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Stability Estimating in Optimal Sequential Hypotheses Test-
ing
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Abstract: We study the stability of the classical optimal sequential probability
ratio test based on independent identically distributed observations X1, X2, . . .
when testing two simple hypotheses about their common density f : f = f0
versus f = f1. As a functional to be minimized, it is used a weighted sum of
the average (under f0) sample number and the two types error probabilities.
We prove that the problem is reduced to stopping time optimization for a ratio
process generated by X1, X2, . . . with the density f0. For τ∗ being the corre-
sponding optimal stopping time we consider a situation when this rule is applied
for testing between f0 and an alternative f̃1, where f̃1 is some approximation to
f1. An inequality is obtained which gives an upper bound for the expected cost
excess, when τ∗ is used instead of the rule τ̃∗ optimal for the pair (f0, f̃1). The
inequality found also estimates the difference between the minimal expected
costs for optimal tests corresponding to the pairs (f0, f1) and (f0, f̃1).
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