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Abstract

The increasing complexity of the models, the abundant electronic literature and the
relative scarcity of the data make it necessary to use the Bayesian approach to complex
queries based on prior knowledge and structural models. In the paper we discuss the
probabilistic semantics of such statements, the computational challenges and possible
solutions of Bayesian inference over complex Bayesian network features, particularly over
features relevant in the conditional analysis. We introduce a special feature called Markov
Blanket Graph. Next we present an application of the ordering-based Monte Carlo method
over Markov Blanket Graphs and Markov Blanket sets.

In the Bayesian approach to a structural fea-
ture F with values F (G) ∈ {fi}

R
i=1 we are

interested in the feature posterior induced by
the model posterior given the observations DN ,
where G denotes the structure of the Bayesian
network (BN)

p(fi|DN ) =
∑

G

1(F (G) = fi)p(G|DN ) (1)

The importance of such inference results from
(1) the frequently impractically high sample
and computational complexity of the complete
model, (2) a subsequent Bayesian decision-
theoretic phase, (3) the availability of stochastic
methods for estimating such posteriors, and (4)
the focusedness of the data and the prior on
certain aspects (e.g. by pattern of missing val-
ues or better understood parts of the model).
Correspondingly, there is a general expectation
that for small amount of data some properties
of complex models can be inferred with high
confidence and relatively low computation cost
preserving a model-based foundation.

The irregularity of the posterior over the
discrete model space of the Directed Acyclic
Graphs (DAGs) poses serious challenges when
such feature posteriors are to be estimated.
This induced the research on the application of
Markov Chain Monte Carlo (MCMC) methods

for elementary features (Madigan et al., 1996;
Friedman and Koller, 2000). This paper ex-
tends these results by investigating Bayesian in-
ference about BN features with high-cardinality,
relevant in classification. In Section 1 we
present a unified view of BN features enriched
with free-text annotations as a probabilistic
knowledge base (pKB) and discuss the corre-
sponding probabilistic semantics. In Section 2
we overview the earlier approaches to feature
learning. In Section 3 we discuss structural BN
features and introduce a special feature called
Markov Blanket Graph or Mechanism Bound-
ary Graph. Section 4 discusses its relevance in
conditional modeling. In Section 5 we report an
algorithm using ordering-based MCMC meth-
ods to perform inference over Markov Blanket
Graphs and Markov Blanket sets. Section 6
presents results for the ovarian tumor domain.

1 BN features in pKBs

Probabilistic and causal interpretations of BN
ensure that structural features can express a
wide range of relevant concepts based on condi-
tional independence statements and causal as-
sertions (Pearl, 1988; Pearl, 2000; Spirtes et
al., 2001). To enrich this approach with sub-
jective domain knowledge via free-text annota-
tions, we introduce the concept of Probabilistic
Annotated Bayesian Network knowledge base.



Definition 1. A Probabilistic Annotated
Bayesian Network knowledge base K for a fixed
set V of discrete random variables is a first-
order logical knowledge base including standard
graph, string and BN related predicates, rela-
tions and functions. Let Gw represent a target
DAG structure including all the target random
variables. It includes free-text descriptions for
the subgraphs and for their subsets. We assume
that the models M of the knowledge base vary
only in Gw (i.e. there is a mapping G ↔ M)
and a distribution p(Gw|ξ) is available.

A sentence α is any well-formed first-order
formula in K, the probability of which is defined
as the expectation of its truth

Ep(M|K)[α
M] =

∑

G

αM(G)p(G|K).

where αM(G) denotes its truth-value in the
model M(G). This hybrid approach defines a
distribution over models by combining a logi-
cal knowledge base with a probabilistic model.
The logical knowledge base describes the cer-
tain knowledge in the domain defining a set
of models (legal worlds) and the probabilistic
part (p(Gw|ξ)) expresses the uncertain knowl-
edge over these worlds.

