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Abstract

We introduce the family of multi-dimensional Bayesian network classifiers. These clas-
sifiers include one or more class variables and multiple feature variables, which need not
be modelled as being dependent on every class variable. Our family of multi-dimensional
classifiers includes as special cases the well-known naive Bayesian and tree-augmented
classifiers, yet offers better modelling capabilities than families of models with a single
class variable. We describe the learning problem for a subfamily of multi-dimensional
classifiers and show that the complexity of the solution algorithm is polynomial in the
number of variables involved. We further present some preliminary experimental results
to illustrate the benefits of the multi-dimensionality of our classifiers.

1 Introduction

Bayesian network classifiers have gained consid-
erable popularity for solving classification prob-
lems where an instance described by a number
of features has to be classified in one of sev-
eral distinct classes. The success of especially
naive Bayesian classifiers and the more expres-
sive tree-augmented network classifiers is read-
ily explained from their ease of construction and
their generally good classification performance.

Many application domains, however, include
classification problems where an instance has
to be assigned to a most likely combination of
classes. Since the number of class variables in a
Bayesian network classifier is restricted to one,
such problems cannot be modelled straightfor-
wardly. One approach is to construct a com-
pound class variable that models all possible
combinations of classes. This class variable then
easily ends up with an inhibitively large num-
ber of values. Also, the structure of the prob-
lem is not properly reflected in the resulting
model. Another approach is to develop multiple
classifiers, one for each original class. Multiple
classifiers, however, cannot capture interactions
among the various classes and may thus also not
properly reflect the problem. Moreover, if the

various classifiers indicate multiple classes, then
the implied combination may not be the most
likely explanation of the observed features.

In this paper we introduce the concept of
multi-dimensionality in Bayesian network clas-
sifiers to provide for accurately modelling prob-
lems where instances are assigned to multiple
classes. A multi-dimensional Bayesian network
classifier includes one or more class variables
and one or more feature variables. It mod-
els the relationships between the variables by
acyclic directed graphs over the class variables
and over the feature variables separately, and
further connects the two sets of variables by
a bi-partite directed graph; an example multi-
dimensional classifier is depicted in Figure 1.
As for one-dimensional Bayesian network clas-
sifiers, we distinguish between different types of
multi-dimensional classifier by imposing restric-
tions on their graphical structure. Fully tree-
augmented multi-dimensional classifiers, for ex-
ample, have directed trees over their class vari-
ables as well as over their feature variables.

For the family of fully tree-augmented multi-
dimensional classifiers, we study the learning
problem, that is, the problem of finding a clas-
sifier that best fits a set of available data. We
show that, given a fixed selection of feature vari-



Figure 1: An example multi-dimensional Bayes-
ian network classifier with class variables C; and
feature variables F;.

ables per class variable, the learning problem
can be decomposed into optimisation problems
for the set of class variables and for the set of
feature variables separately, which can both be
solved in polynomial time. We further argue
that, although our learning algorithm assumes
a fixed bi-partite graph between the class and
feature variables, it is easily combined with ex-
isting approaches to feature subset selection.

The numerical results that we obtained from
preliminary experiments with our learning al-
gorithm clearly illustrate the benefits of multi-
dimensionality of Bayesian network classifiers.
Especially on smaller data sets, the constructed
multi-dimensional classifiers provided higher ac-
curacy than their one-dimensional counterparts.
In combination with feature selection, more-
over, our algorithm resulted in sparser classifiers
with considerably fewer parameters and, hence,
with smaller variance.

The paper is organised as follows. In Sec-
tion 2, we review Bayesian network classifiers
in general. In Section 3, we define our fam-
ily of multi-dimensional classifiers. In Sec-
tion 4, we address the learning problem for
fully tree-augmented multi-dimensional classi-
fiers and present a polynomial-time algorithm
for solving it. In Section 5, we briefly address
feature selection for our multi-dimensional clas-
sifiers. We report some preliminary results from
an application in the biomedical domain in Sec-
tion 6. The paper is rounded off with our con-
cluding observations in Section 7.

