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Abstract
The information divergence of a probability measure P from an expo-

nential family E over a �nite set is de�ned as in�mum of the divergences of
P from Q subject to Q ∈ E . All directional derivatives of the divergence
from E are explicitly found. To this end, behaviour of the conjugate of
a log-Laplace transform on the boundary of its domain is analysed. The
�rst order conditions for P to be a maximizer of the divergence from E
are presented, including new ones when P is not projectable to E .

1 Introduction
Let ν be a nonzero measure on a �nite set Z and f a mapping from Z into
the d-dimensional Euclidean space Rd. The (full) exponential family E = Eν,f

determined by ν and the directional statistic f , see [7, 5, 6, 11], consists of the
probability measures (pm's) Qϑ = Qν,f,ϑ, ϑ ∈ Rd, given by

Qϑ(z) = e〈ϑ,f(z)〉−Λ(ϑ) ν(z) , z ∈ Z ,

where 〈·, ·〉 is the scalar product on Rd and

Λ(ϑ) = Λν,f (ϑ) = ln
∑

z∈Z e〈ϑ,f(z)〉 ν(z) .

The information divergence (relative entropy) of a pm P on Z from ν is

D(P ||ν) =

{ ∑
z∈s(P ) P (z) ln P (z)

ν(z) , s(P ) ⊆ s(ν) ,

+∞ , otherwise,
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where s(ν) = {z ∈ Z : ν(z) > 0} is the support of ν. The information divergence
of P from the exponential family E is de�ned by

D(P ||E) = infϑ∈Rd D(P ||Qϑ) . (1)

This work studies the maximizers of the function P 7→ D(P ||E), denoted also
by D(·||E), over the pm's P dominated by ν, thus satisfying s(P ) ⊆ s(ν).

Let µ be the f -image νf of ν, considered for a Borel measure on Rd. Denoting
by s(µ) the support f(s(ν)) of µ, which is the inclusion-minimal closed subset
of Rd of the µ-measure µ(Rd),

Λ(ϑ) = Λµ(ϑ) = ln
∑

x∈s(µ) e〈ϑ,x〉 µ(x)

whence Λ equals the log-Laplace transform (cumulant generating function) of µ.
In terms of the conjugate Λ∗ of Λ [14, �12],

Λ∗(a) = supϑ∈Rd

[ 〈ϑ, a〉 − Λ(ϑ)
]
, a ∈ Rd ,

the information divergence of a pm P from the exponential family E rewrites to

D(P ||E) = D(P ||ν)− Λ∗(m(Pf )) (2)

where
m(Pf ) =

∑
x∈s(Pf ) xPf (x) =

∑
z∈Z f(z)P (z)

is the mean of the f -image Pf of P . Hence, D(·||E) expresses as di�erence of
the strictly convex function P 7→ D(P ||ν), denoted by D(·||ν), and the function
P 7→ Λ∗(m(Pf )), which is convex because Λ∗ is convex and P 7→ m(Pf ) is linear.

From now on assume s(ν) = Z.
This work is organized as follows. After collecting notations and reviewing

necessary known facts in Section 2 directional behavior of the conjugate Λ∗ on a
boundary of its domain is described in Theorem 3.1 of Section 3. Consequently
in Section 4, it is shown relying on (2) that the one-sided directional derivatives
of the function D(·||E) at any pm P exist. They may take the values ±∞.
Explicit formulas for the derivatives are presented in Theorems 4.1 and 4.3. The
�rst order optimality conditions for a pm P to be a maximizer of D(·||E) emerge
by requiring the derivatives not to be positive, see Theorem 5.1 in Section 5.
Finally, Section 6 is devoted to a proof of Theorem 3.1.

The maximization of D(·||E) has emerged in probabilistic models for evo-
lution and learning in neural networks that are based on infomax principles
[1, 2]. The divergence from an exponential family can be related to information
theoretic measures for interdependence of stochastic units and its maximization
reveals stochastic systems with high complexity w.r.t. an exponential family [3].
Dynamical versions of the problem of interactions in recurrent networks ap-
peared in [1, 4, 15]. Two special instances of the maximization (1) are attacked
in [13]. Further relations to previous works [1, 12] on this problem are discussed
in remarks of Section 5.
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2 Preliminaries
This section reviews well-known facts about the log-Laplace transforms, their
conjugates and exponential families, and introduces necessary notations. Some
of the assertions presented below are valid in general [5, 6, 11], but only positive
measures µ on Rd concentrated on �nite sets are considered here.

Let Qµ,ϑ denote the pm with µ-density x 7→ e〈ϑ,x〉−Λ(ϑ), ϑ ∈ Rd, and Eµ the
family of all such pm's, thus the standard exponential family determined by µ
and the identity on Rd.

Fact 2.1. m(Qµ,ϑ) = ∇Λ(ϑ), ϑ ∈ Rd.

In accordance with [14], the a�ne hull of a set B ⊆ Rd is denoted by aff (B),
the shift of aff (B) containing the origin by lin(B) and the relative interior of B
by ri(B), which is the interior of B in the topology of aff (B).

