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Abstract

Semi-Markovian causal models (SMCMs) are an extension of causal Bayesian networks for
modeling problems with latent variables. However, there is a big gap between the SMCMs
used in theoretical studies and the models that can be learned from observational data
alone. The result of standard algorithms for learning from observations, is a complete
partially ancestral graph (CPAG), representing the Markov equivalence class of maximal
ancestral graphs (MAGs). In MAGs not all edges can be interpreted as immediate causal
relationships. In order to apply state-of-the-art causal inference techniques we need to
completely orient the learned CPAG and to transform the result into a SMCM by removing
non-causal edges. In this paper we combine recent work on MAG structure learning from
observational data with causal learning from experiments in order to achieve that goal.
More specifically, we provide a set of rules that indicate which experiments are needed
in order to transform a CPAG to a completely oriented SMCM and how the results of
these experiments have to be processed. We will propose an alternative representation
for SMCMs that can easily be parametrised and where the parameters can be learned
with classical methods. Finally, we show how this parametrisation can be used to develop

methods to efficiently perform both probabilistic and causal inference.

1 Introduction

This paper discusses graphical models that can
handle latent variables without explicitly mod-
eling them quantitatively. For such problem do-
mains, several paradigms exist, such as semi-
Markovian causal models or mazimal ances-
tral graphs. Applying these techniques to a
problem domain consists of several steps, typi-
cally: structure learning from observational and
experimental data, parameter learning, proba-
bilistic inference, and, quantitative causal infer-
ence.

A problem is that each existing approach only
focuses on one or a few of all the steps involved
in the process of modeling a problem includ-
ing latent variables. The goal of this paper is
to investigate the integral process from learning

from observational and experimental data unto
different types of efficient inference.

Semi-Markovian causal models (SMCMs)
(Pearl, 2000; Tian and Pearl, 2002) are specif-
ically suited for performing quantitative causal
inference in the presence of latent variables.
However, at this time no efficient parametrisa-
tion of such models is provided and there are no
techniques for performing efficient probabilistic
inference. Furthermore there are no techniques
for learning these models from data issued from
observations, experiments or both.

Maximal ancestral graphs (MAGs), devel-
oped in (Richardson and Spirtes, 2002) are
specifically suited for structure learning from
observational data. In MAGs every edge de-
picts an ancestral relationship. However, the
techniques only learn up to Markov equivalence



and provide no clues on which additional ex-
periments to perform in order to obtain the
fully oriented causal graph. See (Eberhardt et
al., 2005; Meganck et al., 2006) for that type
of results on Bayesian networks without latent
variables. Furthermore, no parametrisation for
discrete variables is provided for MAGs (only
one in terms of Gaussian distributions) and no
techniques for probabilistic and causal inference
have been developed.

We have chosen to use SMCMs in this pa-
per, because they are the only formalism that
allows to perform causal inference while taking
into account the influence of latent variables.
However, we will combine existing techniques
to learn MAGs with newly developed methods
to provide an integral approach that uses both
observational data and experiments in order to
learn fully oriented semi-Markovian causal mod-
els.

In this paper we also introduce an alterna-
tive representation for SMCMs together with a
parametrisation for this representation, where
the parameters can be learned from data with
classical techniques. Finally, we discuss how
probabilistic and quantitative causal inference
can be performed in these models.

The next section introduces the necessary no-
tations and definitions. It also discusses the se-
mantical and other differences between SMCMs
and MAGs. In section 3, we discuss structure
learning for SMCMs. Then we introduce a new
representation for SMCMs that can easily be
parametrised. We also show how both proba-
bilistic and causal inference can be performed
with the help of this new representation.

2 Notation and Definitions

We start this section by introducing notations
and defining concepts necessary in the rest of
this paper. We will also clarify the differences
and similarities between the semantics of SM-

CMs and MAGs.

2.1 Notation

In this work uppercase letters are used to rep-
resent variables or sets of variables, i.e., V =

{V1,...,V,}, while corresponding lowercase let-
ters are used to represent their instantiations,
i.e., v1,v9 and v is an instantiation of all v;.
P(V;) is used to denote the probability distribu-
tion over all possible values of variable V;, while
P(V; = v;) is used to denote the probability dis-
tribution over the instantiation of variable V; to
value v;. Usually, P(v;) is used as an abbrevia-
tion of P(V; = v;).

The operators Pa(V;), Anc(V;), Ne(V;) de-
note the observable parents,
neighbors respectively of variable V; in a graph
and Pa(v;) represents the values of the parents
of V;. Likewise, the operator L Pa(V;) represents
the latent parents of variable V;. If V; < V;
appears in a graph then we say that they are
spouses, i.e., V; € Sp(Vj) and vice versa.