2 Earlier works

To avoid the statistical and computational bur-
den of identifying complete models, related lo-
cal algorithms for identifying causal relations
were reported in (Silverstein et al., 2000) and in
(Glymour and Cooper, 1999; Mani and Cooper,
2001). The majority of feature learning algo-
rithms targets the learning of relevant variables
for the conditional modeling of a central vari-
able, i.e. they target the so-called feature sub-

set selection (FSS) problem (Kohavi and John,
1997). Such examples are the Markov Blanket
Approximating Algorithm (Koller and Sahami,
1996) and the Incremential Association Markov
Blanket algorithm (Tsamardinos and Aliferis,
2003). The subgraphs of a BN as features were
targeted in (Pe’er et al., 2001). The bootstrap
approach inducing confidence measures for fea-
tures such as compelled edges, Markov blanket

membership and pairwise precedence was inves-
tigated in (Friedman et al., 1999).

On the contrary, the Bayesian framework of-
fers many advantages such as the normative,
model-based combination of prior and data al-
lowing unconstrained application in the small
sample region. Furthermore the feature poste-
riors can be embedded in a probabilistic knowl-
edge base and they can be used to induce pri-
ors for other model spaces and for a subse-
quent learning. In (Buntine, 1991) proposed
the concept of a posterior knowledge base con-
ditioned on a given ordering for the analysis
of BN models. In (Cooper and Herskovits,
1992) discussed the general use of the poste-
rior for BN structures to compute the poste-
rior of arbitrary features. In (Madigan et al.,
1996) proposed an MCMC scheme over the
space of DAGs and orderings of the variables
to approximate Bayesian inference. In (Heck-
ermann et al., 1997) considered the applica-
tion of the full Bayesian approach to causal
BNs. Another MCMC scheme, the ordering-
based MCMC method utilizing the ordering of
the variables were reported in (Friedman and
Koller, 2000). They developed and used a
closed form for the order conditional posteri-
ors of Markov blanket membership, beside the
earlier closed form of the parental sets.

3 BN features

The prevailing interpretation of BN feature
learning assumes that the feature set is sig-
nificantly simpler than the complete domain
model providing an overall characterization as
marginals and that the number of features and
their values is tractable (e.g linear or quadratic
in the number of variables). Another interpre-
tation is to identify high-scoring arbitrary sub-
graphs or parental sets, Markov blanket sub-
sets and estimate their posteriors. A set of sim-
ple features means a fragmentary representation
for the distribution over the complete domain
model from multiple, though simplified aspects,
whereas using a given complex feature means a
focused representation from a single, but com-
plex point of view. A feature F is complex if



the number of its values is exponential in the
number of domain variables. First we cite a
central concept and a theorem about relevance
for variables V = {X1, . . . ,Xn} (Pearl, 1988).

Definition 2. A set of variables MB(Xi)
is called the Markov Blanket of Xi w.r.t.
the distribution P (V ), if (Xi ⊥⊥ V \
MB(Xi)|MB(Xi)). A minimal Markov blanket
is called a Markov boundary.

Theorem 1. If a distribution P (V ) factorizes

w.r.t DAG G, then

∀ i = 1, . . . , n : (Xi ⊥⊥ V \ bd(Xi)|bd(Xi, G))P ,

where bd(Xi, G) denotes the set of parents, chil-

dren and the children’s other parents for Xi.

So the set bd(Xi, G) is a Markov blanket of
Xi. So we will also refer to bd(Xi, G) as a
Markov blanket of Xi in G using the notation
MB(Xi, G) implicitly assuming that P factor-
izes w.r.t. G.

The induced, symmetric pairwise rela-
tion is the Markov Blanket Membership
MBM(Xi,Xj , G) w.r.t. G between Xi and Xj

(Friedman et al., 1999)

MBM(Xi,Xj , G) ↔ Xj ∈ bd(Xi, G) (2)

Finally, we define the Markov Blanket Graph.

Definition 3. A subgraph of G is called the
Markov Blanket Graph or Mechanism Bound-
ary Graph MBG(Xi, G) of a variable Xi if it
includes the nodes from MB(Xi, G) and the in-
coming edges into Xi and into its children.

It is easy to show, that the characteristic
property of the MBG feature is that it com-
pletely defines the distribution P (Y |V \ Y ) by
the local dependency models of Y and its chil-
dren in a BN model G, in case of point pa-
rameters (G,θ) and of parameter priors satisfy-
ing global parameter independence (Spiegelhal-
ter and Lauritzen, 1990) and parameter modu-
larity (Heckerman et al., 1995). This property
offers two interpretations for the MBG feature.
From a probabilistic point of view the MBG(G)
feature defines an equivalence relation over the
DAGs w.r.t. P (Y |V \ Y ), but clearly the MBG

feature is not a unique representative of a condi-
tionally equivalent class of BNs. From a causal
point of view, this feature uniquely represents
the minimal set of mechanisms including Y . In
short, under the conditions mentioned above,
this structural feature of the causal BN domain
model is necessary and sufficient to support the
manual exploration and automated construc-
tion of a conditional dependency model.