2 Preliminaries

Before reviewing naive Bayesian and tree-
augmented network classifiers, we introduce our
notational conventions. We consider Bayesian
networks over a finite set V' = {Xy,..., Xy},
k > 1, of discrete random variables, where each
X, takes a value in a finite set Val(X;). For
a subset of variables Y C V we use Val(Y) =
X x;ev Val(X;) to denote the set of joint value
assignments to Y. A Bayesian network now is a
pair B = (G, ©), where G is an acyclic directed
graph whose vertices correspond to the random
variables V' and © is a set of parameter proba-
bilities; the set © includes a parameter 6,1,
for each value z; € Val(X;) and each value as-
signment Ilz; € Val(IIX;) to the set I1X; of
parents of X; in G. The network B now defines
a joint probability distribution Pg over V that
is factorised according to

k
Pp(Xy,...,Xi) = H9X¢|HX7;-
=1

Bayesian network classifiers are Bayesian net-
works of restricted topology that are tailored to
solving classification problems where instances
described by a number of features have to be
classified in one of several distinct predefined
classes (Friedman et al., 1997). The set of vari-
ables V of a Bayesian network classifier is parti-
tioned into a set Vp = {Fy,..., F,}, m > 1, of
feature variables and a singleton set Vo = {C'}
with the class variable. A naive Bayesian classi-
fier has a directed tree for its graph G, in which
the class variable C' is the unique root and each
feature variable F; has C for its only parent.
A tree-augmented network (TAN) classifier has
for its graph G a directed acyclic graph in which
the class variable C' is the unique root and each
feature variable F; has C and at most one other
feature variable for its parents; the subgraph
induced by the set Vr, moreover, is a directed
tree, termed the feature tree of the classifier.

The general problem of learning a Bayesian
network classifier from a given set of data sam-
ples D = {uy,...,uny}, N > 1, is to find from
among the family of network classifiers one that
best matches the available data. As a measure



of how well a model describes the data, often the
model’s log-likelihood given the data is used; for
a Bayesian network B and a data set D, the log-
likelihood of B given D is defined as

LL(B|D) = i_v:log (PB(ui)).

For the family of Bayesian network classifiers
in general, the learning problem is intractable.
For various subfamilies of classifiers, however,
the problem is solvable in polynomial time. Ex-
amples include the naive Bayesian and TAN
classifiers reviewed above and the subfamily of
Bayesian network classifiers of which the sub-
graph induced by the feature variables consti-
tutes a forest (Lucas, 2004). For other subfam-
ilies of Bayesian network classifiers, researchers
have presented heuristic algorithms which pro-
vide good, though non-optimal, solutions (Sa-
hami, 1996; Keogh and Pazzani, 1999). We
would like to note that these results all relate
to learning a classifier for a fixed set of relevant
feature variables. To the best of our knowledge,
the selection of an optimal set of feature vari-
ables has not been solved as yet.

Since its graph has a fixed topology, the
problem of learning a naive Bayesian classi-
fier amounts to just establishing maximum-
likelihood estimates from the available data for
its parameters. For a fixed graphical structure
in general, the maximum-likelihood estimators
of the parameter probabilities are given by

O;r1; = Pp (x| Mz;),

where Pp denotes the empirical distribution de-
fined by the frequencies of occurrence in the
data. The problem of learning a TAN classifier
amounts to first determining a graphical struc-
ture of maximum likelihood given the avail-
able data and then establishing estimates for
its parameters. For constructing a maximum-
likelihood feature tree, a polynomial-time algo-
rithm is available from Friedman et al. (1997).

To conclude, we would like to note that a
Bayesian network classifier computes for each
instance a conditional probability distribution
over the class variable. For classification pur-
poses, it further is associated with a function

C: Val(Vrp) — Val(C) which typically builds
upon the winner-takes-all rule. Using this rule,
a classifier B outputs for each value assign-
ment f € Val(Vr), a class value ¢ such that
Pg(c | f) > Pp(d | f) for all ¢ € Val(C),
breaking ties at random.

3 Multi-dimensional Classifiers

Bayesian network classifiers as reviewed above,
include a single class variable and as such are
one-dimensional. We now introduce the con-
cept of multi-dimensionality in Bayesian net-
work classifiers by defining a family of models
that may include multiple class variables.