When two variables V;, V; are independent we
denote it by (V;ALV}), when they are dependent
by (VisVj).

ancestors and

2.2 Semi-Markovian Causal Models

Consider the model in Figure 1(a), it is a prob-
lem with observable variables Vi,..., Vs and la-
tent variables L, Lo and it is represented by a
directed acyclic graph (DAG). As this DAG rep-
resents the actual problem, henceforth we will
refer to it as the underlying DAG.

The central graphical modeling representa-
tion that we use are the semi-Markovian causal
models (Tian and Pearl, 2002).

Definition 1. A semi-Markovian causal
model (SMCM) is a representation of a causal
Bayesian network (CBN) with observable vari-
ables V.= {Vq,...,V,,} and latent variables
L ={Ly,...,Ly}. Furthermore, every latent
variable has no parents (i.e., is a root node) and
has exactly two children that are both observed.

See Figure 1(b) for an example SMCM repre-
senting the underlying DAG in (a).

In a SMCM each directed edge represents an
immediate autonomous causal relation between
the corresponding variables. Our operational
definition of causality is as follows: a relation
from variable C to variable E is causal in a cer-
tain context, when a manipulation in the form
of a randomised controlled experiment on vari-
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Figure 1: (a) A problem domain represented by
a causal DAG model with observable and latent
variables. (b) A semi-Markovian causal model
representation of (a). (¢) A maximal ancestral
graph representation of (a).

able C, induces a change in the probability dis-
tribution of variable F, in that specific context
(Neapolitan, 2003).

In a SMCM a bi-directed edge between two
variables represents a latent variable that is a
common cause of these two variables. Although
this seems very restrictive, it has been shown
that models with arbitrary latent variables can
be converted into SMCMs while preserving the
same independence relations between the ob-
servable variables (Tian and Pearl, 2002).

The semantics of both directed and bi-
directed edges imply that SMCMs are not max-
imal. This means that they do not represent all
dependencies between variables with an edge.
This is because in a SMCM an edge either rep-
resents an immediate causal relation or a latent
common cause, and therefore dependencies due
to a so called inducing path, will not be repre-
sented by an edge.

A node is a collider on a path if both its im-
mediate neighbors on the path point into it.

Definition 2. An inducing path is a path in
a graph such that each observable non-endpoint
node of the path is a collider, and an ancestor
of at least one of the endpoints.

Inducing paths have the property that their
endpoints can not be separated by conditioning
on any subset of the observable variables. For
instance, in Figure 1(a), the path V; — V5 «—
Li — Vg is inducing.

SMCMs are specifically suited for another
type of inference, i.e., causal inference.

Definition 3. Causal inference is the process
of calculating the effect of manipulating some
variables X on the probability distribution of
some other variables Y ; this is denoted as
P(Y =yldo(X = z)).

An example causal inference query in the
SMCM of Figure 1(b) is P(Vs = wvg|do(Vo =
Ug)).

Tian and Pearl have introduced theoretical
causal inference algorithms to perform causal
inference in SMCMs (Pearl, 2000; Tian and
Pearl, 2002). However these algorithms assume
that any distribution that can be obtained from
the JPD over the observable variables is avail-
able. We will show that their algorithm per-
forms efficiently on our parametrisation.

2.3 Maximal Ancestral Graphs

Maximal ancestral graphs are another approach
to modeling with latent variables (Richardson
and Spirtes, 2002). The main research focus in
that area lies on learning the structure of these
models.

Ancestral graphs (AGs) are complete under
marginalisation and conditioning. We will only
discuss AGs without conditioning as is com-
monly done in recent work.

Definition 4. An ancestral graph without
conditioning is a graph containing directed —
and bi-directed < edges, such that there is no
bi-directed edge between two wvariables that are
connected by a directed path.

Pearl’s d-separation criterion can be extended
to be applied to ancestral graphs, and is called
m-separation in this setting. M-separation
characterizes the independence relations repre-
sented by an ancestral graph.

Definition 5. An ancestral graph is said to
be maximal if, for every pair of non-adjacent
nodes (V;, V) there exists a set Z such that V;
and V; are independent conditional on Z.

A non-maximal AG can be transformed into
a MAG by adding some bi-directed edges (in-
dicating confounding) to the model. See Figure
1(c) for an example MAG representing the same
model as the underlying DAG in (a).



