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Abstract

According to different typologies of activity and priority, risks can as-
sume diverse meanings and it can be assessed in different ways.

In general risk is measured in terms of a probability combination of
an event (frequency) and its consequence (impact). To estimate the fre-
quency and the impact (severity) historical data or expert opinions (either
qualitative or quantitative data) are used.

In the case of enterprise risk assessment the considered risks are, for
instance, strategic, operational, legal and of image, which many times are
difficult to be quantified. So in most cases only expert data, gathered in
general by scorecard approaches, are available for risk analysis.

The Bayesian Network is a useful tool to integrate different informa-
tion and in particular to study the risk’s joint distribution by using data
collected from experts.

In this paper we want to show a possible approach for building a
Bayesian networks in the particular case in which only prior probabilities
of node states and marginal correlations between nodes are available, and
when the variables have only two states.

1 Introduction

A Bayesian Net (BN) is a directed acyclic graph (probabilistic expert system)
in which every node represents a random variable with a discrete or continuous
state [2, 3]. The relationships among variables, pointed out by arcs (see figure 1),
are interpreted in terms of conditional probabilities according to Bayes theorem.

With the BN is implemented the concept of conditional independence that
allows the factorization of the joint probability, through the Markov property,
in a series of local terms that describe the relationships among variables:

f($1,332, 7xn) = H:Lzl f(a:l|pa(a:l))
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where pa(z;) denotes the states of the parents of the variable X; (child) [1, 2,
3, 6]. This factorization enable us to study the network locally.

One of the problems of a BN is that it requires an appropriate database
to extract the conditional probabilities (parameter learning problem) and the
network structure (structural learning problem)|[1, 3, 13, 17] .

Figure 1: A simple bayesian network. The nodes 1 and 2 (parents) are the
predecessors of the node 3 (child).

The objective is to find the net that best approximates the joint probabilities
and the dependencies among variables.

The learning approaches can be distinguished according to whether the struc-
ture of the net is known or not and if the data are completely or partially ob-
servable [13].

After we have constructed the network one of the common goal of bayesian
network is the probabilistic inference to estimate the state probabilities of nodes
given the knowledge of the values of others nodes. The inference can be done
from children to parents (this is called diagnosis) or vice versa from parents to
children (this is called prediction) [13].

As the case of learning also for the inference we need a good and efficient
methods to calculate the node states in particular when we analyze large net-
works and database [2, 13, 16].

However in many cases the data are not available because the examined
events can be new, rare, complex or little understood. In such conditions ex-
perts’ opinions are used to collect information that will be translated in condi-
tional probability values or in a certain joint or prior distribution (Probability
Elicitation) [17, 20].

There are many problems associated with the gathering of expert probabil-
ities, which many times are affected from biases that can be classified in three
principal classes: motivational, over confidential and cognitive [11, 12].

Such problems are more evident in the case in which the expert is requested
to define too many conditional probabilities due to the number of the variable’s
parents. So, when possible, is worthwhile to reduce the number of probabilities
to be specified by assuming, for instance, some relationships that impose bonds
on the interactions between parents and children.

Among the most used methods for the case of discrete variables there is
the noisy-OR defined by Pearl (1988) and its variations and generalizations as
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noisy-MAX and others [3, 9, 10, 14, 17].

In the business field, Bayesian Nets are a useful tool for a multivariate and
integrated analysis of the risks, for their monitoring and for the evaluation of
intervention strategies (by decision graph) for their mitigation [3, 5, 7].

Enterprise risk can be defined as the possibility that something with an im-
pact on the objectives happens, and it is measured in terms of combination of
probability of an event (frequency) and of its consequence (impact).

To estimate the frequency and the impact distributions historical data as
well as expert opinions are typically used [4, 5, 7, 8]. Then such distributions
are combined to get the loss distribution.

In the case of enterprise risk assessment the considered risks are, for in-
stance: strategic, operational and legal risks, which many times are difficult to
be quantified. So, in general, only data gathered from experts are available for
risk analysis.

In this context Bayesian Nets are a useful tool to integrate historical data
with those coming from experts which can be qualitative or quantitative [20].

