
Quartet-Based Learning of Shallow Latent Variables

Tao Chen and Nevin L. Zhang

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China

{csct,lzhang}@cse.ust.hk

Abstract

Hierarchical latent class(HLC) models are tree-structured Bayesian networks where leaf
nodes are observed while internal nodes are hidden. We explore the following two-stage
approach for learning HLC models: One first identifies the shallow latent variables –
latent variables adjacent to observed variables – and then determines the structure among
the shallow and possibly some other “deep” latent variables. This paper is concerned
with the first stage. In earlier work, we have shown how shallow latent variables can be
correctly identified from quartet submodels if one could learn them without errors. In
reality, one does make errors when learning quartet submodels. In this paper, we study
the probability of such errors and propose a method that can reliably identify shallow
latent variables despite of the errors.

1 Introduction

Hierarchical latent class (HLC) models (Zhang,
2004) are tree-structured Bayesian networks
where variables at leaf nodes are observed and
hence are called manifest variables (nodes),
while variables at internal nodes are hidden and
hence are called latent variables (nodes). HLC
models were first identified by Pearl (1988) as
a potentially useful class of models and were
first systematically studied by Zhang (2004) as
a framework to alleviate the disadvantages of
LC models for clustering. As a tool for cluster
analysis, HLC Models produce more meaningful
clusters than latent class models and they allow
multi-way clustering at the same time. As a tool
for probabilistic modeling, they can model high-
order interactions among observed variables and
help one to reveal interesting latent structures
behind data. They also facilitate unsupervised
profiling.

Several algorithms for learning HLC models
have been proposed. Among them, the heuris-
tic single hill-climbing (HSHC) algorithm devel-
oped by Zhang and Kočka (2004) is currently
the most efficient. HSHC has been used to
successfully analyze, among others, the CoIL

Challenge 2000 data set (van der Putten and
van Someren, 2004), which consists of 42 man-
ifest variables and 5,822 records, and a data
set about traditional Chinese medicine (TCM),
which consists of 35 manifest variables and
2,600 records.

In terms of running time, HSHC took 98
hours to analyze the aforementioned TCM data
set on a top-end PC, and 121 hours to analyze
the CoIL Challenge 2000 data set. It is clear
that HSHC will not be able to analyze data sets
with hundreds of manifest variables.

Aimed at developing algorithms more efficient
than currently available, we explore a two-stage
approach where one (1) identifies the shallow
latent variables, i.e. latent variables adjacent
to observed variables, and (2) determines the
structure among those shallow, and possibly
some other “deep”, latent variables. This pa-
per is concerned with the first stage.

In earlier work (Chen and Zhang, 2005), we
have shown how shallow latent variables can be
correctly identified from quartet submodels if
one could learn them without errors. In real-
ity, one does make errors when learning quartet-
submodels. In this paper, we study the proba-
bility of such errors and propose a method that

X1

X2 Y1 X3

Y2 Y3 Y4 Y5 Y6 Y7

(a)

X1

X2 Y1 X3

Y2 Y3 Y4 Y5 Y6 Y7

(b)

Figure 1: An example HLC model and the cor-
responding unrooted HLC model. The Xi’s are
latent nodes and the Yj’s are manifest nodes.

can reliably identify shallow latent variables de-
spite of the errors.

2 HLC Models and Shallow Latent

Variables

Figure 1 (a) shows an example HLC model.
Zhang (2004) has proved that it is impossible to
determine, from data, the orientation of edges
in an HLC model. One can learn only unrooted
HLC models, i.e. HLC models with all direc-
tions on the edges dropped. Figure 1 (b) shows
an example unrooted HLC model. An unrooted
HLC model represents a class of HLC models.
Members of the class are obtained by rooting
the model at various nodes. Semantically it is
a Markov random field on an undirected tree.
In the rest of this paper, we are concerned only
with unrooted HLC models.

In this paper, we will use the term HLC struc-
ture to refer to the set of nodes in an HLC
model and the connections among them. HLC
structure is regular if it does not contain latent
nodes of degree 2. Starting from an irregular
HLC structure, we can obtain a regular struc-
ture by connecting the two neighbors of each
latent node of degree 2 and then remove that
node. This process is known as regularization.
In this paper, we only consider regular HLC
structures.