In this setting a directed edge represents an
ancestral relation in the underlying DAG with
latent variables. I.e., an edge from variable A
to B represents that in the underlying causal
DAG with latent variables, there is a directed
path between A and B.

Bi-directed edges represent a latent common
cause between the variables. However, if there
is a latent common cause between two variables
A and B, and there is also a directed path be-
tween A and B in the underlying DAG, then
in the MAG the ancestral relation takes prece-
dence and a directed edge will be found between
the variables. Vo — Vg in Figure 1(c) is an ex-
ample of such an edge.

Furthermore, as MAGs are maximal, there
will also be edges between variables that have no
immediate connection in the underlying DAG,
but that are connected via an inducing path.
The edge Vi — Vg in Figure 1(c) is an example
of such an edge.

These semantics of edges make causal infer-
ence in MAGs virtually impossible. As stated
by the Manipulation Theorem (Spirtes et al.,
2000), in order to calculate the causal effect of
a variable A on another variable B, the immedi-
ate parents (i.e., the pre-intervention causes) of
A have to be removed from the model. However,
as opposed to SMCMs, in MAGs an edge does
not necessarily represent an immediate causal
relationship, but rather an ancestral relation-
ship and hence in general the modeler does not
know which are the real immediate causes of a
manipulated variable.

An additional problem for finding the pre-
intervention causes of a variable in MAGs is that
when there is an ancestral relation and a latent
common cause between variables, then the an-
cestral relation takes precedence and the con-
founding is absorbed in the ancestral relation.

Complete partial ancestral graphs (CPAGs)
are defined in (Zhang and Spirtes, 2005) in the
following way.

Definition 6. Let [G] be the Markov equiva-
lence class for an arbitrary MAG G. The com-
plete partial ancestral graph (CPAG) for
[G], Pg, is a graph with possibly the following

edges —, <, 0—0,0—, such that

1. Pg has the same adjacencies as G (and
hence any member of [G]) does;

2. A mark of arrowhead > is in Pg if and only
if it is invariant in [G]; and

3. A mark of tail — is in Pg if and only if it
is invariant in [G].

4. A mark of o is in Pg if not all members in
[G] have the same mark.

2.4 Assumptions

As is customary in the graphical modeling re-
search area, the SMCMs we take into account
in this paper are subject to some simplifying
assumptions:

1. Stability, i.e., the independencies in the
CBN with observed and latent variables
that generates the data are structural and
not due to several influences exactly can-
celing each other out (Pearl, 2000).

2. Only a single immediate connection per
two variables in the underlying DAG. lL.e.,
we do not take into account problems where
two variables that are connected by an im-
mediate causal edge are also confounded
by a latent variable causing both variables.
Constraint based learning techniques such
as IC* (Pearl, 2000) and FCI (Spirtes et al.,
2000) also do not explicitly recognise mul-
tiple edges between variables. However, in
(Tian and Pearl, 2002) Tian presents an
algorithm for performing causal inference
where such relations between variables are
taken into account.

3. No selection bias. Mimicking recent work,
we do not take into account latent variables
that are conditioned upon, as can be the
consequence of selection effects.

4. Discrete variables. All the variables in our
models are discrete.



3 Structure learning

Just as learning a graphical model in general,
learning a SMCM consists of two parts: struc-
ture learning and parameter learning. Both can
be done using data, expert knowledge and/or
experiments. In this section we discuss only
structure learning.

3.1 Without latent variables

Learning the structure of Bayesian networks
without latent variables has been studied by a
number of researchers (Pearl, 2000; Spirtes et
al., 2000). The results of applying one of those
algorithms is a representative of the Markov
equivalence class.

In order to perform probabilistic or causal in-
ference, we need a fully oriented structure. For
probabilistic inference this can be any repre-
sentative of the Markov equivalence class, but
for causal inference we need the correct causal
graph that models the underlying system. In or-
der to achieve this, additional experiments have
to be performed.

In previous work (Meganck et al., 2006), we
studied learning the completely oriented struc-
ture for causal Bayesian networks without la-
tent variables. We proposed a solution to min-
imise the total cost of the experiments needed
by using elements from decision theory. The
techniques used there could be extended to the
results of this paper.

3.2 With latent variables

In order to learn graphical models with la-
tent variables from observational data, the Fast
Causal Inference (FCI) algorithm (Spirtes et
al., 2000) has been proposed. Recently this re-
sult has been extended with the complete tail
augmentation rules introduced in (Zhang and
Spirtes, 2005). The results of this algorithm is
a CPAG, representing the Markov equivalence
class of MAGs consistent with the data.