Since µ is concentrated on a �nite set the convex support cs(µ) of µ, which is
the inclusion-minimal closed convex subset of Rd of the µ-measure µ(Rd), is the
polytope spanned by s(µ). For B = cs(µ) the above notations are abbreviated
to aff (µ), lin(µ) and ri(µ).

Fact 2.2. The restriction of ∇Λ to lin(µ) is injective and onto ri(µ).

Since Λ is smooth this restriction is a di�eomorphism. Its inverse is denoted in
the sequel by ψ = ψµ.

The orthogonal complement of a linear subspace E of Rd is denoted by E⊥.

Fact 2.3. The equality Qµ,ϑ = Qµ,θ holds if and only if ϑ− θ ∈ lin(µ)⊥.

It follows that the mean parametrization a 7→ Qµ,ψ(a) of Eµ by the elements of
ri(µ) is bijective.

Fact 2.4. Each function 〈·, a〉−Λ, a ∈ aff (µ), is constant on c+lin(µ)⊥, c ∈ Rd.

Fact 2.5. If a ∈ ri(µ) then Λ∗(a) = 〈ψ(a), a〉 − Λ(ψ(a)).

The following assertion is a consequence of [8, Lemma 6].

Fact 2.6. If a ∈ cs(µ) \ ri(µ) then +∞ > Λ∗(a) > 〈ϑ, a〉 − Λ(ϑ), ϑ ∈ Rd.

Hence, the convex conjugate Λ∗ is �nite on the polytope cs(µ), thus continuous.
This and (2) imply that the function D(·||ν) is continuous and, in turn, has a
global maximizer.

A consequence of above facts is stated for convenience.

Fact 2.7. If m(Qµ,ϑ) = a then Λ∗(a) = 〈ϑ, a〉 − Λ(ϑ).

Fact 2.8. If a ∈ ri(µ) then for b ∈ cs(µ)

Λ∗(b) = Λ∗(a) + 〈ψ(a), b− a〉+ o(||b− a||) .
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If A ⊆ Rd then B 7→ µ(B ∩ A) is the restriction of µ by A. Let Λµ, ψµ,
Qµ,ϑ, etc., with µ replaced by its restriction be denoted as ΛA, ψA, QA,ϑ, etc.,
provided the restriction is nonzero.

Fact 2.9. If a ∈ F for a face F of cs(µ) then Λ∗µ(a) = Λ∗F (a).

The following assertion is a special instance of [10, Theorem 4.1].

Fact 2.10. If a ∈ ri(F ) for a face F of cs(µ) then

Λ∗(a)− [ 〈ϑ, a〉 − Λ(ϑ)
]

> D(QF,ψF (a)||Qµ,ϑ) , ϑ ∈ Rd .

Suppose in the remaining part of this section that µ = νf as in the intro-
duction. Then Qµ,ϑ is the f -image of Qν,f,ϑ, ϑ ∈ Rd. Taking the f -images of
pm's from Eν,f is a bijection onto Eµ. For a face F of cs(µ) the pm QF,θ is the
f -image of the pm QY,f,θ, θ ∈ Rd, where the latter denotes the pm obtained
from Qν,f,θ when ν is replaced by its restriction to Y = f−1(F ). Taking the f -
images of pm's from EY,f is a bijection onto EF . Note that D(QF,θ||Qµ,ϑ) equals
D(QY,f,θ||Qν,f,ϑ), using that f is su�cient. This, Fact 2.10 and [8, Theorem 1]
combine to the following assertion.

Fact 2.11. If P is any pm on Z with a = m(Pf ) in ri(F ) for a face F of
cs(µ) and E = Eν,f then ΠP→E = Qf−1(F ),f,ψF (a) is the unique pm satisfying
the Pythagorean inequality

D(P ||Q) > D(P ||E) + D(ΠP→E ||Q) , Q ∈ E . (3)

The in�mum in (1) is attained by some ϑ if and only if a = m(Pf ) belongs to
ri(µ) in which case ΠP→E = Qν,f,ψ(a); this pm is called the reverse information
(rI-) projection of P on E in [8]. If the in�mum is not attained then P is not
rI -projectable to E and ΠP→E is the generalized rI -projection.

Though we do not need it in the sequel let us remark that the (variation)
closure of Eν,f resp. Eµ is equal to union of the families Ef−1(F ),f resp. EF over
the faces F of cs(µ), for a general result see [9]. The closures are bijectively
parameterized by means of pm's exhausting cs(µ). It is also not di�cult to
deduce that for E = Eν,f and a pm P

D(P ||E) = D(P ||cl(E)) = minQ∈cl(E) D(P ||Q) .

where the minimum is attained uniquely by Q = ΠP→E .
Given a pm P on Z and a set Y ⊆ Z with P (Y ) > 0 let PY denote the pm,

called truncation in [7], given by PY (z) = P (z)/P (Y ) for z ∈ Y and PY (z) = 0
otherwise. Note that the set {Q ∈ Eν,f : QY = PY }, though not given via a
directional statistic, is a full exponential family provided it is nonempty. The
same holds for {Qν,f,ϑ : ϑ ∈ E} whenever E is a linear subspace of Rd.
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3 On the conjugate of log-Laplace transform
In this section, µ is a positive measure on Rd concentrated on a �nite set.