In an HLC model, a shallow latent variable
(SLV) is one that is adjacent to at least one
manifest variable. Two manifest variables are
siblings if they are adjacent to the same (shal-
low) latent variable. For a given shallow la-
tent variable X, all manifest variables adjacent
to X constitute a sibling cluster. In the HLC
structure shown in Figure 1 (b), there are 3
sibling clusters, namely {Y1}, {Y2, Y3, Y4}, and
{Y5, Y6, Y7}. They correspond to the three la-

U WTV

(a)

U V T W

(b)

U T V W

(c)

U W V T

(d)

Figure 2: Four possible quartet substructures
for a quartet Q = {U, V, T,W}. The fork in (a)
is denoted by [UV TW], the dogbones in (b), (c),
and (d) respectively by [UV |TW], [UT |V W],
and [UW |V T].

tent variables in the model respectively.

3 Quartet-Based SLV Discovery:

The Principle

A shallow latent node is defined by its relation-
ship with its manifest neighbors. Hence to iden-
tify the shallow latent nodes means to identify
sibling clusters. To identify sibling clusters, we
need to determine, for each pair of manifest vari-
ables (U, V), whether U and V are siblings. In
this section, we explain how to answer this ques-
tion by inspecting quartet submodels.

A quartet is a set of four manifest variables,
e.g., Q = {U, V, T,W}. The restriction of an
HLC model structure S onto Q is obtained from
S by deleting all the nodes and edges not in
the paths between any pair of variables in Q.
Applying regularization to the resulting HLC
structure, we obtain the quartet substructure for
Q, which we denote by S|Q. As shown in Figure
2, S|Q is either the fork [UV TW], or one of the
dogbones [UV |TW], [UT |V W], and [UW |V T].

Consider the HLC structure in Figure 1 (b).
The quartet substrcuture for {Y1, Y2, Y3, Y4}
is the fork [Y1Y2Y3Y4], while that for
{Y1, Y2, Y4, Y5} is the dogbone [Y1Y5|Y2Y4],
and that for {Y1, Y2, Y5, Y6} is the dogbone
[Y1Y2|Y5Y6].

It is obvious that if two manifest variables U

and V are siblings in the structure S, then they
must be siblings in any quartet substructure
that involves both of them. Chen and Zhang

(2005) has proved the converse. So, we have

Theorem 1 Suppose S is a regular HLC struc-
ture. Let (U, V) be a pair of manifest variables.
Then U and V are not siblings in S iff there ex-
ist two other manifest variables T and W such
that S|{U,V,T,W} is a dogbone where U and V are
not siblings.

Theorem 1 indicates that we can determine
whether U and V are siblings by examining
all possible quartets involving both U and V .
There are (n−2)(n−3)

2 such quartets, where n

is the number of manifest variables. We next
present a result that allows us to do the same
by examining only n− 3 quartets.

Let (U, V) be a pair of manifest variables and
T be a third one. We use QUV |T to denote the
following collection of quartets:

QUV |T := {{U, V, T,W}|W∈Y\{U, V, T}},

where Y is the set of all manifest variables.
T appears in every quartet in QUV |T and thus
called a standing member of QUV |T . It is clear
that QUV |T consists of n−3 quartets. Chen and
Zhang (2005) has also proved the following:

Theorem 2 Suppose S is a regular HLC struc-
ture. Let (U, V) be a pair of manifest variables
and T be a third one. U and V are not siblings
in S iff there exists a quartet Q ∈ QUV |T such
that S|Q is a dogbone where U and V are not
siblings.

In learning tasks, we do not know the struc-
ture of the generative model structure S. Where
do we obtain the quartet substructures? The
answer is to learn them from data. Let M be
an HLC model with a regular structure S. Sup-
pose that D is a collection of i.i.d samples drawn
from M. Each record in D contains values for
the manifest variables, but not for the latent
variables. Let QSL(D,Q) be a routine that takes
data D and a quartet Q as inputs, and returns
an HLC structure on the quartet Q. One can
use the HSHC algorithm to implement QSL, and
one can first project the data D onto the quartet
Q when learning the substructure for Q.

Suppose QSL is error-free, i.e. QSL(D,Q) =
S|Q for any quartet Q. By Theorem 2, we

can determine whether two manifest variables
U and V are siblings (in the generative model)
as follow:

• Pick a third manifest variable T .
• For each Q ∈ QUV |T , call QSL(D,Q).
• If U and V are not siblings in one of the

resulting substructures, then conclude that
they are not siblings (in the generative
model).
• If U and V are siblings in all the resulting

substructures, then conclude that they are
siblings (in the generative model).