As mentioned above for MAGs, in a CPAG
the directed edges have to be interpreted as
being ancestral instead of causal. This means
that there is a directed edge from V; to Vj if
Vi is an ancestor of Vj in the underlying DAG
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Figure 2: (a) A SMCM. (b) Result of FCI, with
an i-false edge Vzo—oVjy.

and there is no subset of observable variables D
such that (V;ALV;|D). This does not necessarily
mean that V; has an immediate causal influence
on Vj;: it may also be a result of an inducing
path between V; and V. For instance in Fig-
ure 1(c), the link between V; and Vg is present
due to the inducing path Vi, Vo, L1, Vg shown in
Figure 1(a).

Inducing paths may also introduce an edge of
type o— or 60 between two variables, indicating
either a directed or bi-directed edge, although
there is no immediate influence in the form of
an immediate causal influence or latent common
cause between the two variables. An example of
such a link is V30—0V} in Figure 2.

A consequence of these properties of MAGs
and CPAGs is that they are not suited for causal
inference, since the immediate causal parents of
each observable variable are not available, as is
necessary according to the Manipulation The-
orem. As we want to learn models that can
perform causal inference, we will discuss how to
transform a CPAG into a SMCM in the next
Before we start, we have to men-
tion that we assume that the CPAG is correctly
learned from data with the FCI algorithm and
the extended tail augmentation rules, i.e., each
result that is found is not due to a sampling
error.

sections.

3.3 Transforming the CPAG

Our goal is to transform a given CPAG in or-
der to obtain a SMCM that corresponds to the
correspondig DAG. Remember that in general
there are three types of edges in a CPAG: —,
0—, 0—o0, in which o means either a tail mark
— or a directed mark >. So one of the tasks to



obtain a valid SMCM is to disambiguate those
edges with at least one o as an endpoint. A
second task will be to identify and remove the
edges that are created due to an inducing path.

In the next section we will first discuss exactly
which information we obtain from performing
an experiment. Then, we will discuss the two
possibilities o— and o—o. Finally, we will dis-
cuss how we can find edges that are created due

to inducing paths and how to remove these to
obtain the correct SMCM.

3.3.1 Performing experiments

The experiments discussed here play the role
of the manipulations that define a causal re-
lation (cf. Section 2.2). An experiment on a
variable V;, i.e., a randomised controlled exper-
iment, removes the influence of other variables
in the system on V;. The experiment forces
a distribution on V;, and thereby changes the
joint distribution of all variables in the system
that depend directly or indirectly on V; but
does not change the conditional distribution of
other variables given values of V;. After the
randomisation, the associations of the remain-
ing variables with V; provide information about
which variables are influenced by V; (Neapoli-
tan, 2003). When we perform the experiment
we cut all influence of other variables on V.
Graphically this corresponds to removing all in-
coming edges into V; from the underlying DAG.

All parameters besides those for the variable
experimented on, (i.e., P(V;|Pa(V;))), remain
the same. We then measure the influence of the
manipulation on variables of interest to get the
post-interventional distribution on these vari-
ables.

To analyse the results of the experiment we
compare for each variable of interest V; the orig-
inal distribution P and the post-interventional
distribution Pg, thus comparing P(V;) and
Py(V;) = P(Vyldo(V; = vy)).

We denote performing an experiment at vari-
able V; or a set of variables W by exp(V;) or
exp(W) respectively, and if we have to condition
on some other set of variables D while perform-
ing the experiment, we denote it as exp(V;)|D

and exp(W)|D.

In general if a variable V; is experimented on
and another variable V; is affected by this ex-
periment, we say that V; waries with exp(V;),
denoted by exp(V;) ~» Vj. If there is no varia-
tion in V; we note exp(V;) 4 V.

Although conditioning on a set of variables
D might cause some variables to become proba-
bilistically dependent, conditioning will not in-
fluence whether two variables vary with each
other when performing an experiment. L.e., sup-
pose the following structure is given V; — D «
Vj, then conditioning on D will make V; depen-
dent on V}, but when we perform an experiment
on V; and check whether V; varies with V; then
conditioning on D will make no difference.

First we have to introduce the following defi-
nition:

Definition 7. A potentially directed path
(p.d. path) in a CPAG is a path made only of
edges of types o— and —, with all arrowheads
in the same direction. A p.d. path from V; to
Vj is denoted as V; --» Vj.