Each point a of the polytope cs(µ) belongs to the relative interior ri(F ) of
a unique face F of cs(µ). If b ∈ F then Facts 2.8 and 2.9 combine to

Λ∗(a + ε(b− a)) = Λ∗(a) + ε 〈ψF (a), b− a〉+ o(ε) , (4)

describing the directional behavior of the function ε 7→ Λ∗(a + ε(b − a)) in a
neighborhood of 0.

Let C denote the convex hull of s(µ) \ F and C+ = C + lin(F ).
If b ∈ cs(µ) \ F then it is not di�cult to see that there exists a positive t

such that a+ t(b−a) belongs to C+ and a 6∈ C+, see Lemmas 6.1 and 6.2. Then
such a minimal t > 0 exists. Denote this number by tab and the nearest point
a + tab(b− a) of C+ from a in the direction b− a by xab.

Let Ξ = ψF (a) + lin(F )⊥ and

Ψ∗C,Ξ(x) = supθ∈Ξ

[ 〈θ, x〉 − ΛC(θ)
]
, x ∈ Rd .

By Lemma 6.8 and Fact 2.5, Ψ∗C,Ξ(xab) is �nite.

Theorem 3.1. If a ∈ ri(F ) for a face F of cs(µ), b ∈ cs(µ) \F and ε > 0 then

Λ∗(a + ε tab (b− a)) = Λ∗(a) + h(ε) + ε
[
Ψ∗C,Ξ(xab)− Λ∗(a)

]
+ o(ε)

where h(ε) = ε ln ε + (1− ε) ln(1− ε).

The proof of Theorem 3.1, preceded by several lemmas, is presented in Section 6.
The following �gure illustrates the notations presented above or used later

in proofs: the support of µ consists of �ve black squares, F is the vertical edge
of the pentagon cs(µ), C is a triangle and C+ an in�nite strip.
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4 Directional derivatives of D(·||E)

In this section, µ = νf , E = Eν,f , P and R are pm's on Z, a = m(Pf ) belongs
to ri(F ) for a face F of cs(µ), ϑ = ψF (a), b = m(Rf ), and r = R(Z \ s(P )).

As well-known, the one-sided directional derivative of D(·||E) at P in the
direction R− P is given by

limε→0+
1
ε

[
D(P + ε(R− P )||E)−D(P ||E)

]

provided the limit, �nite or in�nite, exists. If P dominates R then the limiting
ε → 0 makes sense and gives rise to a two-sided derivative.
Theorem 4.1. If b ∈ F and r = 0 then the two-sided derivative of D(·||E) at P
in the direction R− P equals

∑
z∈s(P ) [R(z)− P (z)] ln P (z)

e〈ϑ,f(z)〉ν(z)
. (5)

If b ∈ F and r > 0 then the one-sided directional derivative of D(·||E) at P
in the direction R− P equals −∞.

If b 6∈ F then this derivative is equal to




+∞ , rtab < 1 ,

−∞ , rtab > 1 ,

T − r
[
Ψ∗C,Ξ(xab)− Λ∗(a) + ln r

]
, rtab = 1 ,

where

T =
∑

z∈s(R)\s(P ) R(z) ln R(z)
ν(z) +

∑
z∈s(P ) [R(z)− P (z)] ln P (z)

ν(z) .

A proof invokes the following simple assertion, demonstrated for readers
convenience at the end of Section 6.
Lemma 4.2. If ε > 0 then

D(P + ε(R− P )||ν) = D(P ||ν) + h(ε) r + ε T + o(ε) .

If additionally r = 0 then this holds also for ε 6 0 with the h(ε)-term omitted.
Proof of Theorem 4.1. If b ∈ F and r = 0 then s(R) ⊆ s(P ), and on account of
(2) the derivative equals the di�erence of coe�cients at the ε-terms in Lemma 4.2
and (4) ∑

z∈s(P ) [R(z)− P (z)] ln P (z)
ν(z) − 〈ϑ, b− a〉

which rewrites to (5).
By the same argument, if b ∈ F and r > 0 then the one-sided derivative is

equal to −∞, due to the nonzero term h(ε) r in Lemma 4.2.
If b 6∈ F then the formula of Theorem 3.1 is equivalent to

Λ∗(a + ε (b− a)) = Λ∗(a) + h(ε) 1
tab

+ ε
tab

[
Ψ∗C,Ξ(xab)− Λ∗(a) + ln 1

tab

]
+ o(ε) .

