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Abstract

We study dynamic reliability of systems where system components age with a constant
failure rate and there is a budget constraint. We develop a methodology to effectively
prepare a predictive maintenance plan of such a system using dynamic Bayesian networks
(DBNs). DBN representation allows monitoring the system reliability in a given planning
horizon and predicting the system state under different replacement plans. When the
system reliability falls below a predetermined threshold value, component replacements
are planned such that maintenance budget is not exceeded. The decision of which com-
ponent(s) to replace is an important issue since it affects future system reliability and
consequently the next time to do replacement. Component marginal probabilities given
the system state are used to determine which component(s) to replace. Two approaches
are proposed in calculating the marginal probabilities of components. The first is a myopic
approach where the only evidence belongs to the current planning time. The second is a
look-ahead approach where all the subsequent time intervals are included as evidence.

1 Introduction

Maintenance can be performed either after the
breakdown takes place or before the problem
arises. The former is reactive whereas the latter
is proactive. Reactive maintenance is appropri-
ate for systems where the failure does not re-
sult in serious consequences. Decision-theoretic
troubleshooting belongs to this category. Proac-
tive or planned maintenance can be further clas-
sified as preventive and predictive (Kothamasu
et al., 2006). These differ in the scheduling
behaviour. Preventive maintenance performs
maintenance on a fixed schedule whereas in pre-
dictive maintenance, the schedule is adaptively
determined. Reliability-centered maintenance
is predictive maintenance where reliability esti-
mates of the system are used to develop a cost-
effective schedule.

Decision-theoretic troubleshooting, which
balances costs and likelihoods for the best ac-
tion, is first studied by (Kalagnanam and Hen-
rion, 1988). Heckerman et al.(1995) extend it to

the context of Bayesian networks (Pearl, 1988).
A similar troubleshooting problem, where mul-
tiple but independent faults are allowed, is ad-
dressed in (Srinivas, 1995). More recent studies
are mostly due to researchers from the SACSO
(Systems for Automated Customer Support Op-
erations) project. By assuming a single fault,
independent actions and constant costs, and
making use of a simple model representation
technique (Skaanning et al., 2000), they show
that the simple efficiency ordering yields an op-
timal sequence of actions (Jensen et al., 2001).
Langseth and Jensen (2001) present two heuris-
tics for handling dependent actions and condi-
tional costs. Langseth and Jensen (2003) pro-
vide a formalism that combines the methodolo-
gies used in reliability analysis and decision-
theoretic troubleshooting. Koca and Bilgic
(2004) present a generic decision-theoretic trou-
bleshooter to handle troubleshooting tasks in-
corporating questions, dependent actions, con-
ditional costs, and any combinations of these.
Decision-theoretic troubleshooting has always



been studied as a static problem and with an
objective to reach a minimum-cost action plan.

On the reliability analysis side, fault diagnosis
finds its roots in (Vesely, 1970). Kothamasu et
al.(2006) review the philosophies and techniques
that focus on improving reliability and reducing
unscheduled downtime by monitoring and pre-
dicting machine health. Torres-Toledano and
Sucar (1998) develop a general methodology for
reliability modelling of complex systems based
on Bayesian networks. Welch and Thelen (2000)
apply DBNs to an example from the dynamic
reliability community. Weber and Jouffe (2003,
2006) present a methodology that helps de-
veloping DBNs and Dynamic Object Oriented
Bayesian Networks (DOOBNSs) from available
data to formalize reliability of complex dynamic
models. Muller et al. (2004) propose a method-
ology to design a prognosis process taking into
account the behavior of environmental events.
They develop a probabilistic model based on the
translation of a preliminary process model into
DBN. Bouillaut et al. (2004) use causal prob-
abilistic networks for the improvement of the
maintenance of railway infrastructure. Weber
et al. (2004) use DBN to model dependabil-
ity of systems taking into account degradations
and failure modes governed by exogenous con-
straints.