We can run the above procedure on each pair
of manifest variables to determine whether they
are siblings. Afterwards, we can summarize all
the results using a sibling graph. The sibling
graph is an undirected graph over the manifest
variables where two variables U and V are ad-
jacent iff they are determined as siblings.

If QSL is error-free, then each connected com-
ponent of the sibling graph should be com-
pletely connected and correspond to one latent
variable. For example, if the structure of the
generative model is as Figure 3 (a), then the
sibling graph that we obtain will be as Fig-
ure 3 (b). There are four completely connected
components, namely {Y1, Y2, Y3}, {Y4, Y5, Y6},
{Y7, Y8, Y9}, {Y10, Y11, Y12}, which respectively
correspond to the four latent variables in the
generative structure.

4 Probability of Learning Quartet

Submodels Correctly

In the previous section, we assumed that QSL is
error-free. In reality, one does make mistakes
when learning quartet submodels. We have em-
pirically studied the probability of such errors.

For our experiments, QSL was implemented
using the HSHC algorithm. For model selection,
we tried each of the scoring functions, namely
BIC (Schwarz, 1978), BICe (Kočka and Zhang,
2002), AIC (Akaike, 1974), and the Cheeseman-
Stutz(CS) score (Cheeseman and Stutz, 1995).

We randomly generated around 20,000 quar-
tet models. About half of them are
fork-structured, while the rest are dogbone-
structured. The cardinalities of the variables

range from 2 to 5. From each of the models,
we sampled data sets of size 500, 1,000, 2,500,
5,000. The QSL was then used to analyze the
data sets. In all the experiments, QSL produced
either forks or dogbones. Consequently, there
are only three classes of errors:

F2D: The generative model was a fork, and QSL

produced a dogbone.

D2F: The generative model was a dogbone, and
QSL produced a fork.

D2D: The generative model was a dogbone, and
QSL produced a different dogbone.

The statistics are shown in Table 5. To un-
derstand the meaning of the numbers, consider
the number 0.83% at the upper-left corner of
the top table. It means that, when the sample
size was 500, QSL returned dogbones in 0.83%
percent, or 83, of the 10,011 cases where the
generative models were forks. In all the other
cases, QSL returned the correct fork structure.

It is clear from the tables that: The probabil-
ity of D2F errors is large; the probability of F2D
errors is small; and the probability of D2D er-
rors is very small, especially when BIC or BICe
are used for model selection. Also note that
the probability of D2F decreases with sample
size, but that of F2D errors do not. In the next
section, we will use those observations when de-
signing an algorithm for identifying shallow la-
tent variables.

In terms of comparison among the scoring
functions, BIC and BICe are clearly preferred
over the other two as far as F2D and D2D er-
rors are concerned. It is interesting to observe
that BICe, although proposed as an improve-
ment to BIC, is not as good as BIC when it
comes to learning quartet models. For the rest
of this paper, we use BIC.

5 Quartet-Based SLV Discovery: An

Algorithm

The quartet-based approach to SLV discov-
ery consists of three steps: (1) learn quartet
submodels, (2) determine sibling relationships
among manifest variables and hence obtain a
sibling graph, and (3) introduce SLVs based on
the sibling graph. Three questions ensue:

Table 1: Percentage of times that QSL produced
the wrong quartet structure. The table on the
top is for the fork-structured generative models,
while the table at the bottom is for the dogbone-
structured generative models.

500(F2D) 1000(F2D) 2500(F2D) 5000(F2D)
BIC 0.83% 1.87% 3.70% 3.93%
BICe 1.42% 3.16% 6.58% 7.86%
AIC 12.8% 10.2% 6.81% 4.85%
CS 6.20% 5.05% 6.19% 6.41%

Total=10011

500 1000 2500 5000
D2F D2D D2F D2D D2F D2D D2F D2D

BIC 95.3%0.00% 87.0%0.00% 68.2%0.00% 51.5%0.00%
BICe 95.0%0.05% 86.8%0.00% 67.8%0.04% 50.6%0.04%
AIC 71.2%2.71% 60.5%1.58% 46.7%0.54% 39.0%0.38%
CS 88.5%1.93% 83.4%0.74% 67.0%0.30% 51.5%0.13%

Total=10023

i) Which quartets should we use in Step 1?
ii) How do we determine sibling relationships

in Step 2 based on results from Step 1?
iii) How do we introduce SLVs in Step 3 based

on the sibling graph constructed in Step 2?