This, (2) and Lemma 4.2 imply the last assertion.
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The case b 6∈ F in Theorem 4.1 can be further simpli�ed when assuming that
there exist two di�erent parallel hyperplanes HF and HC such that HF ⊇ F
and HC ⊇ C, where C is the convex hull of s(µ) \ F . This implies obviously
that F+ = F + lin(C) and C+ = C + lin(F ) are disjoint. The implication can
be reversed: by [14, Corollary 19.3.3] disjointness of the polyhedral sets F+ and
C+ makes it possible to separate them strongly by a hyperplane H, and then
lin(H) contains lin(F ) and lin(C) whence shifts of H contain F and C.
Theorem 4.3. If b 6∈ F and F+ ∩ C+ = ∅ then rtab > 1. The equality holds
here if and only if R(f−1(F ) \ s(P )) = 0 in which case the one-sided directional
derivative of D(·||E) at P in the direction R− P is equal to

r
[
D(RY ||F)−D(P ||E)

]
+ (1−r)

∑
z∈s(P ) [Rs(P )(z)− P (z)] ln P (z)

e〈ϑ,f(z)〉ν(z)
(6)

where Y = f−1(C), F is the exponential family consisting of QY,f,θ, θ ∈ Ξ, and
the truncation Rs(P ) is well-de�ned if r < 1.
Proof. The �rst assumption implies Rf (F ) < 1 whence s = R(Y ) is positive.
Then, R = sRY + (1− s)Q for the truncation RY and a pm Q concentrated on
f−1(F ) = Z \ Y . Thus, b = m(Rf ) equals sc + (1− s)a′ where c = m(RY

f ) ∈ C

and a′ = m(Qf ) ∈ F . Rewrite a+ 1
s (b−a) to c+ 1−s

s (a′−a) to conclude that it
belongs to C+. The second assumption implies that a ∈ F and C+ are contained
in two parallel hyperplanes whence a+t(b−a) ∈ C+ for a unique t. Then, tab = 1

s
and rtab > 1 follows from the obvious inequality r > s. The second assertion
obtains from the equivalence of r = s and R(f−1(F ) \ s(P )) = 0. Under this
equality

T = rD(RY ||ν) + r ln r − rD(P ||ν) +
∑

z∈s(P ) [R(z)− (1−r)P (z)] ln P (z)
ν(z)

and the derivative equals

r
[
D(RY ||ν)−Ψ∗C,Ξ(xab)−D(P ||E)

]
+ (1−r)

∑
z∈s(P ) [Rs(P )(z)− P (z)] ln P (z)

ν(z)

where the truncation Rs(P ) is well-de�ned if r < 1. Since xab = c + 1−r
r (a′− a),

a′− a ∈ lin(F ), and a′ is the mean of the f -image of Rs(P ) = Q provided r < 1,
rΨ∗C,Ξ(xab) = rΨ∗C,Ξ(c) + (1−r) 〈ϑ, a′ − a〉

= rΨ∗C,Ξ(c) + (1−r)
∑

z∈s(P ) [Rs(P )(z)− P (z)]〈ϑ, f(z)〉 .
Using also the analogue of (2)

D(RY ||F) = infθ∈Ξ D(RY ||QY,f,θ) = D(RY ||ν)− Ψ∗C,Ξ(c)

the above expression for the derivative rewrites to (6).

Sometimes the above simpli�cation of Theorem 4.1 is not available but such
situations are not encountered later due to the following observation proved at
the end of Section 6.
Lemma 4.4. If F+ ∩ C+ 6= ∅ then for some pm Q concentrated on Z \ f−1(F )
the derivative of D(·||E) at P in the direction Q− P is +∞.



Optimality conditions for maximizers of the information divergence from an EF 103

5 Optimality conditions
The results on derivatives of the function D(·||E) presented in the previous sec-
tion imply �rst order conditions for a pm to be a maximizer of this function.
Theorem 5.1. If E = Eν,f and P is a maximizer of the function D(·||E) then P

is equal to the truncation Π
s(P )
P→E of the rI-projection of P to E. If additionally P

is not rI-projectable to E, thus Y = Z \ s(ΠP→E) is nonempty, then f(Y ) ⊆ HY

and f(Z \Y ) ⊆ HZ\Y for two di�erent parallel hyperplanes HY and HZ\Y , and

D(P ||E) > max
{

D(R||EP ) : R is a pm on Z with s(R) ⊆ Y
}

where EP is the exponential family of those truncations QY that arise from
Q ∈ E with QZ\Y equal to ΠP→E .
Proof. Using the notation of Section 4 and Fact 2.11, the support f Π = ΠP→E
is equal to f−1(F ) = Z \Y and Π = QZ\Y,f,ϑ. Since P is a maximizer two-sided
derivatives of D(·||E) at P vanish, and by Theorem 4.1,

∑
z∈s(P ) [R(z)− P (z)] ln P (z)

Π(z)
= 0

for all R dominated by P . This implies P = Π
s(P )
P→E . Moreover, if the maximizer

P is not rI -projectable then no derivative is +∞ whence Theorem 4.1 and
Lemma 4.4 imply the containment in hyperplanes. By Theorem 4.3, for all pm's
R satisfying r = R(Y ) = 1, (6) cannot be positive, and thus D(P ||E) > D(R||F).
It su�ces to observe that F = EP . To this end, observe that the truncation of
Qν,f,θ to Z \ Y is QZ\Y,f,θ. On account of Fact 2.3, this equals Π if and only if
θ − ϑ ∈ lin(F )⊥, thus θ ∈ Ξ.

Remark 5.2. It is not di�cult to reverse argumentation in the previous proof and
show that if the conditions of Theorem 5.1 hold for a pm P then no derivative
of D(·||E) at P is positive.
Remark 5.3. The condition P = Π

s(P )
P→E goes back to [1, Proposition 3.1] under

the assumption that P is rI -projectable on E .
Another necessary condition can be formulated as follows.