All of the studies related to reliability analysis
using DBNs are descriptive. Dynamic problem
is represented with DBNs and the outcome of
the analysis is how system reliability behaves
in time. The impact of maintenance of an el-
ement at a specific time on this behaviour is
also reported in some of them. However opti-
mization of maintenance activities (i.e., finding
a minimum cost plan) is not considered which
is the main motivation of our paper. Main-
tenance is expensive and critical in most sys-
tems. Unexpected breakdowns are not tolera-
ble. That is why planning maintenance activ-
ities intelligently is an important issue since it
saves money, service time and also lost produc-
tion time. In this study, we are trying to opti-
mize maintenance activities of a system where
components age with a constant failure rate
and there is a budget constraint. We develop

a methodology to effectively prepare a predic-
tive maintenance plan using DBNs. One can
argue that the failure of the system and its as-
sociated costs can be modelled using influence
diagrams or limited memory influence diagrams
(LIMIDs). But we propose a way of represent-
ing the problem as an optimization problem first
and then use only DBNs for fast inference under
some simplifying assumptions.

The rest of the paper is organized as follows:
In Section 2, problem is defined and in Sec-
tion 3, dynamic Bayesian network based models
are proposed as a solution to the problem de-
fined. Two approaches are presented in schedul-
ing maintenance plans. Numerical results are
given in Section 4. Finally Section 5 gives con-
clusions and points future work.

2 Problem Definition

The problem we take up can be described as fol-
lows: There is a system which consists of sev-
eral components. We observe the system in dis-
crete epochs and assume that system reliability
is observable. System reliability is a function
of the interactions of the system components
which are not directly observable. We presume
that the reliability of the system should be kept
over a predetermined threshold value in all pe-
riods. This is reasonable in mission critical sys-
tems where the failure of the system is a very
low probability event due to built in redundancy
and other structural properties. Therefore, we
do not explicitly model the case where the sys-
tem actually fails. Components age with a con-
stant rate and it is possible to replace compo-
nents in any period. Once replaced, the com-
ponents will work at their full capacity. There
is a given maintenance budget for each period,
which the total replacement cost in that period
cannot exceed. Our aim is to minimize total
maintenance cost in a planning horizon such
that reliability of the system never falls below
the threshold and maintenance budget is not
exceeded. Furthermore we make the following
assumptions:

(i) Lifetime of any component in the system
is exponentially distributed. That is failure rate



of any component is constant for all periods.

(ii) All other conditional probability distrib-
utions used in the representation are discrete.

(iii) All components and the system have two
states (“1” is the working state, “0” is the fail-
ure state).

(iv) Components can be replaced at the be-
ginning of each period. Once they are replaced,
their working state probability (i.e., their relia-
bility) become 1 in that period.

The problem can be expressed as a mathe-
matical optimization problem.

The model parameters are:

i : index of components

t : index of time periods

A; : failure rate of component 4

R;1 @ initial reliability of component ¢

¢t - cost of replacing component ¢ in period ¢

B, : available maintenance budget in period ¢

L : threshold value of system reliability

f(-): function mapping component reliabilities
R;; to system reliability Ry

The decision variables are:

if component 7 is replaced in period ¢

1
Xir = { 0 otherwise

R;; : reliability of component i in period ¢
Ry : reliability of system in period t

The Predictive Maintenance (PM) model can
be formulated mathematically as follows:

T n
Z(PM) = minz Zcith’t (1)

t=11i=1
subject to
n
> ciXir < By, Vt (2)
i=1
Ryt > L, Vt 3

(3)
Ry=(1-Xu)e MRy 1+ Xip, Vit (4)
Ro; = f(Rus, Rot, ...Rut), Vi (5)

Xy € {0,1}, Vi,t (6)

(7)

0< Ry <1, Vit

The objective function (1) aims to minimize
the total component replacement cost. Con-
straint set (2) represents the budget constraints.
Constraint set (3) guarantees that system relia-
bility in each period should be greater than the
given threshold value. Constraints in (4) ensure
that if components are replaced their reliability
becomes 1, otherwise it will decrease with cor-
responding failure rates. System reliability in
each period is calculated by constraint (5). Fi-
nally constraints (6) and (7) define the bounds
on decision variables. In general, solving this
problem may be quite difficult. The difficulty
lies in constraint sets (4) and (5). Constraint
set (4) defines a non-linear relation of the deci-
sion variables whereas constraint set (5) is much
more generic. In fact, system reliability at time
t can be a function of whole history of the sys-
tem. It is this set of constraints and the implied
relationships of constraint set (4) that we rep-
resent using a dynamic Bayesian network.