Enterprise risk assessment is a part of enterprise risk management (ERM)
whose guidelines are developed by the Committee of Sponsoring the Organiza-
tion of the Treadway Commission (COSO) that creates standard for enterprises,
non-profit organizations and public corporations [15].

The ERM procedure handles the creation of a structure that manages the
uncertainties with the relative risks and the associated opportunities.

The ERM must identify the potential harmful events for the organization.
It has to manage the consequent risks that the organization can accept, to get
value and guarantee the attainment of the business goals.

2 QOur proposal

To learn a Bayesian Net we need to have an adequate database to find the struc-
ture and the parameters (the CPT). Unfortunately, in the real world it is very
difficult to find good data, especially when the studied problem is complex.

What we present in this work is the construction of a Bayesian Net for hav-
ing an integrated view of the risks involved in the building of an important
structure in Italy, where the risk frequencies and impacts were collected by an
ERM procedure unsing expert opinions.

We have constructed the network by using an already existing data base
(DB) where the available information are the risks with their frequencies, im-
pacts and correlation among them. In total there are about 300 risks.

In our work we have considered only the frequencies of risks and no impacts.
With our BN we can construct the risks’ joint probability and the impacts could
be used in a later phase of scenario analysis to evaluate the loss distribution un-
der the different scenarios [5].

In table 1 there is the DB structure used for network learning and in which
each risk is considered as a binary variable (one if the risk exists (yes) and zero if
the risk doesn’t exist (not)). Therefore, for each considered risk in the network
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there will be one node with two states (one =Y and zero = N).

Table 1: Expert values database structure (Learning table)
PARENT | CHILD | CORREL. PARENT FREQ. CHILD FREQ.
RISK A RISK B paB =05 | P(risk A = Yes)=0.85 | P(risk B = Yes)=0.35
RISK A RISK C pac =03 | P(risk A = Yes)=0.85 | P(risk C = Yes)=0.55

The task is, therefore, to find the conditional probabilities tables by using
only the correlations and the marginal frequencies. Instead, the net structure is
obtained from table 1 by following the node relationships given by correlations.

The main ideas for finding a way to construct a BN have been: first to find
the joint probabilities as functions of only the correlations and the marginal
probabilities; second to understand how the correlations are linked with the
incremental ratios or the derivatives of the child’s probabilities as functions
of the parent’s probabilities. This choice is due to the fact that parent and
child interact through the values of conditional probabilities; the derivatives are
directly linked to such probabilities and, therefore, to the degree of interaction
between the two nodes and, hence with the correlation. Afterwards we have
understood as to create the equations, for the case with dependent parents we
have used the local network topolgy to set the equations.

We have been able to calculate the CPT up to three parents for each child.
Although there is the possibility to generalize to more than three parents, it is
necessary to have more data which are not available in our DB. So when four
or more parents are present we have decided to divide and reduce to cases with
no more than three parents. To approximate the network we have “separated”
the nodes that give the same effects on the child (as for example the same
correlations) by using auxiliary nodes [13]. When there was more than one
possible scheme available we have used the mutual information (MI) criterion
as a discriminating index by selecting the approximation with the highest total
MTI; this is the same to choose the structure with the minimum distance between
the network and the target distribution [18, 19].

We have analyzed first the case with only one parent to understand the
framework, then it has been seen what happens with two independent parents
and then dependent. Finally we have used the analogies between the cases with
one and two parents for setting the equations for three parents.

In this paper for lack of space, we show only the calculi and the result for
the case with one parent. To see whats happen to the case with two and three
parents we refer the reader to a more extended paper [21].

2.1 One parent case

The case with one parent (figure 2) is the simplest. Let P(F) and P(C) be the
marginal probability:

e For the parent, F, we have: P(F=Y)=x, P(F=N)=1-x;
e For the child, C, we have: P(C=Y)=y, P(C=N)=1-y;
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Figure 2: One parent scheme.

The conditional probability table (CPT) and the joint probability table look
as in tables 2 and 3.

