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Abstract

The Bayesian network formalism is becoming increasingly popular in many areas such
as decision aid or diagnosis, in particular thanks to its inference capabilities, even when
data are incomplete. For classification tasks, Naive Bayes and Augmented Naive Bayes
classifiers have shown excellent performances. Learning a Naive Bayes classifier from
incomplete datasets is not difficult as only parameter learning has to be performed. But
there are not many methods to efficiently learn Tree Augmented Naive Bayes classifiers
from incomplete datasets. In this paper, we take up the structural em algorithm principle
introduced by (Friedman, 1997) to propose an algorithm to answer this question.

1 Introduction

Bayesian networks are a formalism for proba-
bilistic reasoning increasingly used in decision
aid, diagnosis and complex systems control. Let
X = {X1, . . . , Xn} be a set of discrete random vari-
ables. A Bayesian network B =< G, Θ > is de-
fined by a directed acyclic graph G =< N, U >

where N represents the set of nodes (one node
for each variable) and U the set of edges, and
parameters Θ = {θijk}16i6n,16j6qi,16k6ri

the set
of conditional probability tables of each node
Xi knowing its parents’ state Pi (with ri and
qi as respective cardinalities of Xi and Pi).

If G and Θ are known, many inference algo-
rithms can be used to compute the probability
of any variable that has not been measured con-
ditionally to the values of measured variables.
Bayesian networks are therefore a tool of choice
for reasoning in uncertainty, based on incom-
plete data, which is often the case in real appli-
cations.

It is possible to use this formalism for clas-
sification tasks. For instance, the Naive Bayes
classifier has shown excellent performance. This
model is simple and only need parameter learn-
ing that can be performed with incomplete
datasets. Augmented Naive Bayes classifiers
(with trees, forests or Bayesian networks),

which often give better performances than the
Naive Bayes classifier, require structure learn-
ing. Only a few methods of structural learning
deal with incomplete data.

We introduce in this paper a method to learn
Tree Augmented Naive Bayes (tan) classifiers
based on the expectation-maximization (em)
principle. Some previous work by (Cohen et
al., 2004) also deals with tan classifiers and em
principle for partially unlabeled data. In there
work, only the variable corresponding to the
class can be partially missing whereas any vari-
able can be partially missing in the approach we
propose here.

We will therefore first recall the issues relat-
ing to structural learning, and review the vari-
ous ways of dealing with incomplete data, pri-
marily for parameter estimation, and also for
structure determination. We will then exam-
ine the structural em algorithm principle, before
proposing and testing a few ideas for improve-
ment based on the extension of the Maximum
Weight Spanning Tree algorithm to deal with
incomplete data. Then, we will show how to
use the introduced method to learn the well-
known Tree Augmented Naive Bayes classifier
from incomplete datasets and we will give some
experiments on real data.



2 Preliminary remarks

2.1 Structural learning

Because of the super-exponential size of the
search space, exhaustive search for the best
structure is impossible. Many heuristic meth-
ods have been proposed to determine the struc-
ture of a Bayesian network. Some of them rely
on human expert knowledge, others use real
data which need to be, most of the time, com-
pletely observed.

Here, we are more specifically interested in
score-based methods. Primarily, greedy search
algorithm adapted by (Chickering et al., 1995)
and maximum weight spanning tree (mwst)
proposed by (Chow and Liu, 1968) and ap-
plied to Bayesian networks in (Heckerman et al.,
1995). The greedy search carried out in directed
acyclic graph (dag) space where the interest of
each structure located near the current struc-
ture is assessed by means of a bic/mdl type
measurement (Eqn.1)1 or a Bayesian score like
bde (Heckerman et al., 1995).

BIC(G, Θ) = log P (D|G, Θ)− log N

2
Dim(G) (1)

where Dim(G) is the number of parameters used
for the Bayesian network representation and
N is the size of the dataset D.

The bic score is decomposable. It can be
written as the sum of the local score computed
for each node as BIC(G, Θ) =

P
i bic(Xi, Pi, ΘXi|Pi

)

where bic(Xi, Pi, ΘXi|Pi
) =X

Xi=xk

X
Pi=paj

Nijk log θijk −
log N

2
Dim(ΘXi|Pi

) (2)

with Nijk the occurrence number of {Xi =
xk and Pi = paj} in D.

