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Abstract

In this paper we propose using dependency networks (Heckerman et al., 2000), that is a
probabilistic graphical model similar to Bayesian networks, to model classifiers. The main
difference between these two models is that in dependency networks cycles are allowed, and
this fact has the consequence that the automatic learning process is much easier and can
be parallelized. These properties make dependency networks a valuable model especially
when it is needed to deal with large databases. Because of these promising characteristics
we analyse the usefulness of dependency networks-based Bayesian classifiers. We present
an approach that uses independence tests based on chi square distribution, in order to
find relationships between predictive variables. We show that this algorithm is as good
as some state-of the-art Bayesian classifiers, like TAN and an implementation of the BAN
model, and has, in addition, other interesting proprierties like scalability or good quality

for visualizing relationships.

1 Introduction

Classification is basically the task of assigning
a label to an instance formed by a set of at-
tributes. The automatic approach for this task
is one of the main parts in machine learning.
Thus, the problem consists on learning classi-
fiers from datasets in which each instance has
been previously labelled. Many methods have
been used for solving this problem based on var-
ious representations such as decision trees, neu-
ral networks, rule based systems, support vec-
tor machines among others. However a prob-
abilistic approach can be used for this pur-
pose, Bayesian classifiers (Duda and Hart, 1973;
Friedman et al., 1997). Bayesian classifiers
make use of a probabilistic graphical model such
as Bayesian networks, that have been a very
popular way of representing probabilistic rela-
tionships between variables in a domain. Thus a
Bayesian classifier takes advantage of probabil-
ity theory, especially the Bayes rule, in conjunc-
tion with a graphical representation for qual-

itative knowledge. The classification task can
be expressed as determining the probability for
the class variable knowing the value for all other
variables:

P(C|X1 :Cﬂl,XQ = X9, " ,Xn :SUn)
After this computation, the class variable’s
value with the highest probability is returned
as result. Obviously computing this probability
distribution for the class variable can be very
difficult and inefficient if it is carried out di-
rectly, but based on the independencies stated
by the selected model this problem can be sim-
plified enormously.

In this paper we present a new algorithm
for the automatic learning of Bayesian classi-
fiers from data, but using dependency network
classifiers instead of Bayesian networks. De-
pendency networks (DNs) were proposed by
Heckerman et al. (2000) as a new probabilistic
graphical model similar to BNs, but with a key
difference: the graph that encodes the model



structure does not have to be acyclic. Asin BNs
each node in a DN has a conditional probability
distribution given its parents in the graph. Al-
though the presence of cycles can be observed
as the capability to represent richer models, the
price we have to pay is that usual BNs infer-
ence algorithms cannot be applied and Gibbs
sampling has to be used in order to recover the
joint probability distribution (see (Heckerman
et al., 2000)). An initial approach for introduc-
ing dependency networks in automatic classifi-
cation can be found in (Mateo, 2006).

Learning a DN from data is easier than learn-
ing a BN, especially because restrictions about
introducing cycles are not taken into account.
In (Heckerman et al., 2000) was presented a
method for learning DNs based on learning
the conditional probability distribution for each
node independently, by using any classification
or regression algorithm to discover the parents
of each node. Also a feature selection scheme
can be use in conjunction. It is clear that this
learning approach produces scalable algorithms,
because any learning algorithm with this ap-
proach can be easily parallelized just distribut-
ing groups of variables between all nodes avail-
able in a multi-computer system.

This paper is organized as follows. In section
2 dependency networks are briefly described. In
section 3 we review some notes about how classi-
fication task is done with probabilistic graphical
models. In section 4 we describe the algorithm
to learn dependency networks classifiers from
data by using independence tests. In section 5
we show the experimental results for this algo-
rithm and compare them with state-of-the-art
BN classifiers, like TAN algorithm and an im-
plementation of the BAN model. In section 6 we
present our conclusions and some open research
lines for the future.