Table 2: Conditional Probability Table Table 3: Joint Probability Table

P(C|F) | F=Y | F=N P(C,F) | F=Y | F=N
c=Y (%1 a2 C=Y c1 c2
C=N as oy C=N c3 cq

The two matrices can be related using the conditional probability formula:
P(F,C)=P(C)P(F|C)

Marginalizing joint probabilities and using the previous formula, two systems
of equations can be obtained:

CPT equation system Joint equation system

oz + as(l —x) =y; P(F=Y)=c +c3=u;
azx+au(l—x)=1-—y; | PF=N)=co+cs=1—u;
a1 +ag =1; P(C=Y)=c1+c=y;

s +ay =1 P(C=N)=c3+ca=1-y;

Such systems, of course, don’t have an unique solution because one equa-
tion is dependent from the others. Hence one more equation (independent) is
required. To look for such equation we can use the correlation given by the
expert. This correlation is defined formally by:

Cov[X,Y]

P= VVar[X|Var[Y]

Replacing in the correlation formula with the values of variances and covari-
ance calculated for binary variable we obtain:

_ c1—xy _ . _ — —
P= Tioniy =c1 = pM +zy; and M = \/z(1 — 2)y(1 — y)

In this way there is one more equation to be inserted in the joint system and
so we get the joint equation system:

a = pM+uy;
2 = y—pM—uzy;
g = z—pM—uzy;

cs = 1l—y—ax+pM+ xy;
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Once the joint probabilities are found, the CPT can be obtained from con-
ditional probability formula.

Considering that probabilities ¢; and a; must be positive either the marginal
probabilities or the correlation value should be constrained. If the marginal
probabilities are fixed the correlation values must be constrained, which will be
normally the case, as estimates of probabilities are more reliable.

It is not possible to have any value of correlation given the marginal proba-
bilities. Indeed, as we want to maintain the marginal probabilities as fixed by
the expert, correlation limits can be determined as follows:

x
p > -4

M
p < x(lz\;y):B,
b > y‘i‘m(l]\;y)_l:D;

Establishing the maximum between A and D and the minimum between B
and C the correlation can be shown to be constrained to:

p € [max(A, D);min(B,C)];

What we have obtained is a first solution for the problem with one parent;
we can calculate the CPT for a full network (with one parent) using the previous
equations’ system for every two nodes and truncating the correlation every time
is out of the interval range. In this way the error is limited between nodes.

A second solution to our problem can be found using the derivative of the
child’s probability in function of the parent’s probability and replacing the con-
ditional probabilities in function of the joint ones in the CPT system.

More precisely, from the system of conditional probabilities we have:

%:%ZOM*CWZOM*O@:]?;

In this manner one more equation is obtained and the CPT equation system

becomes:

mr+a(l-z) = y
ar—ay = k;
a;t+ag = 1
as+ag = 1

Note that also in this case we cannot have any conditional probability values
given the marginal ones (it is a problem of consistence). This can be seen using
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' i a@xtal-x) =
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Figure 3: Graph that shows how the child’s marginal probability (Y) varies with
that of the parent (X) in function of the conditional probabilities.

the slope coefficient k. For example, in figure 3 we show that with different
values of k, only one probability, either that of the child or that of the parent,
can be one, (points A or B).

When £ is zero the child is independent from the parent and its probability
to be in state Y is as = ag.

Besides, there is only one value for k, given as, such that when P(F =) is
one also P(C =) is one (k*). Furthermore it can be seen that if P(F=Y) is
fixed at the value X4, the maximum value for P(C=Y) varies with k£ among
(Xmama Ya); (Xmama Yb) and A.

The coefficient £ is a function of the correlation and of the marginal proba-
bility. This can be seen by replacing the value of the conditional probabilities
in function of the joint probabilities:

c1 2 pM+ay y—pM —wy pM
k = al —_ a2 = —_ = —_ =
ci+c3 ety T 1—2 z(1—x)
B Var|C)|
-7 Var|F)

As we are in the binary case, we can consider the odds, .+, as dependence
measure. The odds are defined as:
P(A|B) P(A,B