Further assumptions are imposed in order to
simplify the above problem:

(v) Replacement costs of all components in
any period are the same and they are all nor-
malized at one.

(vi) Available budget in any period is normal-
ized at one.

These assumptions indicate that in any pe-
riod, only one replacement can be planned and
the objective function we are trying to minimize
becomes the total number of replacements in a
planning horizon.

3 Proposed Solution

The mathematical problem may be solved ana-
lytically or numerically once the constraint set
(5) is made explicit. However, as the causal rela-
tions (represented with constraint set (5) in the
problem formulation) between the components
and the system becomes more complex, it gets
difficult to represent and solve it mathemati-
cally. We represent the constraint set (5) using
dynamic Bayesian Networks (DBNs) (Murphy,
2002). A DBN is an extended Bayesian net-
work (BN) which includes a temporal dimen-
sion. BNs are a widely used formalism for repre-



senting uncertain knowledge. The main features
of the formalism are a graphical encoding of a
set of conditional independence relations and a
compact way of representing a joint probability
distribution between random variables (Pearl,
1988). BNs have the power to represent causal
relations between components and the system
using conditional probability distributions. It
is possible to analyse the process over a large
planning horizon with DBNs.

Figure 1: DBN representation of a system with
2 components

Figure 1 illustrates a DBN representation of a
system with 2 components, A and B. Solid arcs
represent the causal relations between the com-
ponents and the system node whereas dashed
arcs represent temporal relation of the com-
ponents between two consecutive time peri-
ods. Note that this representation is Markov-
ian whereas DBNs can represent more general
transition structures. Temporal relations are
the transition probabilities of components due
to aging. Since the lifetime of any compo-
nent in the system is exponentially distributed,
the transition probabilities are constant because
of the memoryless property of the exponential
distribution given the time intervals are equal.
Transition probability table for a component
with two states (“1” is the working state, “0” is
the failure state) is given in Table 1.

Table 1: Transition probability for component i

Comp(t)
Comp(t+ 1) 1 0
1 PRRZAY
l-e~ A0 |1

DBN representation allows monitoring the
system reliability in a given planning horizon
and predicting the system state under differ-
ent replacement schedules. When the system
reliability falls below a predetermined thresh-
old value, a component replacement is planned.
The decision of which component to replace is
an important issue since it affects future system
reliability and consequently the next time to do
a replacement. Like in decision-theoretic trou-
bleshooting (Heckerman et al., 1995), marginal
probabilities of components given the system
state are used as efficiency measures of com-
ponents in each period when a replacement is
planned. Let S the denote system state in pe-
riod k£ and Cj; denote the state of component
1 in period k. The following algorithm summa-
rizes our DBN approach:

(i) Initialize t =1

(ii) Infer system reliability P(Sy =1) t <k <T
(iii) Check if P(S), =1) < L

(iv) If P(Sx =1) > L Vk, then stop.
(

v) Else prepare a replacement plan for period k

(a) Calculate Py, = P(Cy = 0|Sk =0) Vi
(b) ¢* = argmax{ Py}
(c) Update reliability of i* in k to 1.
(d) Updatet =k +1
(vi) If t > T, then stop.
(vii) Else continue with step (ii)

Note that P(S; = 1) = Ry; and P(Cjy = 1) =
R;;. This is a myopic approach, since the only
evidence in calculating marginal probabilities in
(v.a) belongs to the system state at the current
planning time. An alternative approach is to
take into account future information which can
be transmitted by the transition probabilities
of components. This is done by entering evi-
dence to the system node from k + 1 to T as
Sk+1.r = 0. We call this approach the look-
ahead approach. The algorithm is the same as
above except for step (v.a) which is replaced as
follows in look-ahead approach:

(v.a) Calculate Py, = P(Cy = 0|Sk41.7 = 0)
Vi where Siy1.7 denotes Si41, ..., 57.



4 Numerical Results

The DBN algorithm is coded in Matlab and uses
the Bayes Net Toolbox (BNT) (Murphy, 2001)
to represent the causal and temporal relations,
and to infer the reliability of the system. Two
approaches, myopic and look-ahead, are com-
pared on a small example with two components
given in Figure 1. The planning horizon is taken
as 100 periods and the threshold value is given
as 0.50.