A multi-dimensional Bayesian network clas-
sifier is a Bayesian network of which the graph
G = (V, A) has a restricted topology. The set V'
of random variables is partitioned into the sets
Ve = {C1,...,Cp}, n > 1, of class variables
and the set Vp = {F1,...,F,}, m > 1, of fea-
ture variables. The set of arcs A of the graph is
partitioned into the three sets A¢, Ar and Acr
having the following properties:

e for each F; € VF there is a C; € V¢ with
(C;, F;) € Acp and for each C; € V¢ there
is an F; € Vg with (C;, Fj) € Acr;

e the subgraph of G that is induced by Vg
equals Go = (Ve, Ac);

e the subgraph of G that is induced by Vg
equals Gr = (Vp, AFp).

The subgraph G¢ is a graphical structure over
the class variables and is called the classifier’s
class subgraph; the subgraph G is called its fea-
ture subgraph. The subgraph Gop = (V, Agr) is
a bi-partite graph that relates the various fea-
ture variables to the class variables; this sub-
graph is called the feature selection subgraph of
the classifier and its set of arcs is termed the
classifier’s feature selection arc set. For any
variable X in a multi-dimensional classifier, we
now use IIc X to denote the class parents of X
in G, that is, I[Ic X = IIX N V. We further use
Mg X to denote the feature parents of X in G.
Note that for any class variable C; we thus have
that IIrC; = @ and IIoC; = IIC;.



Within the family of multi-dimensional
Bayesian network classifiers various different
types of classifier are distinguished based upon
their graphical structures. An example is the
fully naive multi-dimensional classifier in which
both the class subgraph and the feature sub-
graph have empty arc sets. Note that this sub-
family of bi-partite classifiers includes the one-
dimensional naive Bayesian classifier as a spe-
cial case. Reversely, any such bi-partite clas-
sifier has an equivalent naive Bayesian classi-
fier with a single compound class variable. An-
other type of multi-dimensional classifier is the
subfamily of classifiers in which both the class
subgraph and the feature subgraph are directed
trees. In the remainder of the paper, we will
focus on this subfamily of fully tree-augmented
multi-dimensional classifiers.

A multi-dimensional classifier in essence is
used to find a joint value assignment of high-
est posterior probability to its set of class vari-
ables. Finding such an assignment given val-
ues for all feature variables involved, is equiv-
alent to solving the MPA problem. This prob-
lem is known to be NP-hard in general, yet can
be solved in polynomial time for networks of
bounded treewidth (Bodlaender et al., 2002).
In the presence of unobserved feature variables,
the problem of finding assignments of highest
posterior probability remains intractable even
for these restricted networks (Park, 2002). In
view of the unfavourable computational com-
plexity involved, we note that the practicabil-
ity of multi-dimensional classifiers is limited to
models with restricted class subgraphs.

4 Learning Fully Tree-augmented
Multi-dimensional Classifiers

In this section we define the problem of learning
a fully tree-augmented multi-dimensional clas-
sifier and show that this problem can be decom-
posed into two separate optimisation problems
which can both be solved in polynomial time.

4.1 The learning problem

Before defining the problem of learning a
fully tree-augmented multi-dimensional classi-
fier from data, we recall that the related prob-

lem for Bayesian network classifiers has been
studied for a fixed set of relevant feature vari-
ables. Following a similar approach, we now
formulate our learning problem to pertain to a
subfamily of classifiers for which the feature se-
lection subgraph is fixed. We will return to the
issue of feature subset selection in Section 5.

We begin by defining the subfamily of fully
tree-augmented classifiers with a fixed selec-
tion of feature variables per class variable.
These classifiers are considered admissible for
the learning problem. We let the set of random
variables V' be partitioned into Vo and Vg; we
further take a set of arcs A to be partitioned into
Ac, Arp and Acp as before. We now consider
a subset Aoy of Vo x Vi such that (V, Aqp)
is a feature selection subgraph. A fully tree-
augmented multi-dimensional classifier now is
admissible for A,y if we have for its set of arcs
Acr that Agr = Ap. The set of all admissible
classifiers for Ay is denoted as Ba -

The learning problem now is to find from
among the set of admissible classifiers one that
best fits the available data. As a measure of
how well a model describes the data, we use its
log-likelihood given the data. More formally,
the learning problem for fully tree-augmented
multi-dimensional classifiers with a fixed feature
selection arc set A then is to find a classifier
B in By, that maximises LL(B | D).

