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Abstract
The paper contributes to the characterization of the convex set of all prob-
abilities dominated by a possibility measure on a finite set. In particular,
a lower and an upper bound for the number of extreme points of this con-
vex set are derived by exploiting the geometrical nature of the problem
alone and it is shown that in some cases the upper bound leads to a better
estimate than the exponential bound of Miranda et al. [7].

1 Basic Concepts

Basic definitions and concepts of possibility theory [4] will be recalled at first.
Let X = {z1,...,2,} be a non-empty set. Throughout the paper we assume
that n > 2. A possibility measure on 2% is a mapping IT : 2% — [0,1] such
that II(P) = 0 and for every A, B C X, we have II(AU B) = max(II(4),II(B)).
In this paper only so-called normal possibility measures satisfying II(X) = 1
are considered. A possibility distribution on X is a mapping 7 : X — [0,1]
defined by 7w(z) = II({z}), for every z € X. Without loss of generality we

may assume that 7(z1) < -+ < 7(x,) = 1 and denote 7; = w(x;), for every
i=1,...,n. Any possibility measure IT on 2% is thus uniquely determined by
a point (m1,...,m,—1,1) € R™.

We denote by &2 the set of all finitely additive probability measures on
2X dominated by II, that is, for each P € & and every A C X, we have
P(A) <TI(A). Let p; = P({z;}), i = 1,...,n. Every probability P on 2% then
uniquely corresponds to a point (p1,...,p,) € R™. It was proven in [5] that

P e 2 if and only if ijgm, 1=1,...,n—1.

J=1



90 T. KROUPA

Hence every probability from £2 is in one-to-one correspondence with a point
(p1,---,pn) € R™ satisfying the following conditions:

pi>0, i=1,...,n,

n

Zpl:]-v

=1

7

dopi<m, i=1,...,n-1
j=1

Since p,, is uniquely determined by the equation p, = 1— Z?;ll Pp;, We can write
equivalently

i | (1)
Spi<m, i=1l..n-L

The set defined by the system of inequalities (1) is clearly a convex polytope in
R™ 1. Notice that its dimension can be far less than n — 1 due to the presence
of zeros in (my,...,m—1). Also observe that its geometrical structure is not in
general transparent as some of the inequalities in (1) can be redundant in the
sense that their omission doesn’t change the set of solutions of (1).

2 The Result

In the next paragraph we are going to find a more convenient representation of
the set defined by the inequalities (1).

Let ip = min{s € {1,...,n — 1} | m; > 0}. We may assume that such iy
exists since otherwise the possibility measure II dominates only the probability
measure given by p, = 1 and & is a singleton. Put

g — {ie{io...,n—2}|7r¢+1>7ri}u{n—1}, ifn—QZio,
{n-1}, otherwise.

Observe that 7w, > 0 for each k € S, and if k < with k,] € S, then m, < 7.
Lemma 1. The system of n —ig + |S| inequalities
p; >0, iE{io,...,n—l},
k
(2)
Z Dby < Tk, ke Sa
J=io

1s irreducible.
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Proof. For each m € {ig,...,n — 1} consider the system of inequalities

pi 20, i€ {io,...,n—1}\{m},

. (3)
ij <m, kes.

Jj=io

It is clear that any (pi,,...,pn—1) € R"7% such that p; < 0, whenever i =
m, and p; = 0, otherwise, is a solution of (3) that is not a solution of (2).
Analogously, for each m € S consider the system of inequalities
p220> i =1p,...,n—1,
k
(4)

Note that (4) has a solution with the property p; > 7,,, whenever ¢ = m, and
p; = 0, otherwise, which is not a solution of (2). O

Lemma 2. Let I C {ip,...,n—1} and K C S with |I| + |K| =n —io. If the
system of linear equations with |I| + | K| variables

bi = Oa (XS I7 (53“)
k
ij:ﬂ-ka IfGK, (5b)
Jj=to
has the unique solution (piy,-..,Pn—1), then

(i) pm =0 if and only if m € I;

(i1) if k,l € K are such that k+1 <l and KN{k+1,...,1—1} =0, then
there is exactly one variable taking non-zero value among pi41,...,Di-

Proof. Since the system of linear equations (5a)-(5b) is uniquely solvable, each
linear equation from (5b) determines — after substituting all zero variables p;,
i € I into (5b) — a value of some variable p,, for m € {ig,...,n —1} \ I. To
prove (7) it is enough to note that the right-hand sides of linear equations from
(5b) are positive and if k < [ for k,l € K, then 7, < m;. Hence p,, > 0 whenever
m € {ig,...,n— 1} \ I. The assertion of (i7) follows analogously. O

Theorem 1. The set P of solutions of the system of inequalities (2) is a simple

(n —ig)-dimensional convex polytope in R™™*  which has precisely n — ig + |S]

facets and each of them is given by PNK , where either K = {p € R"~% | p; = 0}

{:07" gome i € {ig,...,n—1} or K = {p € R0 | Z?:iopj = 7} for some
co.
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Proof. Since P is defined by the system of inequalities (2), it is clear that P is
a convex polytope in R* 7. The set P has a dimension n — iy since there exists
an affine basis {b',...,b" 1} of R"~% formed by elements of P: for every

b = (bﬁow..,bﬁl,l), where ¢ = 1,...,n — ig, put

[ —

J

Ty, fj=ti1+i—1, . .
{20 j=1g,...,n—1,

0, otherwise,

and "l = (0,...,0). It is clear from the definition of points b’ that the
set {b%,...,b" " F1} is an affinely independent subset of P and hence it is an
affine basis of R %, The number of facets and their complete characterization is
a classical result for convex polytopes given by irreducible system of inequalities:
see, for example, Theorem 8.2 in [3].