Proposition 5.4. If P is a maximizer of D(·||E) then f restricted to s(P ) is
injective and f(s(P )) is a�ne independent.
Proof. On account of (2), the function R 7→ D(R||E) is strictly convex on the
polytope {R : m(Rf ) = a} where a = m(Pf ). Since P is a maximizer is must
be an extreme point of this polytope by [14, Theorem 32.1]. This implies the
assertions.

Remark 5.5. As a consequence, the cardinality of s(P ) is at most the a�ne
dimension of F where F is the face of cs(νf ) with m(Pf ) ∈ ri(F ). This implies
that this cardinality is bounded above by 1 plus the dimension of E , as observed
in [1, Proposition 3.2] for rI -projectable pm's and in [12, Corollary 2] without
this assumption.
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Example 5.6. Let Z consist of six elements depicted as squares in the plane
with the origin a = (0, 0), b = (0, 1), ν(z) = 1 for z ∈ Z \ {b}, ν(b) = w > 0 and
f be the identity mapping on R2 restricted to Z, see the following picture.

-

6

x1

x2

F

a

b

C

Since
m(Q(0,u)) = b

(w+2)eu

3+(w+2)eu , u ∈ R ,

where the fraction equals a positive ε if and only if eu(w + 2) = 3ε
1−ε

ψ(εb) =
(
0 , ln ε

(1−ε)
3

w+2

)
.

By Fact 2.5,

Λ∗(εb) = ε ln ε
(1−ε)

3
w+2

− ln
[
3 + 3ε

1−ε

]
= − ln 3 + h(ε) + ε ln 3

w+2

which is in accordance with Theorem 3.1 where tab = 1, xab = b, Λ∗(a) = − ln 3
and Ψ∗Ξ,C(b) = − ln(w + 2). Note that Ξ is the vertical axis and the expression
〈θ, b〉 − ΛC(θ) is constant for θ ∈ Ξ by Fact 2.4.

Consider the pm's P and R concentrated on a and b, respectively. By (2),

D((1− ε)P + εR||E) = ln 3 + ε ln w+2
3w

.

This is in accordance with Theorem 4.3 where r = 1, C is the upper horizontal
edge of the rectangle cs(νf ), Y = C∩Z has three elements, RY = R, F consists
of the single pm QY,f,θ with θ = (0, 0), D(R||F) = ln w+2

w and D(P ||E) = ln 3.
Since m(Pf ) is outside the interior of cs(νf ) the pm P is not rI -projectable

on E . Actually, ΠP→E = QZ\Y,f,(0,0) is uniform on Z \ Y . The pm P obviously
satis�es the �rst two conditions of Theorem 5.1, having the edges F and C
contained in two parallel lines. The third condition requires

ln 3 > r1 ln r1(w + 2) + r2 ln r2
w+2

w
+ r3 ln r3(w + 2)

for all nonnegative r1, r2 and r3 summing to one. This is equivalent to

ln 3 > max
{

ln(w + 2), ln w+2
w

}

which holds only for w = 1. In this case, all known necessary conditions cannot
decide whether P is a maximizer or not. On the other hand, it is not di�cult
to prove that D(·||E) 6 ln 3 so that P is a global maximizer.
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6 Proof of Theorem 3.1
Recall the assumptions that µ is a positive measure concentrated on a �nite
subset of Rd, a ∈ cs(µ) and b ∈ cs(µ) \ F where F is the unique face of cs(µ)
such that a ∈ ri(F ).

Lemma 6.1. There exists t > 0 such that a + t(b− a) ∈ C+.

Proof. Write b as εc + (1 − ε)a′ with c ∈ C, a′ ∈ F and 0 < ε 6 1, and then
for t = 1

ε express a + t(b− a) as c + t(1− ε)(a′ − a) where the second summand
belongs to lin(F ).

Lemma 6.2. The face F is contained in a hyperplane disjoint with C+.

Proof. Since F is a proper face of cs(µ) there exists a supporting hyperplane
H of cs(µ) such that H ∩ cs(µ) = F . The points of s(µ) \ F belong to one
of the open halfspaces associated to H. It follows that C+ is contained in the
halfspace, using lin(F ) ⊆ lin(H).

Lemma 6.3. If G is a face of C+ then G equals G + lin(F ) = (G∩C) + lin(F ),
ri(G) = ri(G ∩ C) + lin(F ) and G ∩ C is a face of C.

Proof. If g ∈ G then g ∈ C+, and thus g = c+ c′ for some c ∈ C and c′ ∈ lin(F ).
For c′′ ∈ lin(F ) nonzero, g is inside the segment with endpoints c+c′±c′′. Since
the endpoints are in C+ and G is a face of C+ it contains c + c′ + c′′ = g + c′′

for all c′′ ∈ lin(F ). Therefore, G ⊇ G + lin(F ) and c ∈ G ∩ C. This implies
G ⊆ (G∩C)+ lin(F ), and thus the �rst assertion holds. The second one follows
by [14, Corollary 6.6.2]. If εc′ + (1− ε)c′′ ∈ G ∩ C for c′, c′′ ∈ C and 0 < ε < 1
then the εc′ + (1− ε)c′′ ∈ G and c′, c′′ ∈ C+, and using that G is a face of C+ it
contains c′, c′′. It follows that c′, c′′ ∈ G ∩ C whence G ∩ C is a face of C.