4.2 Solving the learning problem

In this section we show that the learning prob-
lem for fully tree-augmented multi-dimensional
classifiers can be solved in polynomial time.

We consider a fully tree-augmented classifier
B with the class variables V> and the feature
variables Vy that is admissible for the feature
selection arc set A,r. Building upon a result
from Friedman et al. (1997), we have that the
log-likelihood of B given a data set D can be
written as

LL(B|D) =

n
= —N-Y_Hp (G[TIC;) + N-Y_ Hp (Fj|TIF))
i=1 j=1



n n

= NZ IPD(Ci; HCZ) — NZ H]E»D(Ci)

=1 =1
m m
+ Ny Iy (FjiTIF) - N-y_ Hp (F)),
j=1 j=1

where Pp is the empirical distribution from D,
Hp(X) = =3, P(z) - log P(z) is the entropy
of a random variable X with distribution P,
Hp(X | V) = ~ 5y, P(e,y) - g Pz | y) de-
notes the conditional entropy of X given Y, and

P(z,y)

Ip(X;Y) = P clog ———2—

P(X;Y) % (z,y) - log P@)-P)

denotes the mutual information of X and Y.

The two entropy terms Hp_(C;) and Hp_(Fj)
in the above expression for LL(B | D) con-
cern marginal distributions established from the
available data. These terms therefore depend
only on the empirical distribution and not on
the graphical structure of the classifier. This
observation implies that an admissible classifier
that maximises the log-likelihood given the data
is a classifier that maximises the sum of its two
mutual-information terms.

We consider the mutual-information term
I (Fj;ILF;) in some more detail. We note that
the set of parents IIF}; of any feature variable F}
is partitioned into the set IIc F; of class parents
and the set IIzF; of feature parents. Using the
chain rule for mutual information (Cover and
Thomas, 1991), the term Ip (Fj;ILF;) can now

be written as
m

3 (IPD (Fj; o Fy) + I, (Fy;TpFy | HCF]-)>,
j=1
where Ip(X;Y | Z) is the conditional mutual
information of X and Y given Z with
Ip(X;Y | Z) =

_ xT z) 10 P(m’y‘z)
=) Pl@y,2) log g smpe s

w)y7z

Since the feature selection arc set Ay is fixed,
the set Il F}j of class parents of the feature vari-
able F} is the same for every admissible classi-
fier. We conclude that the mutual-information
term Ip (Fj;IlcFj) is the same for all models
in the set of admissible classifiers By,

To summarise the above considerations, we
have that a classifier that solves the learn-
ing problem for fully tree-augmented multi-
dimensional classifiers with the fixed feature se-
lection arc set Agp, is a classifier from By,
that maximises

n m
D Ip (CsTC:) + > I (FiIpF; | IoFj).
i=1 j=1

We now proceed by showing that the learning
problem can be decomposed into two separate
optimisation problems which can both be solved
in polynomial time. To this end, we first con-
sider the mutual-information term pertaining to
the class variables. We observe that, since class
variables only have class parents, this term de-
pends on the set of arcs A¢ of the class subgraph
only. With respect to the conditional mutual-
information term above, we observe that this
term depends on the feature selection arc set
Aop, which is fixed, and on Ap, but not on
the set Ac. These considerations imply that
the two terms are independent and can be max-
imised separately.

The mutual-information term pertaining to
the class variables can be maximised by using
the procedure from Chow and Liu (1968) for
constructing maximum-likelihood trees:

1. Construct a complete undirected graph
over the set of class variables V.

2. Assign a weight I (C;,Cj) to each edge
between C; and C}, i # j.

3. Build a maximum-weighted spanning tree,
for example using Kruskal’s algorithm
(1956).

4. Transform the undirected tree into a di-
rected one, by choosing an arbitrary vari-
able for its root and setting all arc direc-
tions from the root outward.