First scenario is created by taking mean time
to failure (MTTF) (1/);) of each component
i equal which is set at 40 periods. The same
replacement plan, given in Figure 2, is gener-
ated by both approaches. This is because com-
ponents have equal MTTFs and hence equal
transition probabilities. System reliability of
scenario 1 is illustrated in Figure 2 where the
peak points are the periods where a component
is replaced. On each peak point, the compo-
nent which is planned for replacement is indi-
cated in the figure. 4 replacements are planned
in both approaches. When a replacement oc-
curs, system reliability jumps to a higher reli-
ability value, and then gradually decreases as
time evolves until the next replacement.
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Figure 2: Scenario 1- system reliability and re-
placement plan

Second scenario is created by differentiating
MTTFs of components. We decrease MTTF
of component B to 10 periods. Replacement

plans in Figure 3 and Figure 4 are generated by
the myopic and look-ahead approaches, respec-
tively. Replacement plans of the two approaches
differ since components have different transition
probabilities. Both approaches begin their re-
placement plan in period 12, by selecting the
same component to replace. In the next replace-
ment period (k = 21), different components are
selected. Myopic approach selects component
B, because this replacement will make the sys-
tem reliability higher in the short-term. Look-
ahead approach selects component A, because
this replacement will make the system reliabil-
ity higher in the long-run. This is further illus-
trated in Table 2. Although system reliability
in the myopic approach is higher at ¢t = 21, it
decreases faster than the system reliability un-
der the look-ahead approach. Hence, the look-
ahead approach plans its next replacement at
t = 29 while the myopic approach plans its next
replacement at ¢ = 28. By selecting A instead
of B, the look-ahead approach defers its next
replacement time. So as a total, in scenario 2,
the look-ahead approach generates 10 replace-
ments in 100 periods while the myopic approach
generates 11.

Table 2: Scenario 2- system reliability where
21 <t <28

Period 21 22 23 24
Myopic 7712 | L7169 | .6673 | .6220
Look-ahead | .7036 | .6718 | .6421 | .6144
Period 25 26 27 28
Myopic 5805 | .5425 | .5077 | 4758
Look-ahead | .5884 | .5642 | .5414 | .5200

System reliability of scenario 2 is illustrated
in Figures 3 and 4 for myopic and look-ahead
approaches, respectively. In Figure 3, there are
11 peak points which means 11 replacements are
planned. In Figure 4, there are 10 peak points
which means 10 replacements are planned.

A third scenario is also carried out by further
decreasing MTTF of component B to 5 peri-
ods. The discrepancy between plans generated
by the two approaches becomes more apparent.
Myopic approach plans a total of 19 replace-
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Figure 3: Scenario 2- system reliability and re-
placement plan with the myopic approach

ments while look-ahead approach plans a total
of 16 replacements.

When the threshold value increases, an inter-
esting question arises: Does it still worth to ac-
count for future information in choosing which
component to replace? Table 3 shows the num-
ber of replacements found by the myopic and
the look-ahead approaches at various threshold
(L) values for scenario 2. When L = 0.80, my-
opic approach finds fewer replacements than the
look-ahead approach. This is because as thresh-
old increases, more frequent replacements will
be planned, hence focusing on short-term relia-
bility instead of the future reliability may result
in less number of replacements.

Table 3: Number of replacements for the myopic
and look-ahead approaches at various threshold

values for T' = 100
’ Threshold | Myopic | Look-ahead

0.50 11 10
0.60 15 15
0.70 23 22
0.80 33 35
0.90 67 67
0.95 100 100

In order to understand how good our method-
ology is, we enumerate all possible solutions of
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Figure 4: Scenario 2- system reliability and re-
placement plan with the look-ahead approach

k replacements in a reasonable time horizon.
Here, k refers to the upper bound of minimum
replacements given by our DBN algorithm. The
total number of solutions in a horizon of T pe-
riods with k replacements is given as:

T
(k )2’f (8)