Our answer to the second question is sim-
ple: two manifest variables are regarded as non-
siblings if they are not siblings in one of the
quartet submodels. In the next two subsections,
we discuss the other two questions.

5.1 SLV Introduction

As seen in Section 3, when QSL is error-free, the
sibling graph one obtains has a nice property:
every connected component is a fully connected
subgraph. In this case, the rule for SLV intro-
duction is obvious:

Introduce one latent variable for each
connected component.

When QSL is error-prone, the sibling graph one
obtains no longer has the aforementioned prop-
erty. Suppose data are sampled from a model
with the structure shown in Figure 3 (a). Then
what one obtains might be the graphs (c), (d),
or (e) instead of (b).

Nonetheless, we still use the above SLV in-
troduction rule for the general case. We choose
it for its simplicity, and for the lack of better
alternatives. This choice also endows the SLV
discovery algorithm being developed with error
tolerance abilities.

X1

X2 X3 X4

Y1

Y2

Y3

Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

(a) (b)

(c) (d)

(e)

X1 X2

X3 X4

Y1 Y2 Y3 Y4 Y5 Y6

Y7 Y8 Y9 Y10 Y11 Y12

(f)

Figure 3: Generative model (a), sibling graphs
(b, c, d, e), and shallow latent variables (f).

There are three types of mistakes that one
can make when introducing SLVs, namely latent
omission, latent commission, and misclustering.
In the example shown in Figure 3, if we intro-
duce SLVs based on the sibling graph (c), then
we will introduce three latent variables. Two of
them correspond respectively to the latent vari-
ables X1 and X2 in the generative model, while
the third corresponds to a “merge” of X3 and
X4. So, one latent variable is omitted.

If we introduce SLVs based on the sibling
graph (d), then we will introduce five latent
variables. Three of them correspond respec-
tively to X1, X3, and X4, while the other two
are both related to X2. So, one latent variable
is commissioned.

If we introduce SLVs based on the sibling
graph (e), then we will introduce four latent
variables. Two of them correspond respectively
to X1 and X4. The other two are related to X2

and X3, but there is not clear correspondence.

This is a case of misclustering.

We next turn to Question 1. There, the most
important concern is how to minimize errors.

5.2 Quartet Selection

To determine whether two manifest variables U

and V are siblings, we can consider all quartets
in QUV |T , i.e. all the quartets with a third vari-
able T as a standing member. This selection of
quartets will be referred to as the parsimonious
selection. There are only n − 3 quartets in the
selection.

When QSL were error-free, one can use QUV |T

to correctly determine whether U and V are sib-
lings. As an example, suppose data are sampled
from a model with the structure shown in Fig-
ure 3 (a), and we want to determine whether
Y9 and Y11 are siblings based on data. Further
suppose Y4 is picked as the standing member.
If QSL is error-free, we get 4 dogbones where
Y9 and Y11 are not sibling, namely [Y9Y7|Y11Y4],
[Y9Y8|Y11Y4], [Y9Y4|Y11Y10], [Y9Y4|Y11Y12], and
hence conclude that Y9 and Y11 are not siblings.

In reality, QSL does make mistakes. Accord-
ing to Section 4, the probability of D2F errors
is quite high. There is therefore good chance
that, instead of the aforementioned 4 dogbones,
we get 4 forks. In that case, Y9 and Y11 will be
regarded as siblings, resulting in a fake edge in
the sibling graph.

QUV |T represents one extreme when it comes
to quartet selection. The other extreme is to use
all the quartets that involve both U and V . This
selection of quartets will be referred to as the
generous selection. Suppose U and V are non-
siblings in the generative model. This gener-
ous choice will reduce the effects of D2F errors.
As a matter of fact, there are now many more
quartets, when compared with the case of par-
simonious quartet selection, for which the true
structures are dogbones with U and V being
non-siblings. If we learn one of those structures
correctly, we will be able to correctly identify U

and V as non-siblings.

