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Abstract

It is common knowledge that the EM algorithm can be trapped at local maxima and
consequently fails to reach global maxima. We empirically investigate the severity of this
problem in the context of hierarchical latent class (HLC) models. Our experiments were
run on HLC models where dependency between neighboring variables is strong. (The
reason for focusing on this class of models will be made clear in the main text.) We
first ran EM from randomly generated single starting points, and observed that (1) the
probability of hitting global maxima is generally high, (2) it increases with the strength of
dependency and sample sizes, and (3) it decreases with the amount of extreme probability
values. We also observed that, at high dependence strength levels, local maxima are far
apart from global ones in terms of likelihoods. Those imply that local maxima can be
reliably avoided by running EM from a few starting points and hence are not a serious

issue. This is confirmed by our second set of experiments.

1 Introduction

The EM algorithm (Dempster et al., 1977) is
a popular method for approximating maximum
likelihood estimate in the case of incomplete
data. It is widely used for parameter learning
in models, such as mixture models (Everitt and
Hand, 1981) and latent class models (Lazarsfeld
and Henry, 1968), that contain latent variables.

A well known problem associated with EM
is that it can be trapped at local maxima and
consequently fails to reach global maxima (Wu,
1983). One simple way to alleviate the problem
is to run EM many times from randomly gener-
ated starting points, and take the highest like-
lihood obtained as the global maximum. One
problem with this method is that it is compu-
tationally expensive when the number of start-
ing points is large because EM converges slowly.
For this reason, researchers usually adopt the
multiple restart strategy (Chickering and Heck-
erman, 1997; van de Pol et al., 1998; Uebersax,
2000; Vermunt and Magidson, 2000): First run

EM from multiple random starting points for
a number of steps, then pick the one with the
highest likelihood, and continue EM from the
picked point until convergence. In addition to
multiple restart EM, several more sophisticated
strategies for avoiding local maxima have also
been proposed (Fayyad et al., 1998; Ueda and
Nakano, 1998; Ueda et al., 2000; Elidan et al.,
2002; Karciauskas et al., 2004).

While there is abundant work on avoiding lo-
cal maxima, we are aware of few work on the
severity of the local maxima issue. In this pa-
per, we empirically investigate the severity of
local maxima for hierarchical latent class (HLC)
models. Our experiments were run on HLC
models where dependency between neighboring
variables is strong. This class of models was
chosen because we use HLC models to discover
latent structures. It is our philosophical view
that one cannot expect to discover latent struc-
tures reliably unless observed variables strongly
depend on latent variables (Zhang, 2004; Zhang
and Kocka, 2004).



In the first set of experiments, we ran EM
from randomly generated single starting points,
and observed that (1) the probability of hitting
global maxima is generally high, (2) it increases
with the strength of dependency and sample
sizes, and (3) it decreases with the amount of
extreme probability values. We also observed
that, at high dependence strength levels, local
maxima are far apart from global ones in terms
of likelihoods.

Those observations have immediate practi-
cal implications. Earlier in this section, we
mentioned a simple local-maxima avoidance
method. We pointed out one of its problems,
i.e. its high computational complexity, and said
that multiple restart can alleviate this prob-
lem. There is another problem with the method:
there is no guidance on how many starting
points to use in order to avoid local maxima
reliably. Multiple restart provides no solution
for this problem.

Observations from our experiments suggest a
guideline for strong dependence HLC models.
As a matter of fact, they imply that local max-
ima can be reliably avoided by using multiple
restart and a few starting points. This is con-
firmed by our second set of experiments.

The remainder of this paper is organized as
follows. In Section 2, we review some basic con-
cepts about HL.C models and the EM algorithm.
In Sections 3 and 4, we report our first and sec-
ond sets of experiments respectively. We con-
clude this paper and point out some potential
future work in Section 5.