There is no closed formula for the posterior
p(MBG(Y,G)), which excludes the direct use
of the MBG space in optimization or in Monte
Carlo methods. However, there exist a formula
for the order conditional posterior with polyno-
mial time complexity if the size of the parental
sets is bounded by k

p(MBG(Y,G) = mbg|DN ) =

p(pa(Y,mbg)|DN )
∏

Y ≺Xi

Y ∈pa(Xi,mbg)

p(pa(Xi,mbg)|DN )

∏

Y ≺Xi

Y /∈pa(Xi,mbg)

∑

Y /∈pa(Xi)

p(pa(Xi)|DN ).

(3)

The cardinality of the MBG(Y ) space is still
super-exponential (even if the number of par-
ents is bounded by k). Consider an order-
ing of the variables such that Y is the first
and all the other variables are children of it,
then the parental sets can be selected indepen-
dently, so the number of alternatives is in the
order of (n − 1)n

2

(or (n − 1)(k−1)(n−1)). How-
ever, if Y is the last in the ordering, then the
number of alternatives is of the order 2n−1 or
(n − 1)(k)). In case of MBG(Y,G), variable
Xi can be (1) non-occurring in the MBG, (2)
a parent of Y (Xi ∈ pa(Y,G)), (3) a child of
Y (Xi ∈ ch(Y,G)) and (4) (pure) other par-
ent ((Xi /∈ pa(Y,G) ∧ (Xi ∈ pa(ch(Y )j)))).
These types correspond to the irrelevant (1) and
strongly relevant (2,3,4) categories (see, Def. 4).
The number of DAG models G(n) compatible
with a given MBG and ordering ≺ can be com-
puted as follows: the contribution of the vari-
ables Xi ≺ Y without any constraint and the
contribution of the variables Y ≺ Xi that are



not children of Y, which is still 2O((k)(n)log(n))

(note certain sparse graphs are compatible with
many orderings).

4 Features in conditional modeling

In the conditional Bayesian approach the rel-
evance of predictor variables (features in this
context) can be defined in an asymptotic,
algorithm-, model- and loss-free way as follows

Definition 4. A feature Xi is strongly rel-
evant iff there exists some xi, y and si =
x1, . . . , xi−1, xi+1, . . . , xn for which p(xi, si) > 0
such that p(y|xi, si) 6= p(y|si). A feature Xi is
weakly relevant iff it is not strongly relevant,
and there exists a subset of features S′

i of Si for
which there exists some xi, y and s′i for which
p(xi, s

′
i) > 0 such that p(y|xi, s

′
i) 6= p(y|s′i).

A feature is relevant if it is either weakly or
strongly relevant; otherwise it is irrelevant (Ko-
havi and John, 1997).

In the so-called filter approach to feature se-
lection we have to select a minimal subset X ′

which fully determines the conditional distri-
bution of the target (p(Y |X) = p(Y |X ′)). If
the conditional modeling is not applicable and
a domain model-based approach is necessary
then the Markov boundary property (feature)
seems to be an ideal candidate for identifying
relevance. The following theorem gives a suf-
ficient condition for uniqueness and minimality
(Tsamardinos and Aliferis, 2003).

Theorem 2. If the distribution P is stable

w.r.t. the DAG G, then the variables bd(Y,G)
form a unique and minimal Markov blanket of

Y , MB(Y ). Furthermore, Xi ∈ MB(Y ) iff Xi

is strongly relevant.

However, the MBG feature provides a more
detailed description about relevancies. As an
example, consider that a logistic regression (LR)
model without interaction terms and a Naive
BN model can be made conditionally equiva-
lent using a local and transparent parameter
transformation. If the distribution contains ad-
ditional dependencies, then the induced condi-
tional distribution has to be represented by a
LR model with interaction terms.

