future work.

2 Preliminaries

Let N be a set of discrete random variables. The
variables will be denoted by capital letters (e.g.,
X;, Y, A, etc.) and their states by lowercase let-
ters (e.g., xij;,y,a). For both the variables and
their states boldface letters will denote vectors.

N

Figure 2: Graph of the noisy-or gate.

Bayesian network (BN) is defined by a pair
N = (G, P), where

e G = (N,E) is an acyclic directed graph
(DAG), the nodes of the graph G are vari-
ables from the set NV, and E is the set of
directed edges.

e P is a system of conditional probability ta-
bles {P(X|pa(X)), X € N}, where pa(X)
denotes the vector of parents of X in G.

The joint probability distribution satisfying just
the conditional independence statements im-
plied by the DAG and having the probabilities
from P as its (conditional) marginals is uniquely
determined by

P(X) = ][ P(Xlpa(x)) .
XeN

A specific example of a BN that we will use in
this paper is the noisy-or gate.

Example 1 (Noisy-or gate). Assume a BN of
n—+1 Boolean variables X1,...,X,, and Y repre-
senting the noisy-or relation of Y to X1,..., X,.
The structure of the model is depicted in Fig-
ure 2 and the CPT of Y has a local structure
defined for (x1,...,z,) € {0,1}" by

n
PY =0Xy=a1,.... X, =z) = [[ P/ . (1)
i=1

where p; € [0,1],7 =
noise.

1,...,n represent the

3 Tensor rank-one decomposition for
noisy-or models

The decomposition suggested in (Diez and
Galan, 2003) is applicable to any noisy-max



gate; however, let us describe it only for net-
works with noisy-or gates. The transforma-
tion is applied to each noisy-or gate separately.
A noisy-or gate as depicted in Figure 2 is re-
placed by a subgraph with one additional node
B and undirected edges connecting this node
with the original nodes as presented in Figure 3.
Then, the CPT P(Y|pa(Y)) is removed from
the network and replaced by |pa(Y)| + 1 two-
dimensional tables for the new edges, which are
as follows.

Let pa(Y) = {Xi,...,X,}. The interac-
tions between B and X; and between B and
Y are represented by ¢;(B, X;) fori =1,...,n
and &(B,Y), respectively, chosen so that for all
(z1,...,20,7y) € {0,1}"T! we have

P(Y:y|X1 ::El,,Xn:xn) (2)

= @-2 ][ +v]]1 (3)
=1 =1

1 n

b=0 1=1

where the two summands in (3) correspond to
the choices b = 0 and b = 1 in (4). Equality
between (2) and (3) follows from (1) and the
fact that the sum of (3) for y =0 and y =1 is
1 independently of the values of the remaining
variables. Note that the decomposition above
uses tables which contain also negative num-
bers. The original BN may be achieved simply
by marginalizing out the auxiliary variable B.

The decomposition is equivalent to the de-
composition of P(Y = y| X1 = x1,..., X, = x,)
understood as an n + 1 dimensional tensor into
a sum of tensors of rank one (De Lathauwer
and De Moor, 1996). In particular, the mini-
mum number of states of B for which such a
decomposition is possible is equal to the rank of
PY =y|X1 = x1,...,X, = z,). For noisy-or,
this rank is 2, if p; < 1 for at least one index
1. Tensor rank-one decompositions are available
also for some other canonical models, see (Sav-
icky and Vomlel, 2007).

In Figure 4 we give the transformed structure
of BN20 model from Figure 1.

Figure 3: Noisy-or gate from Figure 2 after the
transformation using tensor rank-one decompo-
sition

Figure 4: The BN20 model structure from Fig-
ure 1 after the transformation using tensor rank-
one decomposition.

4 Arithmetic circuits

Let e be evidence (X 4 = x¥) = (X; = ] )ica.
Arithmetic circuits as described in the introduc-
tion are used to efficiently calculate the proba-
bility P(e), whose value is given by the multi-
linear polynomial (Darwiche, 2003)

Ple) = ZH )\xegc\u7
r X

where the polynomial variables are:

e BN parameters: for each variable X and its
parents U = pa(X) we have for all values x
of X and all values u of U a variable 0,
which represents the value

Opjw = PX =2|U =u)
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Figure 5: A join tree for the transformed noisy-
or gate from Figure 3.

e cuvidence indicators: for each variable X
and for each value z of X we have the vari-
able A\;. The values of the indicator vari-
ables encode the given evidence e as fol-
lows. The variable A, equals one if state x
is consistent! with the evidence e and zero
otherwise. In particular, if there is no ev-
idence for variable X, then A\, = 1 for all
states x of X.