The principle of the mwst algorithm is rather
different. This algorithm determines the best
tree that links all the variables, using a mutual
information measurement like in (Chow and
Liu, 1968) or the bic score variation when two
variables become linked as proposed by (Hecker-
man et al., 1995). The aim is to find an optimal
solution, but in a space limited to trees.

1As (Friedman, 1997), we consider that the bic/mdl
score is a function of the graph G and the parameters Θ,
generalizing the classical definition of the bic score which
is defined with our notation by BIC(G, Θ∗) where Θ∗

is obtained by maximizing the likelihood or BIC(G, Θ)
score for a given G.

2.2 Bayesian classifiers

Bayesian classifiers as Naive Bayes have shown
excellent performances on many datasets. Even
if the Naive Bayes classifier has underlying
heavy independence assumptions, (Domingos
and Pazzani, 1997) have shown that it is op-
timal for conjunctive and disjunctive concepts.
They have also shown that the Naive Bayes clas-
sifier does not require attribute independence to
be optimal under Zero-One loss.

Augmented Naive Bayes classifier appear as
a natural extension to the Naive Bayes classi-
fier. It allows to relax the assumption of inde-
pendence of attributes given the class variable.
Many ways to find the best tree to augment
the Naive Bayes classifier have been studied.
These Tree Augmented Naive Bayes classifiers
(Geiger, 1992; Friedman et al., 1997) are a re-
stricted family of Bayesian Networks in which
the class variable has no parent and each other
attribute has as parents the class variable and
at most one other attribute. The bic score of
such a Bayesian network is given by Eqn.3.

BIC(TAN , Θ) = bic(C, ∅, ΘC|∅) (3)

+
X

i

bic(Xi, {C, Pi}, ΘXi|{C,Pi})

where C stands for the class node and Pi could
only be the emptyset ∅ or a singleton {Xj}, Xj 6∈
{C, Xi}.

Forest Augmented Naive Bayes classifier
(fan) is very close to the tan one. In this
model, the augmented structure is not a tree,
but a set of disconnected trees in the attribute
space (Sacha, 1999).

2.3 Dealing with incomplete data

2.3.1 Practical issue

Nowadays, more and more datasets are avail-
able, and most of them are incomplete. When
we want to build a model from an incomplete
dataset, it is often possible to consider only the
complete samples in the dataset. But, in this
case, we do not have a lot of data to learn the
model. For instance, if we have a dataset with
2000 samples on 20 attributes with a probabil-
ity of 20% that a data is missing, then, only



23 samples (in average) are complete. General-
izing from the example, we see that we cannot
ignore the problem of incomplete datasets.

2.3.2 Nature of missing data
Let D = {Xl

i}16i6n,16l6N our dataset, with
Do the observed part of D, Dm the missing part
and Dco the set of completely observed cases in
Do. Let also M = {Mil} with Mil = 1 if Xl

i is
missing, 0 if not. We then have the following
relations:
Dm = {Xl

i / Mil = 1}16i6n,16l6N

Do = {Xl
i / Mil = 0}16i6n,16l6N

Dco = {[Xl
1 . . . Xl

n] / [M1l . . . Mnl] = [0 . . . 0]}16l6N

Dealing with missing data depends on their
nature. (Rubin, 1976) identified several types
of missing data:

• mcar (Missing Completly At Random):
P (M|D) = P (M), the probability for data
to be missing does not depend on D,

• mar (Missing At Random): P (M|D) =

P (M|Do), the probability for data to be
missing depends on observed data,

• nmar (Not Missing At Random): the prob-
ability for data to be missing depends on
both observed and missing data.

mcar and mar situations are the easiest to
solve as observed data include all necessary in-
formation to estimate missing data distribution.
The case of nmar is trickier as outside informa-
tion has to be used to model the missing data
distribution.

2.3.3 Learning Θ with incomplete data
With mcar data, the first and simplest possi-

ble approach is the complete case analysis. This
is a parameter estimation based on Dco, the set
of completely observed cases in Do. When D is
mcar, the estimator based on Dco is unbiased.
However, with a high number of variables the
probability for a case [Xl

1 . . . Xl
n] to be completely

measured is low and Dco may be empty.
One advantage of Bayesian networks is that,

if only Xi and Pi = Pa(Xi) are measured, then
the corresponding conditional probability table
can be estimated. Another possible method
with mcar cases is the available case analy-
sis, i.e. using for the estimation of each con-
ditional probability P (Xi|Pa(Xi)) the cases in

Do where Xi and Pa(Xi) are measured, not only
in Dco (where all Xi’s are measured) as in the
previous approach.