2 Preliminaries

A Bayesian network (Jensen, 2001) B over the
domain X = {X1, Xo,---, Xy}, can be defined
as a tuple (G,P) where G is a directed acyclic
graph, and P is a joint probability distribution.
Due to the conditional independence constraints

encoded in the model, each variable is indepen-
dent of its non-descendants given its parents.
Thus, P can be factorized as follows:

n
P(X) = [[ P(Xi|Pay) (1)
i=1

A dependency network is similar to a BN,
but the former can have directed cycles in its
associated graph. In this model, based on its
conditional independence constraints, each vari-
able is independent of all other variables given
its parents. A DN D can be represented by
(G,P) where G is a directed graph not necessar-
ily acyclic, and as in a BN P = {Vi, P(X;|Pa;)}
is the set of local probability distributions, one
for each variable. In (Heckerman et al., 2000)
it is shown that inference over DNs, recovering
joint probability distribution of X from the lo-
cal probability distributions, is done by means
of Gibbs sampling instead of the traditional in-
ference algorithms used for BNs due to the po-
tential existence of cycles.

A dependency network is said consistent if
P(X) can be obtained from P via its factoriza-
tion from the graph (equation 1). By this defi-
nition, can be shown that exists an equivalence
between a consistent DN and a Markov network.
This fact suggests an approach for learning DNs
from Markov network learned from data. The
problem with this approach is that can be com-
putationally inefficient in many cases.

Due to this inconvenient, consistent DNs be-
came very restrictive, so in (Heckerman et al.,
2000) the authors defined general DNs in which
consistency about joint probability distribution
is not required. General DNs are interesting for
automatic learning due to the fact that each lo-
cal probability distribution can be learned inde-
pendently, although this local way of processing
can lead to inconsistencies in the joint probabil-
ity distribution. Furthermore, structural incon-
sistencies (X; € pa(X;) but not X; € pa(X;))
can be found in general DNs. Nonetheless, in
(Heckerman et al., 2000) the authors argued
that these inconsistencies can disappear, or at
least be reduced to the minimum when a rea-
sonably large dataset is used to learn from. In
this work we only consider general DNs.



An important concept in probabilistic graph-
ical models is Markov blanket. This concept is
defined for any variable as the set of variables
which made it independent from the rest of vari-
ables in the graph. In a BN the Markov blanket
is formed by the set of parents, children and par-
ent of the children for every variable. However,
in a DN, the Markov blanket for a variable is ex-
actly the parents set. That is the main reason
why DN are useful for visualizing relationships
among variables, because these relationships are
explicitly shown.

3 Probabilistic graphical models in
classification

As it has been said before, we can use Bayesian
models in order to perform a classification task.
Within this area, the more classical Bayesian
classifier is the one called naive (Duda and Hart,
1973; Langley et al., 1992). This model consid-
ers all predictive attributes independent given
the class variable. It has been shown that this
classifier is one of the most effective and com-
petitive in spite of its very restrictive model
since it does not allow dependencies between
predictive variables. However this model is used
in some applications and is employed as initial
point for other Bayesian classifiers. In the aug-
mented naive bayes family models, the learn-
ing algorithm begins with the structure pro-
posed by naive Bayesian classifier and then try
to find dependencies among variables using a
variety of strategies. One of this strategies can
be looking for relationships between predictive
variables represented by a simple structure like
a tree as is done in TAN (Tree Augmented Naive
Bayes) algorithm (Friedman et al., 1997). An-
other is to adapt a learning algorithm employed
in machine learning with general Bayesian net-
works. In this case the learning method is mod-
ified in order to take into account the relation-
ship between every variable and the class.
Apart from this approach to learn Bayesian
classifiers, it must be mentioned another one
based on the Markov blanket concept. These
methods focus their efforts in searching the set
of variables that will be the class variable’s

Markov blanket. Nonetheless, it has been shown
that methods based on extending Naive Bayes
classifier, in general, outperform the ones based
on the Markov blanket.