The structure of the circuit is usually very dif-
ferent from the expression above in order to
achieve efficiency.

Example 2 (AC for the noisy-or gate). Let the
states of Boolean variables X; (i =1,...,n) be
denoted z; (if X; is true) and z; (if X; is false)
and similarly for the Boolean variable Y.

An AC of a noisy-or gate can be constructed
directly from a join tree of the transformed
noisy-or gate from Figure 3 (which is a decom-
posable model) using the construction described
in (Darwiche, 2003, Definition 5). We present a
join tree? of the transformed noisy-or model in
Figure 5. Note that each model parameter and
each evidence indicator is attached to a node of
the join tree.

First, we create one output addition node for
the root cluster { B} of the join tree. It has as its

Walue z of X is consistent with evidence either if
x = z* or if variable X is not present in evidence e.

2Note that Darwiche’s definition (Darwiche, 2003,
Section 5.1) of the join tree is more general than the
usual one in that it does not require nodes of the join
tree to correspond to a maximal clique of the chordal
graph.

children two multiplication nodes — one for each
state of the variable B. Both multiplication
nodes have as their children one addition node
from every child separator { B} of the root clus-
ter with the compatible state of B. Every ad-
dition node from every separator { B} has as its
children two multiplication nodes from its child
cluster ({B,Y} or {B,X;} for i € {1,...,n})
with the compatible state of B, one for each
state of the other variable of the cluster (Y or
X; for i € {1,...,n}). Finally, each multiplica-
tion node of a leaf cluster has as its children all
model parameters and evidence indicators with
the compatible states attached to that cluster.

The AC shown in Figures 6 and 7 is the result
of the following construction:

1. construct the join tree in Figure 5 for the
transformed noisy-or model from Figure 3,

2. use the construction described above to get
an AC from the join tree,

3. substitute network parameters from tables
&, 01, ...,y by their values +1,—1,0 and
pi,t=1,...,n,set \y and \; to 1,

4. simplify the AC by omitting multiplica-
tions by one and zero additions, and

5. coalesce parts of the AC that compute the
same value so that they are present only
once.

The structure of the obtained AC may also be
represented by the following formula.

n

i=1

+(Ag = Ay) [[e05, + Aa,02,5) -
=1

Ple) =

Note that the size of this formula is linear in n,
while the number of monomials in the expanded
polynomial represented by the formula is 2"+,

If we want to compute all one-dimensional
marginals using an AC we can use methods
for computing partial derivatives of functions of
several variables, e.g., Sawyer (1984). Similarly
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Figure 6: The part of the AC for a noisy-or
model corresponding to the variable X;.
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Figure 7: The part of the AC for a noisy-or
model that joins the parts of each variable X;
from Figure 6.

to the junction tree methods after two passes
through the AC (one upward and one downward
pass) we get marginal probabilities for all vari-
ables given the evidence e. Therefore, in order
to get efficient inference it is crucial to have the
arithmetic circuit as small as possible. The size
of an AC is typically measured by the number of
its edges since it is approximately proportional
to the number of binary operations.

5 Experimental comparisons

For the experiments we used a development re-
lease of Ace (2008). Ace is a package that com-
piles a BN into an AC using one of two available
methods — ¢2d (Chavira and Darwiche, 2006)
or the tabular compilation (Chavira and Dar-
wiche, 2007) — see the Ace manual for details.
We carried out experiments with BN20 models
of various sizes. The name of the BN20 model

in the form of bn20-x-y-e-1i contains informa-
tion about the BN20 structure:

e x is the number of nodes in the top level,

e y is the number of nodes in the bottom
level,

e ¢ is the total number of edges in the BN20
model, and e/y defines the number of par-
ents for each node from the bottom level.