2 Background

2.1 Hierarchical Latent Class Models

Hierarchical latent class (HLC) models (Zhang,
2004) are tree-structured Bayesian networks
where the leaf nodes are observed while the
internal nodes are hidden. An example HLC
model is shown in Figure 1. Following the con-
ventions in latent variable model literatures, we
call the leaf nodes manifest variables and the
internal nodes latent variables'.

n this paper, we do not distinguish between nodes
and variables.
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Figure 1: An example HLC model. X, X,
X3 are latent variables, and Y7, Y5, -+, Y7 are

manifest variables.

We usually write an HLC model as a pair
M=(m,0). The first component m consists of
the model structure and cardinalities of the vari-
ables. The second component 6 is the collection
of parameters. Two HLC models M=(m,8)
and M'=(m’,0") are marginally equivalent if
they share the same set of manifest variables
Y and P(Y|m,0)=P(Y|m/,0").

We denote the cardinality of a variable X by
|X|. For a latent variable X in an HLC model,
denote the set of its neighbors by nb(X). An
HLC model is regular if for any latent vari-

able X, \X’<M

maxzenb(x)|Z]’

strictly holds when X has only two neighbors,
one of which being a latent variable. Zhang
(2004) has shown that an irregular HLC model
can always be reduced to a marginally equiv-
alent HLC model that is regular and contains
fewer independent parameters. Henceforth, our
discussions are restricted to regular HLC mod-
els.

and the inequality

2.2 Strong Dependence HLC Models

The strength of dependency between two vari-
ables is usually measured by mutual informa-
tion or correlation (Cover and Thomas, 1991).
However, there is no general definition of strong
dependency for HL.C models yet. In this study,
we use the operational definition described in
the following paragraph.

Consider a probability distribution. We call
the component with the largest probability
mass the major component. We say that an
HLC model is a strong dependence model if

e The cardinality of each node is no smaller
than that of its parent.

e The major components in all conditional
distributions are larger than 0.5, and



e In each conditional probability table, the
major components of different rows are lo-
cated in different columns.

In general, the larger the major components, the
higher the dependence strength (DS) level. In
the extreme case, when all major components
are equal to 1, the HLC model becomes deter-
ministic. Strong dependence HLC models de-
fined in this way have been examined in our
previous work on discovering latent structures
(Zhang, 2004; Zhang and Kocka, 2004). The
results show that such models can be reliably
recovered from data.

2.3 EM Algorithm

Latent variables can never be observed and
their values are always missing in data. This
fact complicates the maximum likelihood esti-
mation problem, since we cannot compute suf-
ficient statistics from incomplete data records.
A common method to deal with such situations
is to use the expectation-mazimization (EM) al-
gorithm (Dempster et al., 1977). The EM al-
gorithm starts with a randomly chosen estima-
tion to parameters, and iteratively improves this
estimation by increasing its loglikelihood. In
each EM step, the task of increasing loglikeli-
hood is delegated to the maximization of the
expected loglikelihood function. The latter is a
lower bound of the loglikelihood function. It is
defined as

Q0D 6"

= > > P(X,|Dy;,0%log P(X;,D;|6),
=1 X,

where D={D,Dgy,---,D,,} denotes the col-
letion of data, X; denotes the set of variables
whose values are missing in D;, and 6 denotes
the estimation at the ¢-th step. The EM algo-
rithm terminates when the increase in loglike-
lihood between two successive steps is smaller
than a predefined stopping threshold.

It is common knowledge that the EM algo-
rithm can be trapped at local maxima and con-
sequently fails to reach global maxima (Wu,
1983). The specific result depends on the choice
of the starting point. A common method to

avoid local maxima is to run EM many times
with randomly generated starting points, and
pick the instance with the highest likelihood as
the final result. The more starting points it
uses, the higher the chance it can reach the
global maximum. However, due to the slow
convergence of EM, this method is computa-
tionally expensive. A more feasible method,
called multiple restart EM, is to run EM with
multiple random starting points, and retain the
one with the highest likelihood after a specified
number of initial steps. This method and its
variant are commonly used to learn latent vari-
able models in practice (Chickering and Heck-
erman, 1997; van de Pol et al., 1998; Uebersax,
2000; Vermunt and Magidson, 2000). Other
work on escaping from poor local maxima in-
cludes (Fayyad et al., 1998; Ueda and Nakano,
1998; Ueda et al., 2000; Elidan et al., 2002; Kar-
ciauskas et al., 2004).