3.3.2 Solving o0—

An overview of the different rules for solving
0— is given in Table 1

Type 1(a)
Given Ao— B
exp(A) £ B
Action A~ B
Type 1(b)
Given Ao— B
exp(A) ~ B
Ap.d. path (length > 2)A --+ B
Action A— B
Type 1(c)
Given Ao— B
exp(A) ~» B
dp.d. path (length > 2)A --+ B
Action Block all p.d. paths by condi-
tioning on blocking set D
(a) exp(A)|D ~ B: A— B
(b) exp(A)|D + B: A~ B

Table 1: An overview of the different actions
needed to complete edges of type o—.



For any edge Vio— Vj, there is no need to
perform an experiment on V; because we know
that there can be no immediate influence of V;
on V;, so we will only perform an experiment on
V.

If exp(V;) ++ Vj, then there is no influence of
V; on Vj, so we know that there can be no di-
rected edge between V; and V; and thus the only
remaining possibility is V; < V; (Type 1(a)).

If exp(V;) ~» Vj, then we know for sure that
there is an influence of V; on V;, we now need to
discover whether this influence is immediate or
via some intermediate variables. Therefore we
make a difference whether there is a potentially
directed (p.d.) path between V; and V; of length
> 2, or not. If no such path exists, then the
influence has to be immediate and the edge is
found V; — V; (Type 1(b)).

If at least one p.d. path V; --» V; exists,
we need to block the influence of those paths
on V; while performing the experiment, so we
try to find a blocking set D for all these paths.
If exp(V;)|D ~» Vj, then the influence has to
be immediate, because all paths of length > 2
are blocked, so V; — V;. On the other hand if
exp(V;)|D + Vj, there is no immediate influ-
ence and the edge is V; < V; (Type 1(c)).

3.3.3 Solving o0—o

An overview of the different rules for solving
0—o is given in Table 2.

For any edge V;o-0Vj, we have no information
at all, so we might need to perform experiments
on both variables.

If exp(V;) + Vj, then there is no influence
of V; on V; so we know that there can be no
directed edge between V; and V; and thus the
edge is of the following form: V; <oV}, which
then becomes a problem of Type 1.

If exp(V;) ~» Vj, then we know for sure that
there is an influence of V; on V;, and as in the
case of Type 1(b), we make a difference whether
there is a potentially directed path between V;
and V; of length > 2, or not. If no such path
exists, then the influence has to be immediate
and the edge must be turned into V; — V.

If at least one p.d. path V; --» V; exists,
we need to block the influence of those paths

Type 2(a)
Given Ao—oB
exp(4) 4 B
Action A —oB(=Type 1)
Type 2(b)
Given Ao—oB
exp(A) ~ B
Ap.d. path (length > 2)A --» B
Action A— B
Type 2(c)
Given Ao—oB
exp(A) ~ B
dp.d. path (length > 2)A --» B
Action Block all p.d. paths by condi-
tioning on blocking set D
(a) exp(A)|D ~ B: A— B
(b) exp(A)|D + B: A «—oB
(=Type 1)

Table 2: An overview of the different actions
needed to complete edges of type o—o.

on V; while performing the experiment, so we
find a blocking set D like with Type 1(c). If
exp(V;)|D ~» Vj, then the influence has to be
immediate, because all paths of length > 2 are
blocked, so V; — V;. On the other hand if
exp(V;)|D +~ Vj, there is no immediate influ-
ence and the edge is of type: V; <oV}, which
again becomes a problem of Type 1.

3.3.4 Removing inducing path edges

An inducing path between two variables V;
and V; might create an edge between these two
variables during learning because the two are
dependent conditional on any subset of observ-
able variables. As mentioned before, this type
of edges is not present in SMCMs as it does not
represent an immediate causal influence or a la-
tent variable in the underlying DAG. We will
call such an edge an i-false edge.

For instance, in Figure 1(a) the path
V1, Vs, L1, Vg is an inducing path, which causes
the FCI algorithm to find an i-false edge be-
tween V) and Vg, see Figure 1(c). Another ex-
ample is given in Figure 2 where the SMCM is
given in (a) and the result of FCI in (b). The



edge between V3 and Vj in (b) is a consequence
of the inducing path via the observable variables
V3, Vi, Va, Vy.

In order to be able to apply a causal inference
algorithm we need to remove all i-false edges
from the learned structure. We need to identify
the substructures that can indicate this type of
edges. This is easily done by looking at any
two variables that are connected by an immedi-
ate connection, and when this edge is removed,
they have at least one inducing path between
them. To check whether the immediate con-
nection needs to be present we have to block
all inducing paths by performing one or more
experiments on an inducing path blocking set
(i-blocking set) D and block all other paths
by conditioning on a blocking set D. If V; and
V; are dependent, i.e., V;\WV; under these cir-
cumstances the edge is correct and otherwise it
can be removed.