When the classifier model has been learned
is time to use inference in order to find what
class value has to be assigned for the values
of a given instance. To accomplish this task
the MAP (Mazimum at posterior) hypothesis
is used, which returns as result the value for
the class variable that maximize the probabil-
ity given the values of predictive variables. This
is represented by the following expression:

CMAP = arggmax plelxy, ..., zp)
cello
— argmax p(x1,...,znlc) - p(c)
CEQC p(x:l?"')xn)
= argmax p(c,x1,...,Ty)
ceQe

Thus, the classification problem is reduced to
compute joint probability for every value of the
class variable with the values for the predictive
variables given by the instance to by classified.
When we deal with a classifier based on a
Bayesian network we can use joint probability
factorization shown in equation 1 in order to
recover these probabilities. Initially inference
with dependency networks must be done by
means of Gibbs sampling, but due to the fact
that we focus on classification, and under the
assumption of complete data (i.e. no missing
data neither in the training set nor in the test
set), we can avoid Gibbs sampling. This result
comes from the fact that we can use modified
ordered Gibbs sampling as designed in (Hecker-
man et al., 2000). This way of doing inference
over dependency networks is based on decom-
posing the inference task into a set of inference
tasks on single variables. For example, if we
consider a simple classifier based on dependency
network with two predictive variables, which
show dependency between them, so with the fol-
lowing graphical structure: X; «— Xo9;C —
X1;C — Xo; its probability model will be:

P(C, X1, X3) = P(C)P(X1|C, X3)P(X>|C, X1).



With this method joint probability can be ob-
tained by computing each term separately. The
determination of the first term does not requires
Gibbs sampling. The second and third terms
should be determined by using Gibbs sampling
but in this case we know all values for their con-
ditioning variables, so they can be determined
directly too by looking at their conditional prob-
ability tables. If we assume that the class vari-
able will be determined before other variables
(as it is the case), by this procedure we can com-
pute any joint probability avoiding the Gibbs
sampling process.

4 Finding dependencies

In this section we present our algorithm to build
a classifier model from data based on depen-
dency networks. Our idea is to use indepen-
dence tests in order to find dependencies be-
tween predictive variables X; and X, but tak-
ing into account the class variable, and in this
way extend the Naive Bayes structure. It is
known that statistic

2. Nc- I(X3; X,|C = o)

follows a x? distribution with (| X;|—1)-(]X;|-1)
degrees of freedom under the null hypothesis of
independence, where Nc¢ is the number of input
instances in which C' = ¢ and I(X;; X;|C = ¢)
is the mutual information between variables X
and X; when the class variable C' is equal to
c. Using this expression, for any variable can
be found all other variables (in)dependent given
the class.

But it is not this set what we are looking
for, we need a set of variables which made that
variable independent from the other, that is, its
Markov blanket. So, we try to discover this set
by carrying out an iterative process, for every
predictive variable independently, in which in
each step is selected as a new parent the vari-
able not still chosen which shows more depen-
dency with the variable under study (X;). This
selection is done considering all the parents pre-
viously chosen. Thus the statistic used actually
is

2-Nc- I(XZ,XJ|C = C, Pai),

where Pa; is the current set of X;’s parents mi-
nus C'. We assess the goodness of every candi-
date parent by the difference between the per-
centile of the x? distribution (with a@ = 0.025)
and the statistic value. Here the degrees of free-
dom must be

df = (Xl = 1) - (X1 =1 J] (Pail).

Pa;ePa;

Obviously this process finishes when all can-
didate parents not selected yet shows indepen-
dence with X; according to this test, and in or-
der to make search more efficient, every candi-
date parent that appear independent in any step
in the algorithm, is rejected and is not taken
into account in next iterations. The reason of
rejecting these variables is just for efficiency, al-
though we know that any of these rejected vari-
ables can become dependent in posterior inter-
ations.

Figure 1 shows the pseudo-code of this algo-
rithm called ChiSqDN.

Initialize structure to Naive Bayes
For each variable X;
Pa; =0
Cand = X\ {X;} // Candidate parents
While Cand # 0
For each variable X; € Cand
Let wal be assessment for X; by x?
test
If val <0 Then
Remove X; from Cand

Let X,az be the best variable found
Pa; = Pa; U X,haz
Remove X4 from Cand

For each variable Pa; € Pa;
Make new link Pa; — X;

Figure 1: Pseudo-code for ChiSqDN algorithm.