For each x-y-e type (x,y = 10,20,30,40, 50
and e/y = 2,5,10,20, excluding those with
e/y > x) we generated randomly ten mod-
els (indexed by i = 0,...,9). For every
node from the bottom level we randomly se-
lected e/y nodes from the top level as its par-
ents. All models and results are available at:
http://www.utia.cz/vomlel/ac/
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Figure 8: Logarithm of the AC size for the
original (o) and transformed (¢) models. The

straight lines correspond to t/o ratios equal to
10,1,1/10,1/100.

In Figure 8 we plot the pairs of values of logy,
of the ACs’ size of the original model® (horizon-
tal axis) and the transformed model (vertical

3The original model is the model constructed by Ace
using parent divorcing.

4The transformed model is model obtained using ten-
sor rank-one decomposition.



axis). Since randomness is used during the Ace
compilation process, Ace often provides differ-
ent circuits for the same input model. Therefore
every value presented in the plot is the mini-
mum over ten runs — five runs of c¢2d plus five
runs of the tabular method — for both the orig-
inal and the transformed models.

The AC of the transformed model was smaller
in 88% of the BN20 models solved by Ace for
both - the original and the transformed models.
In several cases we got significant reductions in
the AC size (in a few cases multiple order of
magnitude), in most of the remaining cases we
got smaller reductions. There are also a few
cases where the AC of the transformed model is
significantly larger. We comment on these cases
below. For some of larger models Ace ran out of
memory® — for 26% of the original models and
21% of the transformed models. For 85% of the
tested BN20 models the tabular method led to
smaller ACs than c2d.

It is well-known that the efficiency of the in-
ference in BN depends on the size of the largest
clique in the triangulated graph of the network
or, more exactly, on the total size of the tables
in the resulting network. We observed this also
in our experiments with Ace; the size of the AC
is significantly influenced by the total table size
corresponding to the triangulated graph of the
models.

The triangulated graph of the transformed
model may be obtained from the triangulated
graph of the original model by contracting edges
between the nodes in the groups of nodes, which
are added by parent divorcing for each node in
the bottom level. It can be shown that contract-
ing edges does not increase the treewidth of the
graph. Hence, the treewidth of the optimally
triangulated graph of the transformed model is
never larger than the treewidth of the original
model. However, if a (non-optimal) heuristic
method is used for triangulation then it may
happen that we get larger treewidth for the tri-
angulated graph of the transformed model. We
believe this is the main reason behind the few

5All experiments were done with the maximum pos-
sible memory for 32 bit Ace, which is 3.6 GB RAM.

large losses of the transformed model.

We conducted additional experiments with all
models where Ace provided ACs of the trans-
formed model at least three times larger. In
all of these eleven cases we were able to re-
duce the deterioration factor to less than three
using a better triangulation method. Let us
have a closer look at a BN20 model having
the largest loss for the transformed model —
bn20-20-30-300-6. The AC size for the orig-
inal model was 21 539 918 edges, while the
AC of the transformed model generated by Ace
when using the minfill heuristics for triangula-
tion had 999 809 342 edges, i.e. about 46 times
larger. But, when we constructed the AC of
the transformed model using an elimination or-
dering minimizing the total table size found by
Hugin (2008), the AC size dropped to 25 117
892 edges.
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Figure 9: log,(0/t) with respect to log,o(z/y).

From the plot in Figure 9 we can see that
there is a higher probability of larger gains when
using the transformed model if there are more
nodes in the first level than in the second level
of the BN20 network since the log-ratio of the
AC sizes of the original and transformed model
log,o(0/t) has more often higher values with a
positive log-ratio of the number of nodes in the
first and the second level log;(z/y).



We should mention that in (Chavira et al.,
2005) the authors perform experiments with
BN20 networks, but unlike them we do not as-
sume evidence to be known before the AC is
constructed.

6 Conclusions and future work

The performed experiments suggest that ten-
sor rank-one decomposition can help to find
smaller ACs for BN20 type networks. In some
cases it may even find a solution that could
not be found without the transformation. Fu-
ture work should determine whether similar sav-
ings are possible for other canonical models for
which a compact tensor rank-one decomposition
is known.
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