5 Estimating complex features

The basic task is the estimation of the expecta-
tion of a given random variable over the space
of DAGs with a specified confidence level in
Eq. 1. We assume complete data, discrete do-
main variables, multinomial local conditional
distributions and Dirichlet parameter priors. It
ensures efficiently computable closed formulas
for the (unnormalized) posteriors of DAGs. As
this posterior cannot be sampled directly and
the construction of an approximating distribu-
tion is frequently not feasible, the standard ap-
proach is to use MCMC methods such as the
Metropolis-Hastings over the DAG space (see
e.g. (Gamerman, 1997; Gelman et al., 1995)).

The DAG-based MCMC method for estimat-
ing a given expectation is generally applicable,
but for certain types of features such as Markov
blanket membership an improved method, the
so-called ordering-based MCMC method can be
applied, which utilizes closed-forms of the or-
der conditional feature posteriors computable
in O(nk+1) time, where k denotes the maximum
number of parents (Friedman and Koller, 2000).

In these approaches the problem is simplified
to the estimation of separate posteriors. How-
ever, the number of target features can be as
high as 104 − 106 even for a given type of pair-
wise features and moderate domain complex-
ity. This calls for a decision-theoretic report
of selection and estimation of the features, but
here we use a simplified approach targeting the
selection-estimation of the K most probable fea-
ture values. Because of the exponential num-
ber of feature values a search method has to
be applied either iteratively or in an integrated
fashion. The first approach requires the offline
storage of orderings and corresponding common
factors, so we investigated this latter option.
The integrated feature selection-estimation is
particularly relevant for the ordering-based MC
methods, because it does not generate implic-
itly “high-scoring” features and features that
are not part of the solution cause extra com-
putational costs in estimation.

The goal of search within the MC cycle at
step l is the generation of MBGs with high



order conditional posterior, potentially using
the already generated MBGs and the posteri-
ors p(MBG| ≺l,DN ). To facilitate the search
we define an order conditional MBG state space
based on the observation that the order condi-
tionally MAP MBG can be found in O(nk+1)
time with a negligible constant increase only.
An MBG state is represented by an n′ dimen-
sional vector s, where n′ is the number of vari-
ables not preceding the target variable Y in the
ordering ≺:

n′ =

n∑

i=1

1(Y � Xi) (4)

The range of the values are integers si =
0, . . . , ri representing either separate parental
sets or (in case of Xi where Y ≺l Xi) a special
set of parental sets not including the target vari-
able. The product of the order conditional pos-
teriors of the represented sets of parental sets
gives the order conditional posterior of the rep-
resented MBG state in Eq. 3. We ensure that
the conditional posteriors of the represented sets
of parental sets are monotone decreasing w.r.t.
their indices:

∀si < s′i : p(si|DN ,≺) ≥ p(s′i|DN ,≺) (5)

which can be constructed in
O(nk+1 log(maxi ri)) time, where k is the
maximum parental set size.

This MBG space allows the application of ef-
ficient search methods. We experimented with
a direct sampling, top-sampling and a deter-
ministic search. The direct sampling was used
as a baseline, because it does need the MBG
space. The top-sampling method is biased to-
wards sampling MBGs with high order condi-
tional posterior, by sampling only from the L
most probable sets of parental sets for each
Y - Xi. The uniform-cost search constructs
the MBG space, then performs a uniform-cost
search to a maximum number of MBGs or to
threshold p(MBGMAP,≺| ≺,DN )/ρS .

The pseudo code of searching and estimat-
ing MAP values for the MBG feature of a given
variable is shown in Alg. 1 (for simplicity the

estimation of simple classification features such
as edge and MBM relations, and the estimation
of the MB features of a given variable using the
estimated MAP MBG collection is not shown).