The generous selection also comes with a
drawback. In our running example, consider
the task of determining whether Y1 and Y2 are
siblings based on data. There are 36 quartets

that involve Y1 and Y2 and for which the true
structures are forks. Those include [Y1Y2Y4Y7],
[Y1Y2Y4Y10], and so on. According to the Sec-
tion 4, the probability for QSL to make an
F2D mistake on any one of those quartets is
small. But there are 36 of them. There is
good chance for QSL to make an F2D mistake
on one of them. If the structure QSL learned
for [Y1Y2Y4Y7], for instance, turns out to be the
dogbone [Y1Y4|Y2Y7], then Y1 and Y2 will be re-
garded as non-siblings, and hence the edge be-
tween Y1 and Y2 will be missing from the sibling
graph.

Those discussions point to the middle ground
between parsimonious and generous quartet se-
lection. One natural way to explore this middle
ground is to use several standing members in-
stead of one.

5.3 The Algorithm

Figure 4 shows an algorithm for discov-
ering shallow latent variables, namely
DiscoverSLVs. The algorithm first calls a
subroutine ConstructSGraph to construct a
sibling graph, and then finds all the connected
components of the graph. It is understood that
one latent variable is introduced for each of the
connected components.

The subroutine ConstructSGraph starts from
the complete graph. For each pair of manifest
variables U and V , it considers all the quartets
that involve U , V , and one of the m standing
members Ti (i = 1, 2, . . . ,m). QSL is called to
learn a submodel structure for each of the quar-
tets. If U and V are not siblings in one of the
quartet substructures, the edge between U and
V is deleted.

DiscoverSLVs has error tolerance mechanism
naturally built in. This is mainly because it re-
gards connected components in sibling graph as
sibling clusters. Let C be a sibling cluster in
the generative model. The vertices in C will be
placed in one cluster by DiscoverSLVs if they
are in the same connected component in the sib-
ling graph G produced by ConstructSGraph. It
is not required for variables in C to be pairwise
connected in G. Therefore, a few mistakes by
ConstructSGraph when determining sibling re-

Algorithm DiscoverSLVs(D,m):

1. G← ConstructSGraph(D,m).
2. return

the list of the connected components of G.

Algorithm ConstructSGraph(D,m):

1. G← complete graph over manifest nodes Y.
2. for each edge (U, V) of G,
3. pick {T1, · · · , Tm} ⊆ Y\{U, V }
4. for each Q∈ ∪m

i=1 QUV |Ti
,

5. if QSL(D,Q)=[U ∗ |V ∗]
6. delete edge (U, V) from G, break.
7. endFor.
8. endFor.
9. return G.

Figure 4: An algorithm for learning SLVs.

lationships are tolerated. When the set C is not
very small, it takes a few or more mistakes in
the right combination to break up C.

6 Empirical Evaluation

We have carried out simulation experiments to
evaluate the ability of DiscoverSLVs in discov-
ering latent variables. This section describes the
setup of the experiments and reports our find-
ings.

The generative models in the experiments
share the same structure. The structure con-
sists of 39 manifest variables and 13 latent vari-
ables. The latent variables form a complete 3-
ary tree of height two. Each latent variable in
the structure is connected to 3 manifest vari-
ables. Hence all latent variables are shallow.
The cardinalities of all variables were set at 3.

We created 10 generative models from the
structure by randomly assigning parameter val-
ues. From each of the 10 generative models, we
sampled 5 data sets of 500, 1,000, 2,500, 5,000
and 10,000 records. DiscoverSLVs was run on
each of the data sets three times, with the num-
ber of standing members m set at 1, 3 and 5
respectively. The algorithms were implemented
in Java and all experiments were run on a Pen-
tium 4 PC with a clock rate of 3.2 GHz.

The performance statistics are summarized in
Table 2. They consist of errors at three different

Table 2: Performance statistics of our SLV discovery algorithm.
QSL-level Edge-level SLV-level