Many methods try to rely more on all the ob-
served data. Among them are sequential updat-
ing (Spiegelhalter and Lauritzen, 1990), Gibbs
sampling (Geman and Geman, 1984), and ex-
pectation maximisation (EM) in (Dempster et
al., 1977). Those algorithms use the missing
data mar properties. More recently, bound
and collapse algorithm (Ramoni and Sebastiani,
1998) and robust Bayesian estimator (Ramoni
and Sebastiani, 2000) try to resolve this task
whatever the nature of missing data.

EM has been adapted by (Lauritzen, 1995)
to Bayesian network parameter learning when
the structure is known. Let log P (D|Θ) =

log P (Do,Dm|Θ) be the data log-likelihood.
Dm being an unmeasured random variable, this
log-likelihood is also a random variable function
of Dm. By establishing a reference model Θ∗, it
is possible to estimate the probability density of
the missing data P (Dm|Θ∗) and therefore to cal-
culate Q(Θ : Θ∗), the expectation of the previous
log-likelihood:

Q(Θ : Θ∗) = EΘ∗ [log P (Do,Dm|Θ)] (4)

So Q(Θ : Θ∗) is the expectation of the likelihood
of any set of parameters Θ calculated using a
distribution of the missing data P (Dm|Θ∗). This
equation can be re-written as follows.

Q(Θ : Θ∗) =

nX
i=1

X
Xi=xk

X
Pi=paj

N∗
ijk log θijk (5)

where N∗
ijk = EΘ∗ [Nijk] = N × P (Xi = xk, Pi =

paj |Θ∗)is obtained by inference in the network
< G, Θ∗ > if the {Xi,Pi} are not completely mea-
sured, or else only by mere counting.

(Dempster et al., 1977) proved convergence
of the em algorithm, as the fact that it was not
necessary to find the global optimum Θi+1 of
function Q(Θ : Θi) but simply a value which
would increase function Q (Generalized em).

2.3.4 Learning G with incomplete
dataset

The main methods for structural learning
with incomplete data use the em principle: Al-
ternative Model Selection em (ams-em) pro-



posed by (Friedman, 1997) or Bayesian Struc-
tural em (bs-em) (Friedman, 1998). We can
also cite the Hybrid Independence Test pro-
posed in (Dash and Druzdzel, 2003) that can
use em to estimate the essential sufficient statis-
tics that are then used for an independence
test in a constraint-based method. (Myers et
al., 1999) also proposes a structural learning
method based on genetic algorithm and mcmc.
We will now explain the structural em algorithm
principle in details and see how we could adapt
it to learn a tan model.

3 Structural em algorithm

3.1 General principle

The EM principle, which we have described
above for parameter learning, applies more
generally to structural learning (Algorithm 1
as proposed by (Friedman, 1997; Friedman,
1998)).

Algorithm 1 : Generic em for structural learning

1: Init: i = 0
Random or heuristic choice of the initial
Bayesian network (G0, Θ0)

2: repeat
3: i = i + 1
4: (Gi, Θi) = argmax

G,Θ
Q(G, Θ : Gi−1, Θi−1)

5: until |Q(Gi, Θi : Gi−1, Θi−1)−
Q(Gi−1, Θi−1 : Gi−1, Θi−1)| 6 ε

The maximization step in this algorithm (step
4) has to be performed in the joint space
{G, Θ} which amounts to searching the best
structure and the best parameters correspond-
ing to this structure. In practice, these two
steps are clearly distinct2:

Gi = argmax
G

Q(G, • : Gi−1, Θi−1) (6)

Θi = argmax
Θ

Q(Gi, Θ : Gi−1, Θi−1) (7)

where Q(G, Θ : G∗, Θ∗) is the expectation of
the likelihood of any Bayesian network <

G, Θ > computed using a distribution of the
missing data P (Dm|G∗, Θ∗).

Note that the first search (Eqn.6) in the space
of possible graphs takes us back to the initial
problem, i.e. the search for the best structure in

2The notation Q(G, • : . . . ) used in Eqn.6 stands for
EΘ[Q(G, Θ : . . . )] for Bayesian scores or Q(G, Θo : . . . )
where Θo is obtained by likelihood maximisation.