For the conditional mutual-information term
pertaining to the feature variables, we observe
that it is maximised by finding a maximum-
likelihood directed spanning tree over the fea-
ture variables. Such a tree is constructed by
the following procedure:



1. Construct a complete directed graph over
the set of variables V.

2. Assign a weight I, (Fj; Fj | IIcFj) to each
arc from F; to Fj, @ # j.

3. Build a maximum-weighted directed span-
ning tree, for example using the algorithm
of Chu and Liu (1968) or Edmonds’ algo-
rithm (1967).

We would like to note that for maximising
the conditional mutual-information term for the
feature variables, we have to construct a di-
rected spanning tree, while for maximising the
mutual-information term for the class variables
we compute an undirected one. The need for
this difference arises from the observation that
I (Ci; Cj) = Ip_(Cj; C;) for the class variables
while Ip (Fy; Fy | k) # 1p (Fj; Fy | o F)
for the feature variables.

Our algorithm for solving the learning prob-
lem for fully tree-augmented multi-dimensional
classifiers with a fixed feature selection sub-
graph is composed of the two procedures
described above. Solving the problem
thus amounts to computing an undirected
maximum-weighted spanning tree over the class
variables and a directed maximum-weighted
spanning tree over the feature variables. The
computation of the weights for the undirected
tree has a computational complexity of O(n2N),
while the construction of the tree itself requires
O(n?logn) time (Kruskal, 1956). The compu-
tation of the weights for the directed tree has a
complexity of O(m2N), while the construction
of the tree itself takes O(m?) time. Since a typ-
ical data set satisfies N > logn and N > m,
we have that the overall complexity of our algo-
rithm is polynomial in the number of variables
involved.

We conclude this section by observing that
the learning problem can also be formulated for
classifiers in which the set A¢c or the set Ap
is empty. Our algorithm is readily adapted to
these problems. With A¢ = @, only the condi-
tional mutual-information term for the feature
variables has to be maximised using the sec-
ond procedure above. With Arp = &, only the

mutual-information term for the class variables
has to be maximised using the first procedure.

5 Feature Subset Selection

In the previous section, we have addressed
the learning problem for fully tree-augmented
multi-dimensional classifiers with a fixed feature
selection subgraph. We now briefly discuss fea-
ture subset selection for our classifiers.

It is well known that, if more or less redun-
dant features are included in a data set, these
features may bias the classifier that is learned
from the data, which in turn may result in
a relatively poor classification accuracy. By
constructing the classifier over just a subset of
the feature variables, a less complex classifier
is yielded that tends to have a better perfor-
mance (Langley et al., 1992). Finding a mini-
mum subset of features such that the selective
classifier constructed over this subset has high-
est accuracy is known as the feature subset se-
lection problem. The feature selection problem
unfortunately is known to be NP-hard in gen-
eral (Tsamardinos and Aliferis, 2003).

For Bayesian network classifiers, different
heuristic approaches to feature subset selection
have been proposed. One of these is the wrap-
per approach (Kohavi and John, 1997), in which
the selection of feature variables is merged with
the learning algorithm. We now argue that
the same approach can be used for our multi-
dimensional Bayesian network classifiers. The
resulting procedure is as follows:

1. Choose the empty feature selection sub-
graph for the initial current subgraph.

2. From the current subgraph generate all
possible feature selection subgraphs that
are obtained by adding an arc from a class
variable to a feature variable.

3. For each generated feature selection sub-
graph, compute the accuracy of the best
classifier given this subgraph that is learned
using the algorithm from the previous sec-
tion.

4. Select the best generated subgraph, that is,

the feature selection subgraph of the clas-
sifier of highest accuracy.



5. If the accuracy of the classifier with the se-
lected subgraph is higher than that of the
classifier with the current subgraph, then
denote the selected subgraph as the current
subgraph and go to Step 2. If not, then
stop and propose the best classifier for the
current subgraph as the overall best.

Starting with an empty graphical structure
without any arcs, as in the above procedure, is
known as forward selection. Alternatively, back-
ward elimination can be used, which starts with
a full graphical structure from which single arcs
are removed in an iterative fashion.