m D2F D2D F2D ME FE LO LCO MC

Sample size = 500
1 77.0%(4.5%) 0.06%(0.05%) 0.40%(0.13%) 1.0(1.1) 88.2(9.2) 11(3.0) 0(0) 0(0)
3 71.8%(4.0%) 0.05%(0.03%) 0.36%(0.14%) 2.9(1.3) 28.0(8.3) 9.3(3.1) 0(0) 0.1(0.3)
5 68.8%(3.0%) 0.05%(0.02%) 0.30%(0.14%) 3.3(1.6) 14.7(6.0) 5.1(1.9) 0.2(0.4) 0(0)
Sample size = 1000
1 65.3%(6.2%) 0.01%(0.03%) 0.17%(0.14%) 0.3(0.6) 55.3(15.7) 11.2(0.7) 0(0) 0(0)
3 58.3%(2.7%) 0.02%(0.02%) 0.10%(0.07%) 0.7(0.9) 10.1(6.5) 4.8(2.9) 0(0) 0(0)
5 56.6%(3.2%) 0.01%(0.01%) 0.10%(0.08%) 1.1(0.7) 6.2(3.8) 2.3(1.3) 0.1(0.3) 0(0)
Sample size = 2500
1 50.1%(2.3%) 0.00%(0.00%) 0.04%(0.07%) 0.2(0.4) 20.4(8.9) 8.6(2.3) 0(0) 0(0)
3 38.0%(4.6%) 0.00%(0.00%) 0.02%(0.04)% 0.2(0.4) 3.1(3.7) 1.4(1.4) 0(0) 0(0)
5 37.3%(3.8%) 0.00%(0.01%) 0.07%(0.08)% 1.1(1.4) 1.3(2.5) 1.5(0.9) 0.1(0.3) 0(0)
Sample size = 5000
1 32.6%(5.5%) 0.00%(0.00%) 0.03%(0.09%) 0(0) 7.7(6.0) 3.9(2.4) 0(0) 0(0)
3 25.2%(4.4%) 0.01%(0.01%) 0.04%(0.06%) 0.3(0.5) 1.5(2.7) 0.5(0.7) 0(0) 0(0)
5 25.7%(3.9%) 0.00%(0.01%) 0.10%(0.11%) 0.9(0.9) 0.9(2.7) 0.1(0.3) 0(0) 0(0)
Sample size = 10000
1 21.8%(5.9%) 0.00%(0.00%) 0.02%(0.07%) 0(0) 2.0(3.3) 1.2(1.8) 0(0) 0(0)
3 17.5%(3.9%) 0.00%(0.00%) 0.05%(0.06%) 0.2(0.4) 0.4(1.2) 0.1(0.3) 0(0) 0(0)
5 17.4%(4.1%) 0.00%(0.01%) 0.03%(0.04%) 0.6(0.8) 0.1(0.3) 0.1(0.3) 0(0) 0(0)

levels of the algorithm: the errors made when
learning quartet substructures (QSL-level), the
errors made when determining sibling relation-
ships between manifest variables (edge-level),
and the errors made when introducing SLVs
(SLV-level). Each number in the table is an
average over the 10 generative models. The
corresponding standard deviations are given in
parentheses.

QSL-level errors: We see that the proba-
bilities of the QSL-level errors are significantly
smaller than those reported in Section 4. This is
because we deal with strong dependency models
here, while the numbers in Section 4 are about
general models. This indicates that strong de-
pendency assumption does make learning easier.
On the other hand, the trends remain the same:
the probability of D2F errors is large, that of
F2D errors is small, and that of D2D errors are
very small. Moreover, the probability of D2F
errors decreases with sample size.

Edge-level errors: For the edge-level, the
numbers of missing edges (ME) and the number
of fake edges (FE) are reported. We see that the
number of missing edges is always small, and in
general it increases with the number of standing
members m. This is expected since the larger m

is, the more quartets one examines, and hence
the more likely one makes F2D errors.

The number of fake edges is large when the
sample size is small and m is small. In gen-
eral, it decreases with sample size and m. It
dropped to 1.3 when for the case of sample size

2,500 and m = 5. This is also expected. As m

increases, the number of quartets examined also
increases. For two manifest variables U and V

that are not siblings in the generative model,
the probability of obtaining a dogbone (despite
D2F errors) where U and V are not siblings also
increases. The number of fake edges decreases
with m because as m increases, the probability
of D2F errors decreases.

SLV-level errors: We now turn to SLV-
level errors. Because there were not many miss-
ing edges, true sibling clusters of the generative
models were almost never broken up. There are
only five exceptions. The first exception hap-
pened for one generative model in the case of
sample size 500 and m = 3. In that case, a man-
ifest variable from one true cluster was placed
into another, resulting in one misclustering er-
ror (MC).

The other four exceptions happened for the
following combinations of sample size and m:
(500, 5), (1000, 5), (2500, 5). In those cases,
one true sibling cluster was broken into two clus-
ters, resulting in four latent commission errors
(LCO).