The first term is the total number of all possible
size-k subsets of a size-T set. This corresponds
to the total number of all possible time alterna-
tives of k replacements in horizon T'. The sec-
ond term is the total number of all possible re-
placements for two components. Since this solu-
tion space becomes intractable with increasing
T and k, a smaller part of the planning horizon
is taken for enumeration of both scenarios. We
started working with 7" = 50 periods where 2
repairs are proposed and T' = 30 periods where
3 repairs are proposed by our algorithm for sce-
nario 1 and scenario 2, respectively. The next
replacements correspond to t = 62 (Figure 2)
and ¢t = 40 (Figure 4). Hence, we increased
T = 61 and T = 39, the periods just before
the 3rd and 4th replacements given by our al-
gorithm for scenarios 1 and 2. The number of
feasible solutions found by enumeration are re-
ported in Table 4.

When we decrease k, number of replacements,
by 1 (k=1 and k = 2 for scenarios 1 and 2 re-



Table 4: Enumeration results

Scen- | Horizon Number of Feasible
ario Replacements | Solutions

1 50 2 324

1 50 1 0

1 61 2 2

1 61 1 0

2 30 3 1543

2 30 2 0

2 39 3 1

2 39 2 0

spectively); no feasible solution is found. So, it
is not possible to find a plan with less replace-
ments given by our algorithm for these cases.
Note also that, in scenario 1 when T' = 61 and
k = 2, enumeration finds two feasible solutions
which are in fact symmetric solutions found also
by our algorithm. Similarly in scenario 2 when
T = 39 and k = 3, enumeration finds one fea-
sible solution which is the one found by our al-
gorithm with the look-ahead approach. There
are 1543 feasible solutions for scenario 2 with
T = 30 and k£ = 3. Our lookahead approach
finds one of these solutions and the solution
it finds has the maximum system reliability at
T = 30 among all solutions. The same observa-
tion is also valid for scenario 1 with 1" = 50 and
k=2

5 Conclusion

We study dynamic reliability of a system where
components age with a constant failure rate and
there is a budget constraint. We develop a
methodology to effectively prepare a good pre-
dictive maintenance plan using DBNs to rep-
resent the causal and temporal relations, and
to infer reliability values. We try to minimize
number of component replacements in a plan-
ning horizon by first deciding the time and then
the component to replace. Two approaches are
presented to choose the component and they
are compared on three scenarios and various
threshold values. When failure rates of com-
ponents are equal, they find the same replace-
ment plan. However, as failure rates differ, the

two approaches may end up with different num-
ber of replacements. This is because the look-
ahead approach takes future system reliability
into consideration while the myopic approach
focuses on the current planning time.

In this kind of predictive maintenance prob-
lem, there are two important decisions: One is
the time of replacement. Replacement should
be done such that system reliability is always
guaranteed to be over a threshold. The other
decision is which component(s) to replace in
that period such that budget is not exceeded
and total replacement cost is minimized. Our
methodology is based on separating these deci-
sions under assumptions (v) and (vi). We give
the former decision by monitoring the first pe-
riod when system reliability just falls below a
given threshold. In other words, we defer a re-
placement decision as far as the threshold per-
mits. As for the latter decision, we propose two
approaches, myopic and look-ahead, to choose
the component to replace. By enumerating fea-
sible solutions in a reasonable horizon, we show
that our method is effective for our simplified
problem where the objective has become min-
imizing total replacements in a given planning
horizon.

In this paper, we outline a method that can
be used for finding a minimum-cost predictive
maintenance schedule such that the system reli-
ability is always above a certain threshold. The
approach is normative in nature as opposed to
descriptive which is the case in most of the lit-
erature that uses DBNs in reliability analysis.

The problem becomes more complex by
(i) differentiating component costs (in time),
(ii) differentiating available budget in time,
(iii) defining a maintenance fixed cost for each
period which may or may not differ in time. In
these cases, separating the two decisions may
not give a good solution. Studying such cases is
left for future work.

Acknowledgments

This work is supported by Bogazici University
Research Fund under grant BAP06A301D.
Demet C)zgiir—Unh’iakm is supported by
Bogazigi University Foundation to attend the



PGM ’06 workshop.

References

Laurent Bouillaut, Philippe Weber, A. Ben Salem
and Patrice Aknin. 2004. Use of causal probabilis-
tic networks for the improvement of the mainte-
nance of railway infrastructure. In IEEFE Interna-
tional Conference on Systems, Man and Cyber-
natics, pages 6243-6249.