It is clear that determining degrees of free-
dom is critical in order to perform properly this
test. The scheme outlined before is the general
way for assessing this parameter, nonetheless,
in some cases, especially for deterministic or al-
most deterministic relationships, the tests car-
ried out using degrees of freedom in this way
can fail. Deterministic relationships are pretty




common in automatic learning when input cases
are relatively few. Examining the datasets used
in the experiments (table 1) can be seen that
there are some of them with a low number of
instances. So, to make the tests in our algo-
rithm properly, we use a method for computing
degrees of freedom and handling this kind of re-
lationships proposed in (Yilmaz et al., 2002).
Basically and considering discrete variables and
its conditional probability tables (CPT), this
proposal reduces degrees of freedom based on
the level of determinism and this level is deter-
mined by the number of columns or rows which
are full of zeros.

For example, if we wanted to compute degrees
of freedom for variables X; and X; whose proba-
bility distribution is shown in figure 2, we should
use (3—1)-(3—1) =4 as value for this param-
eter, as both variables have 3 states. Nonethe-
less, is clear that the relation between these two
variables is not probabilistic but deterministic,
because is similar to consider that variable Xj;
has only one state. Thus, if we use this new
way for computing degrees of freedom we have
to take into account that this table has two rows
and a column full of zeros. Then the degrees of
freedom will be 3—-2—-1)-(3—1—-1)=0.

X; MT
13160 29
X;[ 0] 0j0o] 0
0[0] 0

| MT [13[16]0 |

Figure 2: Probability table for variables X; and
X;.

In these cases, i. e, when the degrees of free-
dom are zero, it does not make sense perform
the test because in this case it always holds.
In (Yilmaz et al., 2002), the authors propose
skipping the test and mark the relation in or-
der to be handled by human experts.
case, when this algorithm yields degrees of free-
dom equal to zero we prefer an automatic ap-
proach that is to accept dependence between
tested variables if statistic value is greater than
Z€ro.

In our

5 Experimental results

In order to evaluate our proposed algorithm and
to measure their quality, we have selected a set
of datasets from the UCI repository (Newman
et al., 1998). These datasets are described in
table 1. We have preprocessed these datasets
in order to remove missing values and to dis-
cretize continuous variables. Missing values for
each variable have been replaced by the mean or
mode depending on whether it is a continuous o
discrete variable respectively. For discretization
we have used the algorithm proposed in (Fayyad
and Irani, 1993), which is especially suggested
for classification.

[ Datasets [ inst. | attrib. [ [C] | cont.? | missing? |
australian 690 15 2 | yes no
heart 270 14 2 | yes no
hepatitis 155 20 2 | yes yes
iris 150 5 3 | yes no
lung 32 57 3 | no yes
pima 768 9 2 | yes no
post-op 90 9 3 | yes yes
segment 2310 20 7| yes no
soybean 683 36 19 | no yes
vehicle 846 19 4 | yes no
vote 435 17 2 | no yes

Table 1: Description of the datasets used in the
experiments.

We have chosen a pair of algorithms from the
state-of the-art in Bayesian classification which
allow relationships between predictive variables.
One of this algorithms is the one known as TAN
(Tree Augmented Naive Bayes). The other em-
ploys a general Bayesian network in order to
represent relationships between variables and is
based on BAN model (Bayesian network Aug-
mented Naive Bayes (Friedman et al., 1997)). In
our experiments we use B algorithm (Buntine,
1994) as learning algorithm with BIC (Schwarz,
1978) metric to guide the search. Both algo-
rithms use mutual information as base statistic
in order to determine relationships, directly in
TAN algorithm and a penalized version in BIC
metric.

The experimentation process consists on run-
ning each algorithm for each database in a 5x2
cross validation. This kind of validation is an
extension of the well known k-fold cross vali-



dation in which a 2-fold cv is performed five
times and in any repetition a different partition
is used. With this process we have the valida-
tion power from the 10-fold c¢v but with less cor-
relation between each result (Dietterich, 1998).

Once we have performed our experiments in
that way, we have the results for each classifier
in table 2.

TAN BAN+BIC | ChiSqDN
australian | 0.838841 0.866957 0.843478
heart 0.819259 0.826667 | 0.823704
hepatitis 0.852930 0.872311 0.865801
iris 0.948000 0.962667 | 0.962667
lung 0.525000 | 0.525000 | 0.525000
pima 0.772135 0.773177 | 0.744531
post_op 0.653333 0.673333 | 0.673333
segment, 0.936970 | 0.909437 0.931169
soybean 0.898661 0.906893 0.903950
vehicle 0.719385 | 0.697163 0.698345
vote 0.945299 | 0.944840 0.931045

Table 2: Classification accuracy estimated for
algorithms tested.