In the example of Figure 1(c), we can block
the inducing path by performing an experiment
on V5, and hence can check that Vi and Vj
do not covary with each other in these circum-
stances, so the edge can be removed.

In Table 3 an overview of the actions to re-
solve i-false edges is given.

Given | A pair of connected variables V;, V;
A set of inducing paths V;,...,V;
Action | Block all inducing paths V;,...,V;

by conditioning on i-blocking set
D™,

Block all other paths between V;
and Vj; by conditioning on blocking
set D.

When performing all exp(D)|D:
if V;3Vj: confounding is real

else remove edge between V;, V;

Table 3: Removing inducing path edges.

3.4 Example

We will demonstrate a number of steps to dis-
cover the completely oriented SMCM (Figure
1(b)) based on the result of the FCI algorithm
applied on observational data generated from
the underlying DAG in Figure 1(a). The result
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Figure 3: (a) The result of FCI on data of the
underlying DAG of Figure 1(a). (b) Result of
an experiment on V. (c) After experiment on
V. (d) After experiment on V3. (e) After ex-
periment on V2 while conditioning on V3. (f)
After resolving all problems of Type 1 and 2.

of the FCI algorithm can be seen in Figure 3(a).
We will first resolve problems of Type 1 and 2,
and then remove i-false edges. The result of
each step is indicated in Figure 3.

o cxp(Vs)
— Vso—0oVy:
exp(Vs) 4 Vi = Vio— Vi (Type 2(a))

- V50—> V(;:
exp(Vs) + Vo = Vs < Vi (Type 1(a))

o cxp(Vy)

— Vio—oVs:

exp(Vy) 4 Vo = Vao— Vy (Type 2(a))
— Vyo—0Vs:

exp(Va) + V3 = Vzo— Vi (Type 2(a))
— Vio— Vs

exp(Vy) ~ Vs = Vi — V5 (Type 1(b))
— Vyo— Vg

exp(Vy) ~ Vs = Vi — Vs (Type 1(b))

o cxp(V3)
— Vzo0—0oVs:
exp(V3) > Vo = Vao— Vi (Type 2(a))

— Vio— Vy:
exp(Vs) ~ Vi = V3 — V4 (Type 1(b))



o cxp(Va) and exp(V2)|Vs, because two p.d.
paths between V5 and V4

— Vho—oV7:

exp(Va) 4 Vi = Vio— Va (Type 2(a))
— Voo— Vi

exp(Va) ~ V3 = Vo — V3 (Type 1(b))
- VéO—> V4:

exp(Vo)|Vs ~ Vi = Vo — Vi (Type

1(c))

After resolving all problems of Type 1 and
2 we end up with the SMCM structure shown
in Figure 3(f). This representation is no longer
consistent with the MAG representation since
there are bi-directed edges between two vari-
ables on a directed path, i.e., V5, V5. There is
a potentially i-false edge Vi < Vg in the struc-
ture with inducing path Vi, Vs, Vg, so we need
to perform an experiment on Vs, blocking all
other paths between V; and Vi (this is also done
by exp(Va2) in this case). Given that the orig-
inal structure is as in Figure 1(a), performing
exp(Va) shows that V; and Vg are independent,
ie., exp(Va) : (V1LLVgs). Thus the bi-directed
edge between V7 and Vg is removed, giving us

the SMCM of Figure 1(b).

4 Parametrisation of SM CMs

As mentioned before, in their work on causal in-
ference, Tian and Pearl provide an algorithm for
performing causal inference given knowledge of
the structure of an SMCM and the joint prob-
ability distribution (JPD) over the observable
variables. However, they do not provide a para-
metrisation to efficiently store the JPD over the
observables.

We start this section by discussing the fac-
torisation for SMCMs introduced in (Tian and
Pearl, 2002). From that result we derive an ad-
ditional representation for SMCMs and a para-
metrisation that facilitates probabilistic and
causal inference. We will also discuss how these
parameters can be learned from data.

4.1 Factorising with Latent Variables

Consider an underlying DAG with observable
variables V = {Vj,...,V,} and latent variables

L = {Ly,...,Ly}. Then the joint probabil-
ity distribution can be written as the following
mixture of products:

Pv) = Z HP(vi\Pa(vi),LPa(vi))

{lg|LyEL}ViEV
(1)

IT Pay).