To show that P is simple we have to verify that every vertex of P is contained
in precisely n—1iq facets. Let v be a vertex of P. Then v is the unique solution of
some system (5) of n —ig linear equations as defined in Lemma 2, which means
that v is the only point lying in the intersection of n — iy facets of P. Since
every facet of P corresponds to some linear equation, it suffices to show that if
a linear equation is added to (5), then the resulting system has no solution.

If a linear equation p;; =0, ¢’ € {ig,...,n—1}\ I, is added to (5), then the
resulting system has no solution as Lemma 2(i) gives p;; # 0 for (5).

For every k' € {ip,...,n — 1} \ K, let a linear equation Zf/:m pj = T be
added to (5). If K = (), then the extended system is not solvable since the
unique solution of (5) is (0,...,0). Let K # 0.

Case 1. If minK < k' < maxK, then put k&; = max{k € K | k < Kk}
and ks = min{k € K | k > K’} and consider the following subsystem of (5b)

extended with Z?lziﬂ Dj = Ty

Po o+ =,
pio —+ PP —+ pkl —+ [P + Pk’ = Tj
pio + o + Pk, —+ e + Dk’ + e —+ Dko = Tk,

According to Lemma 2(ii) there is precisely one variable taking non-zero value
among the variables py,41,...,pk,. If it is contained in pg, 41, ..., pr, then,
considering together the second and the third equation, we have mp = my,,
which is a contradiction. On the other hand, if the non-zero variable is among
Dk/+1, - - -, Dky, then the second and the first equation gives again a contradiction
Ty = T

Case 2. If k¥ < min K, then, analogously to the assertion of Lemma 2(ii) and the
previous part of the proof, there must be precisely one variable taking non-zero
value among p;, . .., Pmin k, and its value is mmin k. If it is among pi,, ..., prr,
then we get the contradiction 7 = Zf/:lo pj = Z;“:‘?OK Pj = Tmin k. On the
other hand, it the non-zero variable is among px/41, ..., Pmink, then mp =
Z?;ZO p;j = 0, which is again a contradiction.

Case 3. It k' > max K, then p; = 0 for each j € {max K + 1,...,k’'} because
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(5) is uniquely solvable and thus Z;f;;K Pj = Tmaxk < g = Zf’:m D

ZmaXK p;, which is contradictory. O

Jj=to
Theorem 2. Let ext & be the set of all extreme points of the convex set P of
all finitely additive probabilities dominated by a possibility measure. Then

(n—ip—1)(n—1ig+1S]) — (n—io+1)(n—ip —2)
< |ext £ <

n—ig+ S| —rm—1 N n—ig+|S|—ra—1
T2 ™ ’

where T1 s the greatest integer such that r1 < n—ig—l

o—, and 7o is the greatest

integer such that ro < %

Proof. Clearly, the set & can be viewed as the set of points in R"~! defined by
(1) since the two convex sets are affinely isomorphic; the latter is also affinely
isomorphic with P under the mapping

(Pigy-+-sPn-1) EP— (0,...,0,pi5,...,Pn—1) € R L
~——

io—1

Hence the convex structure of & is the same as that of P; in particular, the
two convex sets have the same number of extreme points. The lower and the
upper bound for |ext 4| are fundamental results in combinatorial theory of
convex polytopes, which are known under the name Lower Bound Theorem (see
[1, 2]) and Upper Bound Theorem (see [6]), respectively. The two inequalities
are thus in this case direct consequences of the characterization of the set P by
Theorem 1. O

Miranda et al. [7] derived the exponential upper bound 2"~! bound for
|ext Z|. It turns out that the upper bound from Theorem 2 can be a better
estimate for the actual number of extreme points: Table 1 documents that this
is the case when the possibility distribution contains many zeros or when the
range of possibility distribution is “poor”.

Example 1. Let m be a possibility distribution on X = {x1,...,x5} given by
m =0, m = w3 = %, Ty = %, and w5 = 1. We have ig = 2 and S = {3,4}.
Hence we obtain the irreducible system of inequalities

p2 >0, p3 >0, pg >0,

1
p2+p3S§, (6)
3
P2 +p3+Dps < 17

which defines the 3-dimensional convex polytope

P ={p = (p2,p3,p4) € R3 | p is a solution of (6)}.
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n | i | |S] | Lower Bound | Upper Bound | 2"~}
4 11| 3 8 8 8
4 11 2 6 6 8
4 11 1 4 4 8
4 | 2 2 4 4 8
4 1 2 1 3 3 8
5 | 1 4 14 20 16
5 |1 3 11 14 16
5 |1 2 8 9 16
5 2] 3 8 8 16
10| 1 9 74 1430 512
10 | 1 7 58 660 512
10| 1| 6 50 420 512

Table 1: Comparison of the upper bounds

Note that the inequality ps < % was redundant in the description of P. The

extreme points of P are the following: p* = (0,0,0), p* = (0,0, 2), p> = (0, 3,0),
p' = (0,3, 1), p° = (3,0,0), p° = (1,0,1). While the upper bound for the
number of extreme points of Miranda et al. [7] equals 2"~ = 16, the lower and
the upper bound in Theorem 2 coincides in this case so that the exact number

of 6 extreme points is recovered.

Figure 1: Convex polytope P from Example 1
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