5.1 Analysis of the results

The analysis done for the previous results con-
sists on carring out a statistical test. The test
selected is the paired Wilcoxon signed ranks,
that is a non parametric test which examines
two samples in order to decide whether the dif-
ferences shown by them can be assumed as not
significant. In our case, if this test holds, then
we can conclude that the classifiers which yield
the results analysed have similar classification
power.

Thus, this test is done with a level of sig-
nificance of 0.05 (o = 0.05) and it shows that
both reference classifiers do not differ signifi-
cantly from our classifier learned with ChiSqDN
algorithm. When we compare our algorithm
with TAN we obtain a p-value of 0.9188, and
for the comparison with BAN model the p-value
is 0.1415. Therefore ChiSqDN algorithm is as
good as the Bayesian classifier considered, in
spite of the approximation introduced in the fac-
torization of the joint probability distribution
due to the use of general dependency networks.
Nonetheless, also as consequence of the use of
dependency networks we can take advantage of

the ease of learning and possibility of doing this
process in parallel without introduce an extra
workload.

Apart from these characteristics that can be
exploited from a dependency network, we can
focus on its descriptive capability, i.e. how
good is the graph for each model to show re-
lations over the domain. Taking into account
pima dataset, in figures 3 and 4 are shown the
graphs yielded by the algorithms BAN+BIC
and ChiSqDN respectively.

Obviously, for every variable in these graphs,
those that form its Markov blanket are the more
informative or more related. The difference is
that for a Bayesian network graph the Markov
blanket set is formed by parents, children and
parent of children for every variable, but for a
dependency network graph the Markov blanket
set are all variables directly connected. Thus in
tables 3 and 4 we show the Markov blanket ex-
tracted from the corresponding graph for every
variable. Evidently the sets do not match due
to the automatic learning process but are quite
similar. Apart from that, it is clear that discov-
ering these relationships from the dependency
network graph is easier, especially for people not
used to deal with Bayesian networks, than doing
it from a Bayesian network. We think that this
point is an important feature of dependency net-
works because can lead us to a tuning process
helped by human experts after the automatic
learning.

Variable || Markov blanket
mass skin, class

skin age, mass, insu, class
insu skin, plas, class

plas insu, class

age pres, preg, skin, class
pres age, class

preg age, class

pedi class

Table 3: Markov blanket for each predictive
variable from the BAN+BIC classifier.



Figure 3: Network yielded by BAN algorithm with BIC metric for the pima dataset.

Figure 4: Network yielded by ChiSqDN algorithm for the pima dataset.

Variable || Markov blanket

mass skin, pres, class

skin insu, mass, age, class
insu plas, skin, class

plas insu, class

age pres, preg, skin, class
pres age, mass, preg, class
preg age, pres, class

pedi class

Table 4: Markov blanket for each predictive
variable from the ChiSqDN classifier.

6 Conclusions and Future Work

We have shown how dependency networks can
be used as a model for Bayesian classifiers be-
yond their initial purpose. We have presented
a new learning algorithm which use indepen-
dence tests in order to find the structural model

for a classifier based on dependency networks.
By means of the analysis developed in this pa-
per, we have shown that the proposed classifier
model based on dependency networks can be as
good as some classifiers based on Bayesian net-
works. Besides this important feature, classi-
fiers obtained by our algorithm are visually eas-
ier to understand. We mean that relationships
automatically learned by the algorithm are eas-
ily understood if the classifier is modelled with
a dependency network. This characteristic is es-
pecially valuable because for people is often dif-
ficult discover all relationships inside a Bayesian
networks if they do not know their theory, how-
ever these relationships are clearly shown in a
dependency network. Besides, we can not forget
the main contributions of dependency networks:
ease of learning and possibility to perform this
learning in parallel.



The ChiSqDN algorithm shown here learn
structural information for every variable inde-
pendently, so we plan to study a parallelized
version in the future. Also we will try to im-
prove this algorithm, in terms of complexity,
by using simpler statistics. Our idea is to use
an approximation for the mutual information
over multiples variables using a decomposition
in simpler terms (Roure Alcobé, 2004).
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