David Heckerman, John S. Breese and Koos Rom-
melse. 1995. Decision-theoretic troubleshooting,
Communications of the ACM, 38(3): 49-57.

Finn V. Jensen, Uffe. Kjeerulff, Brian. Kristiansen,
Helge Langseth, Claus Skaanning, Jiri Vomlel and
Marta Vomlelovaa. 2001. The SACSO methodol-
ogy for troubleshooting complex systems. Artifi-
cial Intelligence for Engineering, Design, Analysis
and Manufacturing,15(4):321-333.

Jayant Kalagnanam and Max Henrion. 1988. A com-
parison of decision analysis and expert rules for
sequential analysis. In Jth Conference on Uncer-
tainty in Artificial Intelligence, pages 271-281.

Eylem Koca and Taner Bilgi¢. 2004. Troubleshoot-
ing with dependent actions, conditional costs, and
questions, Technical Report, FBE-IE-13/2004-18,
Bogazigi University.

Ranganath Kothamasu, Samuel H. Huang and
William H. VerDuin. 2006. System health mon-
itoring and prognostics - a review of current par-
adigms and practices. Int J Adv Manuf Technol,
28:1012-1024.

Helge Langseth and Finn V. Jensen. 2003. Decision
theoretic troubleshooting of coherent systems. Re-
liability Engineering and System Safety, 80(1):49-
62.

Helge Langseth and Finn V. Jensen. 2001. Heuris-
tics for two extensions of basic troubleshooting.
In 7th Scandinavian Conference on Artificial In-
telligence, Frontiers in Artificial Intelligence and
Applications, pages 80-89.

Alexandre Muller, Philippe Weber and A. Ben
Salem. 2004. Process model-based dynamic
Bayesian networks for prognostic. In IEEFE jth
International Conference on Intelligent Systems
Design and Applications.

Kevin Patrick Murphy. 2002. Dynamic Bayesian
networks: representation, inference and learn-
ing, Ph.D. Dissertation, University of California,
Berkeley.

Kevin Patrick Murphy. 2001. The Bayes Net Tool-
box for Matlab, Computing Science and Statistics:
Proceedings of the Interface.

Jude Pearl. 1988. Probabilistic reasoning in intel-
ligent systems: Networks of plausible inference,
Morgan Kaufmann Publishers.

Sampath Srinivas. 1995. A polynomial algorithm for
computing the optimal repair strategy in a system
with independent component failures. In 11th An-
nual Conference on Uncertainty in Artificial In-
telligence, pages 515-522.

Claus Skaanning, Finn V. Jensen and Uffe Kjaerulff.
2000. Printer troubleshooting using Bayesian net-
works. In 13th International Conference on In-
dustrial and Engineering Applications of Artificial
Intelligence and FExpert Systems, pages 367-379.

José Gerardo Torres-Toledano and Luis Enrique Su-
car. 1998. Bayesian networks for reliability analy-
sis of complex systems. In 6th Ibero-American
Conference on Al: Progress in Artificial Intelli-
gence, pages 195-206.

W. E. Vesely. 1970. A time-dependent methodology
for fault tree evaluation. Nuclear Engineering and
Design, 13:337-360.

Philippe Weber and Lionel Jouffe. 2006. Complex
system reliability modeling with Dynamic Object
Oriented Bayesian Networks (DOOBN). Reliabil-
ity Engineering and System Safety, 91: 149-162.

Philippe Weber, Paul Munteanu and Lionel Jouffe.
2004. Dynamic Bayesian networks modeling the
dependability of systems with degradations and
exogenous constraints. In 11th IFAC Symposium
on Informational Control Problems in Manufac-
turing (INCOM’04).

Philippe Weber and Lionel Jouffe. 2003. Reliability
modeling with dynamic Bayesian networks. In 5th
IFAC Symposium SAFEPROCESS’03, pages 57-
62.

Robert L. Welch and Travis V. Thelen. 2000. Dy-
namic reliability analysis in an operational con-
text: the Bayesian network perspective. In Dy-
namic Reliability: Future Directions, pages 277-
307.