Algorithm 1 Search and estimation of classifi-
cation features using the MBG-ordering spaces

Require: p(≺),p(pa(Xi)| ≺),k,R,ρ,LS ,ρS ,LT ,M;
Ensure: K MAP feature value with estimates

Cache order-free parental posteriors Π =
{∀ i, |pa(Xi)| ≤ k : p(pa(Xi)|DN )}
Initialize MCMC, the MBG-tree T , MBM
and edge posterior matrices R, E ;
Insert a priori specified MBGs in T ;
for l = 0 to M do {the sampling cycle}

Draw next ordering;
Cache order specific common factors Ψ for
|pa(Xi)| ≤ k:
p(pa(Xi)| ≺l) for all Xi

p(Y /∈ pa(Xi)| ≺l) for Y ≺l Xi;
Compute p(≺l |DN );
Construct order conditional MBG-
Subspace(Π,Ψ, R, ρ)=Φ
SS=Search(Φ,LS , ρS);
for all mbg ∈ SS do

if mbg /∈ T then

Insert(T ,mbg)
if LT < |T | then

T =PruneToHPD(T ,LT );
for all mbg ∈ T do

p̂(mbg|DN )+ = p(mbg| ≺l,DN );
Report K MAP MBGs from T ;
Report K’ MAP MBs using the MBGs in T ;

Parameters R, ρ allow the restriction of the
MBG subspace separately for each dimension to
a less than R values by requiring that the corre-
sponding posteriors are above the exp(−ρ) ratio
of the respective MAP value. The uniform-cost
search starts from the order conditional MAP
MBG, and stops after the expansion of LS num-
ber of states or if the most probable MBG in its
search list drops below exp(ρS) ratio of the or-
der conditional posterior of the starting MBG.

Generally, the expansion phase has high com-
putational costs, but for large LT the update of
the MBGs in T is high as well. In order to
maintain tractability the usage of more refined



methods such as partial updating are required.
Within the explored OC domain however the
full, exact update has acceptable costs if the
size of the estimated MBG set is LT ∈ [105, 106].
This LT ensures that the newly inserted MBGs
are not pruned before their estimates can re-
liable indicate their high-scoring potential and
still allows an exact update. In larger domains
this balance can be different and the analysis of
this question in general is for future research.

The analysis of the MBG space showed that
the conditional posteriors of the ranked parental
sets after rank 10 are negligible, so subsequently
we will report results using values R = 20, ρ = 4
and LS = 104, ρS = 10−6. Note that the ex-
pansion with the LS conditionally most proba-
ble MBGs in each step does not guarantee that
the LS most probable MBGs are estimated, not
even the MAP MBG.

6 Results

We used a data set consisting of 35 discrete vari-
ables and 782 complete cases related to the pre-
operative diagnosis of ovarian cancer (see (Antal
et al., 2004)).

First we report the estimation-selection of
MB features for the central variable Pathology.
We applied the heuristic deterministic search-
estimation method in the inner cycle of the
MCMC method. The length of the burn-in
and MCMC simulation was 10000, the prob-
ability of the pairwise replace operator was
0.8, the parameter prior was the BDeu and
the structure prior was uniform prior for the
parental set sizes (Friedman and Koller, 2000).
The maximum number of parents was 4 (the
posteriors of larger sets are insignificant).
For preselected high-scoring MB values after
10000 burn-in the single-chain convergence
test from Geweke comparing averages has
z-score approximately 0.5, the R value of
the multiple-chain method of Gelman-Rubin
with 5 chains drops below 1.05 (Gamerman,
1997; Gelman et al., 1995). The variances
of the MCMC estimates of these preselected
test feature values drop below 10−2. We also
applied the deterministic search-estimation

method for a single ordering, because a total
ordering of the variables was available from an
expert. Fig. 1 reports the estimated posteriors
of the MAP MB sets for Pathology with their
MBM-based approximated values assuming
the independence of the MBM values and
Table 1 shows the members of the MB sets.
Note that the two monotone decreasing curves
correspond to independent rankings, one for
the expert’s total ordering and one for the
unconstrained case. It also reports the MB
set spanned by a prior BN specified by the
expert (E), the MB set spanned by the MAP
BN (BN) and the set spanned by the MAP
MBG (MBG) (see Eq. 6). Furthermore we
generated another reference set (LR) from a
conditional standpoint using the logistic regres-
sion model class and the SPSS 14.0 software
with the default setting for forward model
construction (Hosmer and Lemeshow, 2000).
MBp reports the result of the deterministic
select-estimate method using the total ordering
of the expert and the MB1,MB2,MB3 report
the result of the unconstrained ordering-based
MCMC with deterministic select-estimate
method. Variables FamHist,CycleDay,
HormTherapy, Hysterectomy, Parity
PMenoAge are never selected and the variables
V olume, Ascites, Papillation, PapF low,
CA125, WallRegularity are always selected,
so they are not reported.