Fake edges cause clusters to merge and hence
lead to latent omission errors. In our experi-
ments, the true clusters were almost never bro-
ken up. Hence a good way to measure latent
omission errors is to use the total number of
shallow latent variables, i.e. 13, minus the num-
ber of clusters returned by DiscoverSLVs. We
call this the number of LO errors. In Table 2,we

see that the number of LO errors decreases with
sample size and the number of standing mem-
bers m. It dropped to 1.4 when for the case of
sample size 2,500 and m = 3. When the sample
size was increased to 10,000 and m set to 3 or
5, LO errors occurred only once for one of the
10 generative models.

Running time: The running times of
DiscoverSLVs are summarized in the following
table (in hours). For the sake of comparison, we
also include the times HSHC took attempting to
reconstruct the generative models based on the
same data as used by DiscoverSLVs. We see
that DiscoverSLVs took only a small fraction
of the time that HSHC took, especially in the
cases with large samples. This indicates that
the two-stage approach that we are exploring
can result algorithms significantly more efficient
than HSHC.

RunningTime(hrs) 500 1000 2500 5000 10000
m=1 1.05 1.06 0.92 0.89 0.84
m=3 1.57 1.52 1.49 1.79 1.91
m=5 1.85 2.07 2.17 2.72 3.02
HSHC 4.65 8.69 23.7 43.0 118.6

The numbers of quartets examined by
DiscoverSLVs are summarized in the follow-
ing table. We see that DiscoverSLVs exam-
ined only a small fraction of all the C4

39=82251
possible quartets. We also see that doubling m

does not imply doubling the number of quar-
tets examined, nor doubling the running time.
Moreover, the number of quartets examined de-
creases with sample size. This is because the
probability of D2F errors decrease with sample
size.

500 1000 2500 5000 10000
m=1 5552 4191 2861 2131 1816
m=3 8326 5939 4659 4292 4112
m=5 9801 8178 6776 6536 6496
Total: 82251

7 Related Work

Linear latent variable graphs (LLVGs) are a spe-
cial class of structural equation models. Vari-
ables in such models are continuous. Some are
observed, while others are latent. Sliva et al.
(2003) has studied the problem of identifying
SLVs in LLVGs. Their approach is based on the
Tetrad constraints (Spirtes et al., 2000), and its
complexity is O(n6).

Phylogenetic trees (PT) (St. John et al.,
2003) can be viewed as a special class of HLC

models. The quartet-based method for PT re-
construction first learn submodels for all C4

n

possible quartets and then use them to build
the overall tree (St. John et al., 2003).

8 Conclusions

We have empirically studied the probability of
making errors when learning quartet HLC mod-
els and have observed some interesting regular-
ities. In particular, we observed the probability
of D2F errors is high and decreases with sample
size, while the probability of F2D errors is low.
Based on those observations, we have developed
an algorithm for discovering shallow latent vari-
ables in HLC models reliably and efficiently.

Acknowledgements

Research on this work was supported by Hong
Kong Grants Council Grant #622105.

References

Akaike, H. (1974). A new look at the statistical
model identification. IEEE Transactions on Au-
tomotic Control,.

Cheeseman, P. and Stutz, J. (1995). Bayesian classi-
fication (AutoClass): Theory and results. In Ad-
vances in knowledge discovery and data mining.

Chen, T. and Zhang, N.L. (2006). Quartet-Based
Learning of HLC Models: Discovery of Shallow
Latent Variables. In AIMath-06.

Kočka, T. and Zhang, N.L. (2002). Dimension cor-
rection for hierarchical latent class models. In
UAI-02.

Pearl, J. (1988). Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference.

Schwarz, G. (1978). Estimating the dimension of a
model. Annuals of Statistics.

Silva, R., Scheines, R., Glymour, C. and Spirtes, P.
(2003). Learning measurement models for unob-
served variables. In UAI-03.

Spirtes, P., Glymour, C. and Scheines, R. (2000).
Causation, Prediction and Search.

St. John, K., Warnow, T., Moret, B.M.E. and
Vawter, L. (2003) Performance study of phylo-
genetic methods: (unweighted) quartet methods
and neighbor-joining. Journal of Algorithms.

van der Putten, P. and van Someren, M. (2004).
A Bias-Variance Analysis of a Real World Learn-
ing Problem: The CoIL Challenge 2000. Machine
Learning.

Zhang, N.L. (2004). Hierarchical latent class models
for cluster analysis. JMLR.

Zhang, N.L. and Kočka, T. (2004). Efficient learning
of hierarchical latent class models. In ICTAI-04.