By this lemma, if G is the unique face of C+ that contains xab in its relative
interior then G ∩ C, denoted in the sequel by Gab, is a face of C.

Corollary 6.4. xab ∈ ri(Gab) + lin(F ).

Lemma 6.5. There exist two di�erent parallel hyperplanes HF , HG such that
HF ∩ cs(µ) = F , xab ∈ HG, HG ∩ C = Gab and HG strongly separates F from
s(µ) \ (F ∪Gab).

Proof. The segment with endpoints a and xab intersects C+ at its endpoint xab.
By [14, Theorem 20.2] applied to this segment and C+, there exists a hyperplane
H through xab that separates a 6∈ H from C+. On the other hand, xab ∈ ri(G)
for a unique face G of C+, and thus there exists a supporting hyperplane K
of C+ that intersects this set in G. Then H ∩ C+ ⊇ G because H contains a
point from ri(G).

It follows that there exist nonzero θ, ϑ such that the hyperplanes H and K
are de�ned by the equations 〈θ, x− xab〉 = 0 and 〈ϑ, x− xab〉 = 0, respectively.
In addition, the scalar products vanish for x ∈ G, are nonnegative for x ∈ C+,
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〈ϑ, x− xab〉 = 0 with x ∈ C+ implies x ∈ G and 〈θ, a− xab〉 < 0. Then the equa-
tion 〈θ + εϑ, x− xab〉 = 0 with ε > 0 de�nes a supporting hyperplane Hε of C+

that intersects this set in G. Taking ε su�ciently small, 〈θ + εϑ, a− xab〉 < 0,
and thus Hε separates a 6∈ Hε and C+.

With such a choice of ε, let HG = Hε and HF be the shift of HG containing
a 6∈ HG. By Lemma 6.3, G = G+lin(F ), and then G ⊆ HG implies that F ⊆ HF .
By the construction of C, the points of s(µ) are either in F or in C, and thus
HF ∩ cs(µ) = F . By the construction of Hε, xab ∈ HG and HG ∩C+ = G which
implies HG ∩ C = Gab. Then the strict separation takes place.

Lemma 6.6. If E is a linear subspace of Rd, θ ∈ E and x ∈ ri(µ) + E then the
function ϑ 7→ 〈ϑ, x〉 − Λµ(ϑ) has a maximizer ϑ∗ over the set θ + E⊥. The pm
Qµ,ϑ∗ does not depend on the choice of ϑ∗ and x−m(Qµ,ϑ∗) ∈ E.
Proof. Applying [10, Theorem 3.1] to θ + E⊥ (in the role of Ξ, with its barrier
cone equal to E) the function has a unique maximizer over the orthogonal
projection of θ + E⊥ to Ex,µ = lin(x − s(µ)). By Fact 2.4, 〈ϑ, x〉 − Λµ(ϑ)
remains unchanged when ϑ moves orthogonally to Ex,µ, containing lin(µ). It
follows that the function has a maximizer ϑ∗ over θ + E⊥ and the di�erence of
two such maximizers is orthogonal to Ex,µ. By Fact 2.3, Qµ,ϑ∗ is independent
of the choice of ϑ∗. By [10, Theorem 3.2], x − m(Qµ,ϑ∗) is a normal vector of
θ + E⊥ at ϑ∗, thus belongs to E.

From now on Gab is abbreviated to G.
Corollary 6.7. A maximizer ϑ∗ of the function ϑ 7→ 〈ϑ, xab〉 − ΛG(ϑ) with ϑ
in Ξ = ψF (a) + lin(F )⊥ exists, m(QG,ϑ∗) does not depend on its choice and
xab −m(QG,ϑ∗) ∈ lin(F ).
Proof. Lemma 6.6 applies to the restriction of µ to G in the role of µ, the linear
space E = lin(F ), the element θ = ψF (a) of lin(F ) and x = xab, which belongs
to ri(G) + lin(F ) by Corollary 6.4.

The mean m(QG,ϑ∗), independent of ϑ∗, is denoted in the sequel by xab
∗ .

Lemma 6.8. Λ∗G(xab
∗ ) + 〈ψF (a), xab − xab

∗ 〉 = Ψ∗C,Ξ(xab)

Proof. By Fact 2.7, applied to m(QG,ϑ∗) = xab
∗ , where ϑ∗ is a maximizer from

Corollary 6.7, Λ∗G(xab
∗ ) = 〈ϑ∗, xab

∗ 〉−ΛG(ϑ∗). Since ϑ∗−ψF (a) is orthogonal to
lin(F ), containing xab − xab

∗ ,

Λ∗G(xab
∗ )+〈ψF (a), xab − xab

∗ 〉 = 〈ϑ∗, xab〉−ΛG(ϑ∗) > 〈ϑ, xab〉−ΛC(ϑ) , ϑ ∈ Ξ ,

using ΛC > ΛG. Maximizing over ϑ, Ψ∗C,Ξ(xab) emerges on the right.
On the other hand, Lemma 6.5 implies that there exists nonzero τ orthogonal

to lin(F ) such that 〈τ, x− xab〉 6 0 holds for x ∈ C, and the equality takes place
if and only if x ∈ G = Gab. Hence, ϑ∗ + tτ ∈ Ξ, t ∈ R, and
Ψ∗C,Ξ(xab) > 〈ϑ∗ + tτ , xab〉 − ΛC(ϑ∗ + tτ) = − ln