3 Severity of Local Maxima

Here is the strategy that we adopt to empiri-
cally investigate the severity of local maxima in
strong dependence HLC models: (1) create a set
of strong dependence models, (2) sample some
data from each of the models, (3) learn model
parameters from the data by running EM to
convergence from a number of starting points,
(4) graph the final loglikelihoods obtained.

The final loglikelihoods for different starting
points could be different due to local maxima.
Hence, an inspection of their distribution would
give us a good idea about the severity of local
maxima.

3.1 Experiment Setup

The structure of all models used in our exper-
iments was the ternary tree with height equals
3, as shown in Figure 2. The cardinalities of
all variables were set at 3. Parameters were
randomly generated subject to the strong de-
pendency condition. We examined 5 DS levels,
labeled from 1 to 5. They correspond to restrict-
ing the major components within the following 5
intervals: [0.5,0.6), [0.6,0.7),[0.7,0.8),[0.8,0.9),
and [0.9,1.0]. For each DS level, 5 different pa-
rameterizations were generated. Consequently,
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Figure 2: The structure of generative models.

we examined 25 models in total.

From each of the 25 models, four training sets
of 100, 500, 1000, and 5000 records were sam-
pled. On each training set, we ran EM indepen-
dently for 100 times, each time starting from a
randomly selected initial point. The stopping
threshold of EM was set at 0.0001. The high-
est loglikelihood obtained in the 100 runs is re-
garded as the global maximum.

3.2 Results

The results are summarized in Figures 3 and
4. In Figure 3, there is a plot for each combi-
nation of DS level (row) and sample size (col-
umn). As mentioned earlier, 5 models were cre-
ated for each DS level. The plot is for one of
those 5 models. In the plot, there are three
curves: solid, dashed, and dotted?. The dashed
and dotted curves are for Section 4. The solid
curve is for this section. The curve depicts a
distribution function F(z), where z is loglikeli-
hood and F'(z) is the percent of EM runs that
achieved a loglikelihood no larger than z.
While a plot in Figure 3 is about one model
at a DS level, a plot in Figure 4 represents an
aggregation of results about all 5 models at a DS
level. Loglikelihoods for different models can be
in very different ranges. To aggregate them in
a meaningful way, we introduce the concept of
relative likelihood shortfall of EM run.
Consider a particular model. We have run
EM 100 times and hence obtained 100 loglike-
lihoods. The maximum is regarded as the op-
timum and is denoted by I*. Suppose a partic-
ular EM run resulted in loglikelihood {. Then
the relative likelihood shortfall of that EM run is
defined as (I—{*)/l*. This value is nonnegative.

*Note that in some plot (e.g., that for DS level 4 and
sample size 5000) the curves overlap and are indistin-
guishable.

The smaller it is, the higher the quality of the
parameters produced by the EM run. In partic-
ular, the relative likelihood shortfall of the run
that produced the global maximum [* is 0.

For a given DS level, there are 5 models and
hence 500 EM runs. We put the relative like-
lihood shortfalls of all those EM runs into one
set and let, for any nonnegative real number x,
F(z) be the percent of the elements in the set
that is no larger than z. We call F(z) the dis-
tribution function of (aggregated) relative likeli-
hood shortfalls of EM runs, or simply distribu-
tion of EM relative likelihood shortfall, for the
DS level.

The first 5 plots in Figure 4 depict the dis-
tributions of EM relative likelihood shortfall for
the 5 DS levels. There are four curves in each

plot, each corresponding to a sample size?.

3.2.1 Probability of Hitting Global
Maxima

The most interesting question is how often
EM hits global maxima. To answer this ques-
tion, we first look at the solid curves in Fig-
ure 3. Most of them are stair-shaped. In each
curve, the z-position of the right most stair is
the global maximum, and the height of that
stair is the frequency of hitting the global max-
imum.