Algorithm 2 : Detailed em for structural learning

1: Init: finished = false, i = 0
Random or heuristic choice of the initial
Bayesian network (G0, Θ0,0)

2: repeat
3: j = 0
4: repeat
5: Θi,j+1 = argmax

Θ
Q(Gi, Θ : Gi, Θi,j)

6: j = j + 1
7: until convergence (Θi,j → Θi,jo

)

8: if i = 0 or |Q(Gi, Θi,jo

: Gi−1, Θi−1,jo

) −
Q(Gi−1, Θi−1,jo

: Gi−1, Θi−1,jo

)| > ε then

9: Gi+1 = arg max
G∈VGi

Q(G, • : Gi, Θi,jo

)

10: Θi+1,0 = argmax
Θ

Q(Gi+1, Θ : Gi, Θi,jo

)

11: i = i + 1
12: else
13: finished = true
14: end if
15: until finished

a super-exponential space. However, with Gen-
eralised em it is sufficient to look for a better
solution rather than the best possible one, with-
out affecting the algorithm convergence proper-
ties. This search for a better solution can then
be done in a limited space, like for example VG,
the set of the neigbours of graph G that have
been generated by removal, addition or inver-
sion of an arc.

Concerning the search in the space of the pa-
rameters (Eqn.7), (Friedman, 1997) proposes
repeating the operation several times, using a
clever initialisation. This step then amounts to
running the parametric em algorithm for each
structure Gi, starting with structure G0 (steps 4
to 7 of Algorithm 2). The two structural em
algorithms proposed by Friedman can therefore
be considered as greedy search algorithms, with
EM parameter learning at each iteration.

3.2 Choice of function Q

We now have to choose the function Q that will
be used for structural learning. The likelihood
used for parameter learning is not a good indi-
cator to determine the best graph since it gives
more importance to strongly connected struc-
tures. Moreover, it is impossible to compute
marginal likelihood when data are incomplete,
so that it is necessary to rely on an efficient
approximation like those reviewed by (Chicker-



ing and Heckerman, 1996). In complete data
cases, the most frequently used measurements
are the bic/mdl score and the Bayesian bde
score (see paragraph 2.1). When proposing the
ms-em and mwst-em algorithms, (Friedman,
1997) shows how to use the bic/mdl score with
incomplete data, by applying the principle of
Eqn.4 to the bic score (Eqn.1) instead of likeli-
hood. Function QBIC is defined as the bic score
expectation by using a certain probability den-
sity on the missing data P (Dm|G∗, Θ∗) :

QBIC(G, Θ : G∗, Θ∗) = (8)

EG∗,Θ∗ [log P (Do,Dm|G, Θ)]− 1

2
Dim(G) log N

As the bic score is decomposable, so is QBIC .

QBIC(G, Θ : G∗, Θ∗)=
X

i

Qbic(Xi, Pi, ΘXi|Pi
: G∗, Θ∗)

(9)where Qbic(Xi, Pi, ΘXi|Pi
: G∗, Θ∗) =X

Xi=xk

X
Pi=paj

N∗
ijk log θijk −

log N

2
Dim(ΘXi|Pi

) (10)

with N∗
ijk = EG∗,Θ∗ [Nijk] = N ∗ P (Xi = xk, Pi =

paj |G∗, Θ∗) obtained by inference in the network
{G∗, Θ∗} if {Xi,Pi} are not completely measured,
or else only by mere counting. With the same
reasoning, (Friedman, 1998) proposes the adap-
tation of the bde score to incomplete data.

4 TAN-EM, a structural EM for
classification

(Leray and François, 2005) have introduced
mwst-em an adaptation of mwst dealing with
incomplete datasets. The approach we propose
here is using the same principles in order to ef-
ficiently learn tan classifiers from incomplete
datasets.

4.1 MWST-EM, a structural EM in
the space of trees

Step 1 of Algorithm 2, like all the previous al-
gorithms, deals with the choice of the initial
structure. The choice of an oriented chain graph
linking all the variables proposed by (Friedman,
1997) seems even more judicious here, since this
chain graph also belongs to the tree space. Steps
4 to 7 do not change. They deal with the run-
ning of the parametric em algorithm for each
structure Bi, starting with structure B0.

There is a change from the regular structural
em algorithm in step 9, i.e. the search for a
better structure for the next iteration. With
the previous structural em algorithms, we were
looking for the best dag among the neighbours
of the current graph. With mwst-em, we can
directly get the best tree that maximises func-
tion Q.