∑
x∈s(µ)\F e〈ϑ

∗+tτ,x−xab〉 µ(x)

where 〈ϑ∗, xab〉 − ΛG(ϑ∗) emerges on the right when t grows to +∞.
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Let bε abbreviate a + ε tab(b− a), equal to a + ε(xab − a). The convex hull
of F ∪G is denoted by A.

Lemma 6.9. If ε > 0 is su�ciently small then bε ∈ ri(A).

Proof. By Corollary 6.4, xab = c + t(a′ − a) with c ∈ ri(G), a′ ∈ F and t > 0.
Then

bε = a + ε
(
c + t(a′ − a)− a

)
= (1− ε)

[
ε t

1−ε
a′ +

(
1− ε t

1−ε

)
a
]

+ εc .

For ε > 0 su�ciently small, the bracket is a convex combination of a′ and
a ∈ ri(F ) whence belongs to ri(F ). Then, bε is a convex combination of elements
from ri(F ) and ri(G), and the assertion follows by [14, Theorem 6.9].

By Lemma 6.9, if ε > 0 is su�ciently small then ϑε = ψA(bε) is well-de�ned.
Denote the means of QF,ϑε and QG,ϑε by cF,ε and cG,ε, respectively. Then

m(QA,θ) = eΛF (θ)−ΛA(θ)cF,ε + eΛG(θ)−ΛA(θ)cG,ε , θ ∈ Rd , (7)

where the coe�cients sum to 1. By Lemma 6.5, two parallel hyperplanes contain
the pairs cF,ε, a and cG,ε, xab, and a geometric argument together with (7) imply
that bε = (1− ε)a + εxab equals m(QA,ϑε) = (1− ε)cF,ε + εcG,ε. In turn,

(1− ε)(cF,ε − a) = ε(xab − cG,ε) (8)

and
ln(1− ε) = ΛF (ϑε)− ΛA(ϑε) ln ε = ΛG(ϑε)− ΛA(ϑε) . (9)

Lemma 6.10. If ε decreases to zero then cF,ε → a and cG,ε → xab
∗ .

Proof. The �rst convergence is a consequence of (8) and cG,ε ∈ ri(G), which is
a bounded set. It implies that ψF (cF,ε), which is the projection of ϑε to lin(F )
by Fact 2.3, converges to ψF (a). Hence, for a maximizer ϑ∗ from Corollary 6.7

D(QG,ϑε ||QG,ϑ∗) + D(QG,ϑ∗ ||QG,ϑε) = 〈ϑε − ϑ∗,m(QG,ϑε)−m(QG,ϑ∗)〉
= 〈ϑε − ϑ∗, cG,ε − xab

∗ 〉 = 〈ψF (cF,ε)− ψF (a), cG,ε − xab
∗ 〉 → 0 .

For a justi�cation of the last equality observe that ϑε−ψF (cF,ε) and ϑ∗−ψF (a)
are orthogonal to lin(F ) while cG,ε − xab

∗ ∈ lin(F ). Note that the latter is sum
of xab − xab

∗ , belonging to lin(F ) by Corollary 6.7, and cG,ε − xab, proportional
to a− cF,ε ∈ lin(F ) by (8). By Pinsker inequality, QG,ϑε → QG,ϑ∗ in variation
distance which, in turn, implies cG,ε → xab

∗ .

Let θε denote the orthogonal projection of ϑε to lin(F ) + lin(G).

Corollary 6.11. If ε decreases to 0 then θε converges.

Proof. By Fact 2.3, ψF (cF,ε) is the orthogonal projection of ϑε to lin(F ), con-
verging by Lemma 6.10. The arguments work also when F is replaced by G.
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Lemma 6.12. Λ∗µ(bε) = Λ∗A(bε) + o(ε)

Proof. The assertion is trivial if B = s(µ) \A is empty. Otherwise, Lemma 6.5
implies existence of a nonzero τ such that the function x 7→ 〈τ, x〉 equals a
constant sF on F , a constant sG < sF on G and is upper bounded by sB < sG

on B = s(µ) \A. Scaling τ if necessary, sF − sG = 1. Let

rε = ΛG(θε)− ΛF (θε) + ln 1−ε
ε

.