We see that the frequency of hitting global
maxima was generally high for high DS lev-
els. In particular, for DS level 3 or above, EM
reached global maxima more than half of the
time. For sample size 500 or above, the fre-
quency was even greater than 0.7. On the other
hand, the frequency was low for DS level 1, es-
pecially when the sample size was small.

The first 5 plots in Figure 4 tell the same
story. In those plots, the global maxima are
represented by x=0. The heights of the curves
at x=0 are the frequencies of hitting global max-
ima. We see that for DS level 3 or above, the fre-
quency of hitting global maxima is larger than
0.5, except that for DS level 3 and sample size
100. And once again, the frequency was low for
DS level 1.

3Note that in Figure 4 (b) and (c) some curves are
close to the y-axes and are hardly distinguishable.
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Figure 3: Distributions of loglikelihoods obtained by different EM runs. Solid curves are for EM
runs with single starting points. Dashed and dotted curves are for runs of multiple restart EM with
setting 4x10 and 16x50 respectively (see Section 4). Each curve depicts a distribution function
F(z), where z is loglikelihood and F(x) is the percent of runs that achieved a loglikelihood no
larger than x.
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Figure 4: Distributions of EM relative likelihood shortfall for different DS levels.

3.2.2 DS Level and Local Maxima

To see how DS level influences the severity
of local maxima, read each column of Figure 3
(for a given sample size) from top to bottom.
Notice that, in general, the height of the right
most stair increases with the DS level. It means
that the frequency of hitting global maxima in-
creases with DS level. The same conclusion can
be read off from Figure 4. Compare the curves
for a given sample size from the first 5 plots. In
general, their values at x=0 rise up as we move
from DS level 1 to DS level 5.

3.2.3 Extreme Parameter Values and
Local Maxima

There are some exceptions to the regularities
mentioned in the previous paragraph. We see in
both figures that the frequency of hitting global
maxima decreases as the DS level changes from
4 to 5. By comparing Figure 4 (c) and (d), we
also find that the frequency slightly drops when
the DS level changes from 3 to 4, given that the

sample size is large.

We conjecture that this is because that, in
generative models for DS levels 4 and 5, there
are many parameter values close to 0. It has
been reported in latent variable model litera-
tures that extreme parameter values cause local
maxima (Uebersax, 2000; McCutcheon, 2002).

To confirm our conjecture, we created another
set of five models for DS level 3. The parame-
ters were generated in the same way as before,
except that we randomly set 15% of the non-
major components in the probability distribu-
tions to 0. We then repeated the experiments
for this set of models. The EM relative likeli-
hood shortfall distributions are given in Figure
4 (f). We see that, as expected, the frequency
of hitting global maxima did decrease consider-
ably compared with Figure 4 (c).

3.2.4 Sample Size and Local Maxima

We also noticed the power of the sample size.
By going through each row of Figure 3, we found



that the frequency of hitting global maxima in-
creases with the sample size. The phenomenon
is more apparent if we look at Figure 4, where
curves for different sample sizes are plotted in
the same picture. As the sample size goes up,
the curve becomes steeper and its value at x=0
increases significantly.

3.2.5 Quality of Local Maxima

In addition to the frequency of hitting global
maxima, another interesting question is how
bad local maxima could be. Let us first examine
the local maxima in Figure 3. They are marked
by the z-positions of the inflection points on
curves. For DS level 1, the local maxima are not
far from the global ones. The discrepancies are
less than 15. Moreover, there are a lot inflection
points on the curves, namely, distinct local max-
imal solutions. They distributed evenly within
the interval between the worst local maxima and
the global ones.