In paragraph 2.1, we briefly recalled that the
mwst algorithm used a similarity function be-
tween two nodes which was based on the bic
score variation whether Xj is linked to Xi or
not. This function can be summed up in the
following (symmetrical) matrix:h

Mij

i
16i,j6n

=
h
bic(Xi, Xj , ΘXi|Xj

)− bic(Xi, ∅, ΘXi)
i

(11)

where the local bic score is defined in Eqn.2.
Running maximum (weight) spanning algo-

rithms like Kruskal’s on matrix M enables us to
obtain the best tree T that maximises the sum
of the local scores on all the nodes, i.e. function
BIC of Eqn.2.

By applying the principle we described in sec-
tion 3.2, we can then adapt mwst to incom-
plete data by replacing the local bic score of
Equn.11 with its expectation; to do so, we use a
certain probability density of the missing data
P (Dm|T ∗, Θ∗) :h

MQ
ij

i
i,j

=
h
Qbic(Xi, Pi = {Xj}, ΘXi|Xj

: T ∗, Θ∗)

−Qbic(Xi, Pi = ∅, ΘXi : T ∗, Θ∗)
i

(12)

With the same reasoning, running a maximum
(weight) spanning tree algorithm on matrix
MQ enables us to get the best tree T that max-
imises the sum of the local scores on all the
nodes, i.e. function QBIC of Eqn.9.

4.2 TAN-EM, a structural EM for
classification

The score used to find the best tan structure
is very similar to the one used in mwst, so we
can adapt it to incomplete datasets by defining
the following score matrix:h
MQ

ij

i
i,j

=
h
Qbic(Xi, Pi = {C, Xj}, ΘXi|XjC : T ∗, Θ∗)

−Qbic(Xi, Pi = {C}, ΘXi|C : T ∗, Θ∗)
i

(13)

Using this new score matrix, we can use the
approach previously proposed for mwst-em to



get the best augmented tree, and connect the
class node to all the other nodes to obtain the
tan structure. We are currently using the same
reasoning to find the best forest ”extension”.

4.3 Related works

(Meila-Predoviciu, 1999) applies mwst algo-
rithm and em principle, but in another frame-
work, learning mixtures of trees. In this work,
the data is complete, but a new variable is intro-
duced in order to take into account the weight
of each tree in the mixture. This variable isn’t
measured so em is used to determine the corre-
sponding parameters.

(Peña et al., 2002) propose a change inside
the framework of the sem algorithm resulting
in an alternative approach for learning Bayes
Nets for clustering more efficiently.

(Greiner and Zhou, 2002) propose maximiz-
ing conditional likelihood for BN parameter
learning. They apply their method to mcar in-
complete data by using available case analysis
in order to find the best tan classifier.

(Cohen et al., 2004) deal with tan classifiers
and em principle for partially unlabeled data.
In there work, only the variable corresponding
to the class can be partially missing whereas any
variable can be partially missing in our tan-em
extension.

5 Experiments

5.1 Protocol

The experiment stage aims at evaluating the
Tree Augmented Naive Bayes classifier on
incomplete datasets from UCI repository3:
Hepatitis, Horse, House, Mushrooms and
Thyroid.

The tan-em method we proposed here is
compared to the Naive Bayes classifier with
em parameters learning. We also indicate the
classification rate obtained by three methods:
mwst-em, sem initialised with a random chain
and sem initialised with the tree given by
mwst-em (sem+t). The first two methods are

3http://www.ics.uci.edu/∼mlearn/MLRepository.
html

dedicated to classification tasks while the oth-
ers do not consider the class node as a specific
variable.

We also give an α confidence interval for each
classification rate, based on Eqn.14 proposed by
(Bennani and Bossaert, 1996):

I(α, N) =
T +

Z2
α

2N
± Zα

q
T (1−T )

N
+

Z2
α

4N2

1 +
Z2

α
N

(14)

where N is the number of samples in the dataset,
T is the classification rate and Zα = 1, 96 for α =

95%.

5.2 Results

The results are summed up in Table 1. First, we
could see that even if the Naive Bayes classifier
often gives good results, the other tested meth-
ods allow to obtain better classification rates.
But, where all runnings of nb-em give the same
results, as em parameter learning only needs
an initialisiation, the other methods do not al-
ways give the same results, and then, the same
classification rates. We have also noticed (not
reported here) that, excepting nb-em, tan-
em seems the most stable method concerning
the evaluated classification rate while mwst-em
seems to be the less stable.

The method mwst-em can obtain very good
structures with a good initialisation. Then, ini-
tialising it with the results of mwst-em gives us
stabler results (see (Leray and François, 2005)
for a more specific study of this point).