L;eL

Taking into account that in a SMCM the la-

tent variables are implicitly represented by bi-
directed edges, we introduce the following defi-
nition.
Definition 8. In a SMCM, the set of observ-
able variables can be partitioned by assigning
two variables to the same group iff they are con-
nected by a bi-directed path. We call such a
group a c-component (from “confounded com-
ponent”) (Tian and Pearl, 2002).

For instance, in Figure 1(b) variables
Vo, V5,V belong to the same c-component.
Then it can be readily seen that c-components
and their associated latent variables form re-
spective partitions of the observable and la-
tent variables. Let @Q[S;] denote the contribu-
tion of a c-component with observable variables
S; C V to the mixture of products in Equa-
tion 1. Then we can rewrite the JPD as follows:
Pw)= II QIS

ie{l,....,k}

Finally, (Tian and Pearl, 2002) proved that
each Q[S] could be calculated as follows. Let
Vo, < ... <V,, be a topological order over V,

and let V) =V, <...<V,,1=1,...,n,and
v =g
QIS = [ Pwil(Tiu Pa(m)\{Vi})  (2)

Vies

where T; is the c-component of the SMCM G
reduced to variables V®), that contains V;. The
SMCM G reduced to a set of variables V' C
V' is the graph obtained by removing from the
graph all variables V\V’ and the edges that are
connected to them.

In the rest of this section we will develop
a method for deriving a DAG from a SMCM.



We will show that the classical factorisation
[1P(vi|Pa(v;)) associated with this DAG, is the
same as the one associated with the SMCM, as
above.

4.2 Parametrised representation

Here we first introduce an additional represen-
tation for SMCMs, then we show how it can be
parametrised and, finally we discuss how this
new representation could be optimised.

4.2.1 PR-representation

Consider V,, < ... <V, to be a topological
order O over the observable variables V', only
considering the directed edges of the SMCM,
and let V) =V, <...<V,,t=1,...,n,and
V(© = (. Then Table 4 shows how the para-
metrised (PR-) representation can be obtained
from the original SMCM structure.

Given a SMCM G and a topological ordering

O, the PR-representation has these properties:

1. The nodes are V| i.e., the observable var-
iables of the SMCM.

2. The directed edges are the same as in the
SMCM.

3. The confounded edges are replaced by a
number of directed edges as follows:
Add an edge from node V; to node Vj iff:

a) Vi € (T; U Pa(Tj)), where T is the
c-component of G reduced to variables
V() that contains Vi,

b) and there was not already an edge

between nodes V; and V.

Table 4: Obtaining the PR-representation.

This way each variable becomes a child of the
variables it would condition on in the calcula-
tion of the contribution of its c-component as in
Equation (2).

Figure 4(a) shows the PR-representation of
the SMCM in Figure 1(a). The topological or-
der that was used here is V7 < Vo < V3 <V <
Vs < Vi and the directed edges that have been
added are V7 — Vi, Vo — Vi, V1 — Vg, Vo — Vg,
and, V5 — V.

V5 VG

(@) (b)

Figure 4: (a) The PR-representation applied to
the SMCM of Figure 1(b). (b) Junction tree
representation of the DAG in (a).

The resulting DAG is an [-map (Pearl, 1988),
over the observable variables of the indepen-
dence model represented by the SMCM. This
means that all the independencies that can be
derived from the new graph must also be present
in the JPD over the observable variables. This
property can be more formally stated as the fol-
lowing theorem.

Theorem 9. The PR-representation PR de-
rived from a SMCM S is an I-map of that
SMCM.

Proof. Consider two variables A and B in PR
that are not connected by an edge. This means
that they are not independent, since a necessary
condition for two variables to be conditionally
independent in a stable DAG is that they are
not connected by an edge. PR is stable as we
consider only stable problems (Assumption 1 in
Section 2.4).

Then, from the method for constructing PR
we can conclude that S (i) contains no directed
edge between A and B, (ii) contains no bi-
directed edge between A and B, (iii) contains
no inducing path between A and B. Property
(iii) holds because the only inducing paths that
are possible in a SMCM are those between a
member of a c-component and the immediate
parent of another variable of the c-component,
and in these cases the method for constructing
PR adds an edge between those variables. Be-
cause of (i),(ii), and (iii) we can conclude that
A and B are independent in S. O



4.2.2 Parametrisation

For this DAG we can use the same para-
metrisation as for classical BNs, i.e., learning
P(v;|Pa(v;)) for each variable, where Pa(v;)
denotes the parents in the new DAG. In this
way the JPD over the observable variables
factorises as in a classical BN, ie., P(v) =
[ P(vi|Pa(v;)). This follows immediately from
the definition of a c-component and from Equa-
tion (2).