The odds,qtio 1S:

e odds(X =1]Y =1) _ P(X|Y)P(X[Y*).
ratio = OddS(X — 1|Y = O) o P(XC‘Y)P(X|YC)7

When two nodes are independent then:
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P(X)P(X*)
dd ratio — 157 w1/ v\ 1
e T P)P(XY)
The odds for our scheme (in figure 2) are:
c c c c
b11 = —16010 = — 1001 = — 3000 = —;
C2 Cq C1 C2

Dividing the numerator and denominator for cyc3 and replacing the formulas
of the odds, k is found in function of the 6;;:

€102 + 104 — €102 — CaCy 011/010 — 1

c1ca + cieq + czeq +cocs O11 +011/610 + 1+ 610
If the parent and the child are independent, then:

911/910:1<:>k:()<:>p:0

2.1.1 Example

Consider table 4, as an example of expert assignment, that we used to learn the
network structure and parameters in figure 4.

Table 4: Learning table for the network in figure 4.

PARENT | CHILD | CORRELATION | PARENT FREQ. | CHILD FREQ.

NODE 1 NODE 2 0.8 0.85 0.45

NODE 2 NODE 3 0.5 0.45 0.65

Using one of the two systems developed before, the CPTs become as in tables
5 and 6. Moreover, the correlation pis is shifted from 0.8 to 0.38 because its
value is outbound, instead for the correlation pas the value 0.5 is admissible.

The resulting network (using the software GeNle and the values in tables 5
and 6) is in figure 4.

The marginal probabilities are those of the experts but if the node one is set
with another probability, for example P(N1 = y) = 1, then the propagation of
the probability given from the network will be:

P(N1=y)=1= P(N2=y)=0.5294 = P(N3 =y) = 0.6880.
Using such values we can calculate the incremental ratios by the formula:
kg = (y%ew - ygld)/(xizew - xéld); .7 > Z7

and compare them with the theoretical values (in table 7) calculated by using
the values in table 4 and the following formula:

T _ . [Var[Node;], . .
kij = Pij Var[Node;]’ )=

In table 7 the results are reported; the theoretical and the calculated values
can be considered quite close each other.
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Figure 4: Network given from the table 4 whose CPTs (tables 5 and 6) are
calculated by the joint systems.

Table 5: CPT for nodes 1 and 2. Table 6: CPT for nodes 2 and 3.

PMN2N) | M=Y | NI =N PV3IN2) | Na=Y | o =N
No=Y | 0.5294 0 Nz =Y | 09137 | 0.4343
No=N | 04706 1 N3 =N | 00863 | 0.5657

3 Conclusion

What we have presented here is a simplest case but we have also extended the
calculi to when there are two and three parents (independent or not) [21].

However, with two parents the DB’s available correlations are only pairwise
and we miss an important data which is the joint moment among the three
nodes. The joint moment in this situation is considered as a project parameter,
in fact we have more than a result when the joint moment varies. For choosing
among such solutions we use the mutual information as index, by selecting the
joint moment’s value such that gives the minimal mutual information among
the three nodes [18, 19].

One more problem is to look for admissible correlations (between each par-
ent and common child) that in this case are inside an area instead of an interval
as the case with one parent.

For the case with three parents we have to manage more missing data (the
all joint moment among parents’ pair and the child). To treat this case we have
used again the mutual information to look for one solution [21].

In practice we can generalize the equation system to the case with more
than three parents but the raising evident difficulties of setting the joint mo-
ments have led us to stay inside the three parents’ case by separating the parents
with different effects on the child (for example as the incremental ratios).

So, to develop a network we propose to use, separately, firstly the equations
and procedure for the one parent; secondly those for two parents distinguishing
when they are dependent and not. Finally we use the equations and the proce-
dures for the three parents case by distinguishing also in this situation between
dependent and independent parents [21].

Table 7: Comparison between theoretical and calculated incremental ratios.

Incremental ratio (k;;) k1o ko3
Theoretical 0.5294 | 0.4793
Calculated 05293 | 0.4798
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We remark that we need to reduce to a more simple case those configurations
with more than three parents. We can achieve this trying to estimate a local
approximate structure, with only one, two and three parents, by ”separating”
those that give different effects on the child (as for instance different incremental
ratios). If there are more schemes available for the substitution we select that
with the highest MI (I;0147) [18, 19].
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