In our tests, except for this house dataset,
tan-em always obtains a structure that lead
to better classification rates in comparison with
the other structure learning methods.

Surprisingly, we also remark that mwst-em
can give good classification rates even if the
class node is connected to a maximum of two
other attributes.

Regarding the log-likelihood reported in Ta-
ble 1, we see that the tan-em algorithm finds
structures that can also lead to a good approx-
imation of the underlying probability distribu-
tion of the data, even with a strong constraint
on the graph structure.

Finally, the Table 1 illustrates that tan-
em and mwst-em have about the same com-
plexity (regarding the computational time) and



Datasets N learn test #C %I NB-EM MWST-EM TAN-EM SEM SEM+T
Hepatitis 20 90 65 2 8.4 70.8 [58.8;80.5] 73.8 [62.0;83.0] 75.4 [63.6;84.2] 66.1 [54.0;76.5] 66.1 [54.0;76.5]

-1224.2 ; 29.5 -1147.6 ; 90.4 -1148.7 ; 88.5 -1211.5 ; 1213.1 -1207.9 ; 1478.5
Horse 28 300 300 2 88.0 75 [63.5;83.8] 77.9 [66.7;86.2] 80.9 [69.9;88.5] 66.2 [54.3;76.3] 66.2 [54.3;76.3]

-5589.1 ; 227.7 -5199.6 ; 656.1 -5354.4 ; 582.2 -5348.3 ; 31807 -5318.2 ; 10054
House 17 290 145 2 46.7 89.7 [83.6;93.7] 93.8 [88.6;96.7] 92.4 [86.9;95.8] 92.4 [86.9;95.8] 93.8 [88.6;96.7]

-2203.4 ; 110.3 -2518.0 ; 157.0 -2022.2 ; 180.7 -2524.4 ; 1732.4 -2195.8 ; 3327.2
Mushrooms 23 5416 2708 2 30.5 92.8 [91.7;93.8] 74.7 [73.0;73.4] 91.3 [90.2;92.4] 74.9 [73.2;76.5] 74.9 [73.2;76.5]

-97854 ; 2028.9 -108011 ; 6228.2 -87556 ; 5987.4 -111484 ; 70494 -110828 ; 59795
Thyroid 22 2800 972 2 29.9 95.3 [93.7;96.5] 93.8 [92.1;95.2] 96.2 [94.7;97.3] 93.8 [92.1;95.2] 93.8 [92.1;95.2]

-39348 ; 1305.6 -38881 ; 3173.0 -38350 ; 3471.4 -38303 ; 17197 -39749 ; 14482

Table 1: First line: best classification rate (on 10 runs, except Mushrooms on 5, in %) on test
dataset and its confidence interval, for the following learning algorithms: nb-em, mwst-em, sem,
tan-em and sem+t. Second line: log-likelihood estimated with test data and calculation time
(sec) for the network with the best classification rate. The first six columns give us the name of the
dataset and some of its properties : number of attributes, learning sample size, test sample size,
number of classes and percentage of incomplete samples.

are a good compromise between nb-em (clas-
sical Naive Bayes with em parameter learning)
and mwst-em (greedy search with incomplete
data).

6 Conclusions and prospects

Bayesian networks are a tool of choice for rea-
soning in uncertainty, with incomplete data.
However, most of the time, Bayesian network
structural learning only deal with complete
data. We have proposed here an adaptation of
the learning process of Tree Augmented Naive
Bayes classifier from incomplete datasets (and
not only partially labelled data). This method
has been successfuly tested on some datasets.

We have seen that tan-em was a good clas-
sification tool compared to other Bayesian net-
works we could obtained with structural em like
learning methods.

Our method can easily be extended to un-
supervised classification tasks by adding a new
step in order to determine the best cardinality
for the class variable.

Related future works are the adaptation of
some other Augmented Naive Bayes classifiers
for incomplete datasets (fan for instance), but
also the study of these methods with mar
datasets.

mwst-em, tan-em and sem methods are re-
spective adaptations of mwst, tan and greedy
search to incomplete data. These algorithms are

applying in (subspace of) dag space. (Chicker-
ing and Meek, 2002) proposed an optimal search
algorithm (ges) which deals with Markov equiv-
alent space. Logically enough, the next step
in our research is to adapt ges to incomplete
datasets. Then we could test results of this
method on classification tasks.
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