4.2.3 Optimising the Parametrisation

We have mentioned that the number of
edges added during the creation of the PR-
representation depends on the topological order
of the SMCM.

As this order is not unique, choosing an or-
der where variables with a lesser amount of par-
ents have precedence, will cause less edges to
be added to the DAG. This is because most of
the added edges go from parents of c-component
members to c-component members that are
topological descendants.

By choosing an optimal topological order, we
can conserve more conditional independence re-
lations of the SMCM and thus make the graph
more sparse, thus leading to a more efficient
parametrisation.

4.2.4 Learning parameters

As the PR-representation of SMCMs is a
DAG as in the classical Bayesian network for-
malism, the parameters that have to be learned
are P(v;|Pa(v;)). Therefore, techniques such
as ML and MAP estimation (Heckerman, 1995)
can be applied to perform this task.

4.3 Probabilistic inference

One of the most famous existing probabilistic
inference algorithm for models without latent
variables is the junction tree algorithm (JT)
(Lauritzen and Spiegelhalter, 1988).

These techniques cannot immediately be ap-
plied to SMCMs for two reasons. First of all
until now no efficient parametrisation for this
type of models was available, and secondly, it
is not clear how to handle the bi-directed edges
that are present in SMCMs.

We have solved this problem by first trans-
forming the SMCM into its PR-representation,
which allows us to apply the junction tree in-
ference algorithm. This is a consequence of
the fact that, as previously mentioned, the PR-
representation is an I-map over the observable
And as the JT algorithm is based
only on independencies in the DAG, applying it
to an I-map of the problem gives correct results.
See Figure 4(b) for the junction tree obtained
from the parametrised representation in Figure
4(a).

Note that any other classical probabilistic in-
ference technique that only uses conditional in-
dependencies between variables could also be
applied to the PR-representation.

variables.

4.4 Causal inference

Tian and Pearl (2002) developed an algorithm
for performing causal inference, however as
mentioned before they have not provided an ef-
ficient parametrisation.

Richardson and Spirtes (2003) show causal
inference in AGs on an example, but a detailed
approach is not provided and the problem of
what to do when some of the parents of a vari-
able are latent is not solved.

By definition in the PR-representation, the
parents of each variable are exactly those vari-
ables that have to be conditioned on in order to
obtain the factor of that variable in the calcula-
tion of the c-component, see Table 4 and (Tian
and Pearl, 2002). Thus, the PR-representation
provides all the necessary quantitative informa-
tion, while the original structure of the SMCM
provides the necessary structural information,
for the algorithm by Tian and Pearl to be ap-
plied.

5 Conclusions and Perspectives

In this paper we have proposed a number of so-
lutions to problems that arise when using SM-
CMs in practice.

More precisely, we showed that there is a big
gap between the models that can be learned
from data alone and the models that are used
in theory. We showed that it is important to re-
trieve the fully oriented structure of a SMCM,



and discussed how to obtain this from a given
CPAG by performing experiments.

For future work we would like to relax the
assumptions made in this paper. First of all
we want to study the implications of allowing
two types of edges between two variables, i.e.,
confounding as well as a immediate causal rela-
tionship. Another direction for possible future
work would be to study the effect of allowing
multiple joint experiments in other cases than
when removing inducing path edges.

Furthermore, we believe that applying the
orientation and tail augmentation rules of
(Zhang and Spirtes, 2005) after each experi-
ment, might help to reduce the number of exper-
iments needed to fully orient the structure. In
this way we could extend to SMCMs our previ-
ous results (Meganck et al., 2006) on minimising
the total number of experiments in causal mod-
els without latent variables. This would allow to
compare empirical results with the theoretical
bounds developed in (Eberhardt et al., 2005).

Up until now SMCMs have not been para-
metrised in another way than by the entire joint
probability distribution. Another contribution
of our paper is that we showed that using an
alternative representation, we can parametrise
SMCMs in order to perform probabilistic as well
as causal inference. Furthermore this new rep-
resentation allows to learn the parameters using
classical methods.

We have informally pointed out that the
choice of a topological order when creating the
PR-representation, influences its size and thus
its efficiency. We would like to investigate this
property in a more formal manner. Finally, we
have started implementing the techniques intro-
duced in this paper into the structure learning
package (SLP)! of the Bayesian networks tool-
box (BNT)? for MATLAB.
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