Since τ is orthogonal to lin(F )+ lin(G) the means of QF,θε+rετ and QG,θε+rετ

are equal to cF,ε and cG,ε, respectively. It follows from (7), with θε + rετ in the
role of θ, that the mean of QA,θε+rετ equals (1− δ)cF,ε + δcG,ε where

ln 1−δ
δ

= ΛF (θε + rετ)− ΛG(θε + rετ)

= rε(sF − sG) + ΛF (θε)− ΛG(θε) = ln 1−ε
ε

by (9) and the choice of rε. Therefore, δ = ε and m(QA,θε+rετ ) equals the mean
bε of QA,ϑε . This implies

Λ∗µ(bε) > 〈θε+ rετ , bε〉 − Λµ(θε+ rετ) = Λ∗A(bε)− Λµ(θε+ rετ) + ΛA(θε+ rετ)

using Fact 2.7. Here,

ΛA(θε + rετ) = ln
[
erεsF +ΛF (θε) + erεsG+ΛG(θε)

]

and
Λµ(θε) 6 ln

[
eΛA(θε+rετ) + erεsB+ΛB(θε)

]
.

Hence, the value of Λ∗µ − Λ∗A at bε is at least

− ln
[
1 +

erεsB+ΛB(θε)

erεsF +ΛF (θε) + erεsG+ΛG(θε)

]
>− erε(sB−sG)+ΛB(θε)−ΛG(θε)

erε+ΛF (θε)−ΛG(θε) + 1

=− ε erε(sB−sG)+ΛB(θε)−ΛG(θε)

due to the choice of rε. By Corollary 6.11, θε converges whence e−rε is of the
order O(ε). In turn, ε erε(sB−sG) is of the order o(ε), on account of sB−sG < 0.
Therefore, a lower bound to Λ∗µ(bε)−Λ∗A(bε) is of the order o(ε). The assertion
follows by mentioning that Λ∗µ 6 Λ∗A.

Proof o Theorem 3.1. By Lemma 6.12 and Fact 2.9, it su�ces to prove that

Λ∗A(bε) = Λ∗F (a) + h(ε) + ε
[
Ψ∗C,Ξ(xab)− Λ∗F (a)

]
+ o(ε) .

It follows from Fact 2.7, bε = (1− ε)cF,ε + εcG,ε and (9) that

Λ∗A(bε) = 〈ϑε, bε〉 − ΛA(ϑε)

= (1− ε)
[ 〈ϑε, cF,ε〉 − ΛF (ϑε) + ln(1− ε)

]

+ ε
[ 〈ϑε, cG,ε〉 − ΛG(ϑε) + ln ε

]

= h(ε) + (1− ε)Λ∗F (cF,ε) + εΛ∗G(cG,ε) .
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By Lemma 6.10 and (8), the norm of cF,ε−a ∈ lin(F ) is of the order o(ε). Then,
using Fact 2.8,

Λ∗F (cF,ε) = Λ∗F (a) + 〈ψF (a), cF,ε − a〉+ o(ε)

where the scalar product equals ε 〈ψF (a), xab − cG,ε〉+ o(ε) by (8). Therefore,

Λ∗A(bε) = Λ∗F (a) + h(ε) + ε
[
Λ∗G(cG,ε) + 〈ψF (a), xab − cG,ε〉 − Λ∗F (a)

]
+ o(ε) .

This holds also when cG,ε is replaced by xab
∗ because cG,ε → xab

∗ by Lemma 6.10
and Λ∗G is continuous on ri(G). Using Lemma 6.8, the assertion follows.

Proof of Lemma 4.2. Let Pε = P + ε(R− P ). Assuming �rst ε > 0,

D(Pε||ν) =
∑

z∈s(R)\s(P ) εR(z) ln ε R(z)
ν(z) +

∑
z∈s(P ) Pε(z) ln Pε(z)

ν(z) .

In the second sum,

ln Pε(z)
ν(z) = ln P (z)

ν(z) + ln
[
1 + ε R(z)−P (z)

P (z)

]
= ln P (z)

ν(z) + ε R(z)−P (z)
P (z) + o(ε) .

Hence,

D(Pε||ν) = r ε ln ε + ε
∑

z∈s(R)\s(P ) R(z) ln R(z)
ν(z)

+ D(P ||ν) + ε
∑

z∈s(P ) [R(z)− P (z)]
[
1 + ln P (z)

ν(z)

]
+ o(ε) .

This and

ε
∑

z∈s(P ) [R(z)− P (z)] = −r ε = r (1− ε) ln(1− ε) + o(ε)

imply the �rst assertion. If r = 0 the argumentation goes through also for ε 6 0,
omitting corresponding terms.

Proof of Lemma 4.4. First, it is shown that there exists c ∈ C such that tac < 1.
The assumption implies a ∈ aff (C) + lin(F ). Then a = tc′ + (1 − t)c′′ + b′ for
some c′, c′′ ∈ C, b′ ∈ lin(F ) and t ∈ R. By Lemma 6.2, a 6∈ C+ whence t is not
between 0 and 1. Changing the roles of c′ and c′′ if necessary it is possible to
assume that t > 1. Let c = c′′. It follows that a + t−1

t (c − a) equals c′ + 1
t b′

which belongs to C+. Hence, tac 6 t−1
t < 1. Obviously c = m(Qf ) for some pm

Q concentrated on Z \ f−1(F ). Then f−1(F ) ⊇ s(P ) implies Q(Z \ s(P )) = 1,
and the derivative in the direction Q− P is +∞, by Theorem 4.1.
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