6 Experimental Results

In this section we present some preliminary
numerical results from our experiments to il-
lustrate the benefits of multi-dimensionality of
Bayesian network classifiers.

Since the UCI repository of benchmark data
does not include any data sets with multiple
class variables, we decided to generate some ar-
tificial data sets to test our learning algorithm.
These data sets were generated from the oe-
sophageal cancer network (Van der Gaag et al.,
2002). This network for the staging of cancer of
the oesophagus includes 42 random variables of
which 25 are observable feature variables. Three
of the network’s variables in essence are class
variables, which in the current network are sum-
marised in a single output variable. We gener-
ated three data sets of 100, 200 and 400 sam-
ples, respectively, using logic sampling. From
the generated samples we removed the values of
all non-observable variables, except for those of
the three class variables.

From the three data sets we constructed
fully naive and fully tree-augmented multi-
dimensional classifiers. For this purpose, we
used the learning algorithm described in the
previous sections. For comparison purposes,
we further learned naive and tree-augmented
Bayesian network classifiers with a compound
class variable from the data. For all classifiers,
we used a forward-selection wrapper approach
with the learning algorithm. The accuracies of
the various classifiers were calculated using ten-

size of data set: 100

classifier type ‘ acc. ‘ # par.
Compound naive | 0.46 695
Multi-dim naive 0.54 136
Compound TAN 0.35 1869
Multi-dim FTAN | 0.41 740

size of data set: 200

classifier type ‘ acc. ‘ # par.
Compound naive | 0.420 661
Multi-dim naive | 0.555 179
Compound TAN | 0.305 3060
Multi-dim FTAN | 0.475 1092

size of data set: 400

classifier type ‘ acc. ‘ # par.
Compound naive | 0.550 732
Multi-dim naive | 0.605 276
Compound TAN | 0.505 4604
Multi-dim FTAN | 0.585 386

Table 1: Experimental results for different types
of classifier on data sets of different size gener-
ated from the oesophageal cancer network.

fold cross-validation. For the multi-dimensional
classifiers, we defined their accuracy as the pro-
portion of samples that were classified correctly
for all class variables involved.

The results from our experiments are sum-
marised in Table 1. The accuracy of the best
learned classifier is given in the second column;
the third column gives the number of param-
eter probabilities that were estimated for this
classifier. From the table we may conclude
that the multi-dimensional classifiers, without
exception, outperform their compound counter-
parts in terms of accuracy. Also the numbers of
estimated parameters are considerably smaller
for the multi-dimensional classifiers. On aver-
age, the learned multi-dimensional classifiers re-
quire one-third of the number of parameters of
their compound counterparts. The difference
is particularly striking for the naive classifiers
learned from the 100-sample data set, where
the multi-dimensional classifier needs only one-
fifth of the number of parameters of the com-
pound one. The smaller numbers of parameters



required constitute a considerable advantage of
the multi-dimensional classifiers over their com-
pound counterparts since these parameters typ-
ically need to be estimated from relatively small
data sets.

Although our preliminary experimental re-
sults look promising, we are aware that fur-
ther experimentation is necessary to substanti-
ate any claims about better performance of our
multi-dimensional Bayesian network classifiers.

7 Conclusions and Future Research

In this paper we introduced a new family of
Bayesian network classifiers that include one or
more class variables and multiple feature vari-
ables that need not be modelled as being de-
pendent upon every class variable. We formu-
lated the learning problem for this family and
presented a solution algorithm that is polyno-
mial in the number of variables involved. Our
preliminary experimental results served to illus-
trate the benefits of the multi-dimensionality of
our Bayesian network classifiers.

In the near future we intend to perform a
more extensive experimentation study of our
learning algorithm, using other data sets and
other approaches to feature subset selection.
We further wish to investigate other types of
model from our family of multi-dimensional
classifiers. Possible alternatives include classi-
fiers with k-dependence polytrees over their fea-
ture variables. Since the number of class vari-
ables usually is rather small, we also would like
to investigate the feasibility of classifiers with
slightly more complex class subgraphs.
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