For the other DS levels, things are different.
We first observed that the quality of local max-
ima can be extremely poor in some situation.
The worst case is that of DS level 5 with sample
size 5000. The loglikelihood of the local maxi-
mum can be lower than that of the global one
by more than 4000. The second thing we ob-
served is that the curves contain much fewer
inflection points. In other words, there are only
a few distinct local maximal solutions in such
cases. Moreover, those local maxima stay far
apart from global ones since the steps of the
staircases are fairly large. Those observations
can be confirmed by studying the first 5 plots
in Figure 4, where the curves and the inflection
points can be interpreted similarly.

4 Performance of Multiple Restart
EM

We emphasize two observations mentioned in
the previous section: (1) the probability of hit-
ting global maxima is generally high, and (2)
likelihoods of local maxima are far apart from
those of global maxima at high DS levels. We
will see that these observations have immedi-
ate implications on the performance of multiple
restart EM.

We say that a starting point is optimal if it
converges to the global maximum. The first ob-
servation can be restated as follows: the proba-
bility for a randomly generated starting point to
be optimal is generally high. Consequently, it
is almost sure that there is an optimal starting
point within a few randomly generated ones.

As it is well known, the EM algorithm in-
creases the likelihood quickly in its early stage
and slows down when it is converging. In other
words, the likelihood should become relatively
stable after a few steps. Therefore, the second
observation implies that we can easily separate
the optimal starting point from the others after
running a few EM steps on them.

A straightforward consequence of the above
inference is that multiple restart EM with a few
starting points and initial steps should reliably
avoid local maxima for strong dependence HLC
models. To confirm this conjecture, we ran mul-
tiple restart EM independently for 100 times on
each training set that was presented in Figure
3. We tested two settings for multiple restart
EM: (1) 4 random starting points with 10 ini-
tial steps (in short, 4x10), and (2) 16 random
starting points with 50 initial steps (in short,
16x50). As before, we plotted the distributions
of loglikelihoods in Figure 3. The dashed and
the dotted curves denote the results for settings
of 4x10 and 16x50, respectively.

From Figure 3, we see that multiple restart
EM with setting 16x50 can reliably avoid lo-
cal maxima for DS level 2 or above. Actually,
the dotted curves are parallel to the y-axes ex-
cept that for DS level 2 and sample size 100.
It means that global maxima can always be
reached in such cases. For setting 4x10, sim-
ilar behaviors are observed for DS level 4 or 5
and sample size 500 or above. Note that dashed
and dotted curves overlap in those plots.

Nonetheless, we also notice that, for DS level
1, multiple restart EM with both settings still
can not find global maxima reliably. This is
consistent with our reasoning. As we have men-
tioned in Section 3.2.1, when we ran EM with
randomly generated single starting points, the
frequency of hitting global maxima is low for DS
level 1. In other words, it is hard to hit an op-



timal starting point by chance. Moreover, due
to the small discrepancy among local maxima
(see Section 3.2.5), it demands a large number
of initial steps to distinguish an optimal starting
point from the others. Therefore, the effective-
ness of multiple restart EM degenerates. In such
situations, one can either increase the number
of starting points and initial steps, or appeal to
more sophisticated methods for avoiding local
maxima.

5 Conclusions

We have empirically investigated the severity of
local maxima for EM in the context of strong de-
pendence HL.C models. We have observed that
(1) the probability of hitting global maxima is
generally high, (2) it increases with the strength
of dependency and sample sizes, (3) it decreases
with the amount of extreme probability values,
and (4) likelihoods of local maxima are far apart
from those of global maxima at high dependence
strength levels. We have also empirically shown
that the local maxima can be reliably avoided
by using multiple restart EM with a few starting
points and hence are not a serious issue.

Our discussion has been restricted to a spe-
cific class of HLC models. In particular, we
have defined the strong dependency in an op-
erational way. One can devise more formal def-
initions and carry on similar studies for gener-
alized strong dependence models. Another fu-
ture work would be the theoretical exploration
to support our experiences.

Based on our observations, we have ana-
lyzed the performance of multiple restart EM.
One can exploit those observations to analyze
more sophisticated strategies for avoiding local
maxima. We believe that those observations
can also give some inspirations to develop new
methods on this direction.
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