The MBM-based approximation performs rel-
atively well, particularly w.r.t. ranking in the
case of the expert’s ordering ≺0, but it performs
poorly in the unconstrained case both w.r.t. es-
timations and ranks (see the difference of Mp set
to M1 w.r.t. variables Age, Meno, PI, TAMX,
Solid).

We compared the MBG(Y,GMAP ) and
MB(Y,GMAP ) feature values defined by the
MAP BN structure GMAP against the MAP
MBG feature value MBG(Y )MAP and the
MAP MB feature value MB(Y )MAP including
the MB feature value defined by the MAP MBG
feature value MB(Y,MBG(Y )MAP )



Table 1: Markov blanket sets of Pathology
among the thirty-five variables.

E LR BN MG MBp MB1 MB2 MB3

Age 1 0 1 0 1 0 0 0
Meno 1 0 1 1 0 1 1 1
PMenoY 0 1 0 0 0 0 0 0
PillUse 1 0 0 0 0 0 0 0
Bilateral 1 0 1 1 1 1 1 1
Pain 0 1 0 0 0 0 0 0
Fluid 1 0 1 0 0 0 0 0
Septum 1 0 1 1 1 1 1 1
ISeptum 0 0 1 1 1 1 1 1
PSmooth 1 0 0 0 0 0 0 0
Loc. 1 1 0 0 0 1 0 1
Shadows 1 0 1 1 1 1 1 1
Echog. 1 0 1 1 1 1 1 1
ColScore 1 0 1 1 1 1 1 1
PI 1 1 0 0 1 0 0 0
RI 1 0 1 1 1 1 1 1
PSV 1 0 1 1 1 1 1 1
TAMX 1 1 0 1 1 0 0 0
Solid 1 1 1 1 1 0 1 0
FHBrCa 0 0 0 0 0 0 0 1
FHOvCa 0 0 0 1 0 0 0 0

GMAP = arg max
G

p(G|DN ) (6)

MBG(Y )MAP = arg max
mbg(Y )

p(mbg(Y )|DN )

MB(Y )MAP = arg max
mb(Y )

p(mb(Y )|DN )

We performed the comparison using the best
BN structure found in the MCMC simulation.
The MAP MBG feature value MBG(Y )MAP

differed significantly from the MAP domain
model, because of an additional Age and Fluid
variables in the domain model. The MAP
MB feature value MB(Y )MAP similarly differs
from the MB sets defined by the MAP domain
models for example w.r.t. the vascularization
variables such as PI. Interestingly, the MAP
MB feature value also differs from the MB fea-
ture value defined by the MAP MBG feature
value MB(Y,MBG(Y )MAP ), for example w.r.t.
TAMX, Solid variables. In conclusion these
results together with the comparison against
the simple feature-based analysis such as MBM-
based analysis reported in Fig. 1, show the rel-
evance of the complex feature-based analysis.

We also constructed an offline probabilistic
knowledge base containing 104 MAP MBGs. It
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Figure 1: The ranked posteriors and their
MBM-based approximations of the 20 most
probable MB(Pathology) sets for the sin-
gle/unconstrained orderings.

is connected with the annotated BN knowledge
base defined in Def. 1, which allows an offline
exploration of the domain from the point of view
of conditional modeling. The histogram of the
number of parameters and inputs for the MBGs
using only the fourteen most relevant variables
are reported in Fig. 2.
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Figure 2: The histogram of the number of pa-
rameters and inputs of the MAP MBGs.

7 Conclusion

In the paper we presented a Bayesian approach
for complex BN features, for the so-called
Markov Blanket set and the Markov Blanket



Graph features. We developed and applied a
select-estimate algorithm using ordering-based
MCMC, which uses the efficiently computable
order conditional posterior of the MBG feature
and the proposed MBG space. The compari-
son of the most probable MB and MBG fea-
ture values with simple feature based approx-
imations and with complete domain modeling
showed the separate significance of the analy-
sis based on these complex BN features in the
investigated medical domain. The proposed al-
gorithm and the offline knowledge base in the
introduced probabilistic annotated BN knowl-
edge base context allows new types of analysis
and fusion of expertise, data and literature.
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