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Abstract

Starting from an uniform declarative axiomatic treatment of qualita-
tive uncertainty, we introduce a new tool that permits an user-friendly
handling of uncertainty preference orders. The tool combines different
programming paradigms by completing a declarative programming en-
gine (based on Answer Set Programming) with a graphical interface.
Key words: Qualitative uncertainty, axiomatic approach, Answer Set
Programming.

1 Introduction

It is a widespread opinion that qualitative approaches to uncertainty, in par-
ticular when relying on comparative preference elicitation, permit a more in-
tuitive and, in some way, “more realistic” formalization of individual’s be-
lieves [2, 7, 10, 11, 12, 14, 15]. Since qualitative approaches implicitly capture
“Imprecise” (i.e., not unique) models, they turn out to be extremely useful in
sensitivity and sensibility analysis, also offering the advantage of a less complex
modeling. The central idea of such methodologies is to grade uncertainty about
the truth of propositions, through comparisons expressing the judgment “less
(or more) believed to be true”. This operationally translates into the use of
order relations in place of numerical grades.

While they are differentiated by the specific way of combining distinct pieces
of information, a common feature of all different qualitative frameworks is their
axiomatic nature [6, 5]. Considering the human mental process yielding a judg-
ment being guided by a number of heuristics which unconsciously “act behind
the scenes”, it seems reasonable that the different human mental behaviors can
be captured by different formal ways (axioms) of combining believes.

In spite of their valuable features, any qualitative approach to uncertainty
has to be “supported” by a corresponding numerical one, since quantitative ap-
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proaches constitute anyhow valid and useful “reference stones”. For this reason
the classification of qualitative uncertainty notions recalls to numerical uncer-
tainty measures. Often, the terms comparative probabilities, comparative plau-
sibility, etc., are used for the qualitative counterparts of numerical probabilities,
numerical plausibility, and so on.

Because of their generality, in this article we focus on the so called partial
models, i.e. qualitative assessments defined on some of the situations at hand and
intended to be restrictions of some complete models. (Then, we deal with partial
probabilities, partial plausibility, and so on.) On the one hand, this approach
allows the analyst of the problem to focus his/her evaluation on the situations
really judged relevant. On the other hand, it leaves open the possibility to
enlarge the model to other elements that could enter the scene later.

We proceed by first introducing an uniform axiomatic treatment of qualita-
tive uncertainty notions. This uniformity greatly helps in providing the repre-
sentability results for each uncertainty framework. Then we introduce a new
tool, named PreC (standing for Preference Cruncher), that permits an user-
friendly management of qualitative uncertainty assessments. Such a tool con-
stitutes a concretization of both the theoretical ideas expressed in [3, 6, 7] and
the practical intentions proposed in [4, 5]. As we will see, it combines differ-
ent programming paradigms by completing a declarative programming engine
(based on Answer Set Programming) with an user-friendly graphical interface
(written in Java). The former component directly supports plain implementa-
tion of basic reasoning tasks (in our case, qualitative framework detection and
qualitative inference). The latter component instead permits to define events,
impose logical constraints and specify preference relations among events in a
direct and intuitive manner.

The first reasoning task we deal with is qualitative framework detection. It
consists in ascertaining which are the reasonable rules to work with, given an
assessment over a finite set of events. This is realized by detecting which of
the axioms characterizing representable preferences assessments can be applied.
Hence we actually invert the usual attitude towards qualitative management of
uncertainty, where usually a precise framework is chosen in advance and the
models are adapted to it. The qualitative inference task consists in deducing
new knowledge on the basis of the properties of a partial model, when a new
event enters into play. More specifically, once an uncertainty framework for the
domain has been chosen (or detected), we are interested in determining which
is the “minimal” extension of the model, induced by the new event and still
belonging to the chosen class of orderings.

2 Weak preference structures

In dealing with (partial) preference assessments, we consider the domain of dis-
cernment as represented by a finite set of events & = {Ei,...,E,} (among
them, ¢ and Q denote the impossible and the sure event, respectively). Such
events are those relevant propositions on which the subject of the analysis ex-
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presses his/her opinion. Hence, £ does not necessarily represent a full model,
i.e. it does not comprehend all elementary situations and all of their combina-
tions. For this reason, a crucial component of partial assessments are the logical
relationships (incompatibilities, implications, combinations, equivalences, etc.)
holding among events. Such relationships are expressed by means of a collec-
tion C of constraints on (conjunctions and disjunctions of) events. By taking
into account C, the family £ spans a minimal Boolean algebra Ag containing &£
itself. Note that Ag is only implicitly defined via £ and C and it is not a part
of the assessment. Anyway, Ag can be seen as a supporting structure inducing
a lattice structure on A. The atoms of Ag are the minimal elements of the
(sub-)lattice Ag \ {¢}. Then, each event corresponds to a set of atoms and Ag
is (partially) ordered by set inclusion. We have the following notion:

Definition 1 Let Ag¢ be an algebra of events. A binary relation <* over A is
a total preference order if it satisfies the following conditions:*

(A1) <* is a pre-order, i.e. it is reflexive, transitive, and total;
(A2) ¢ =<*Q and (2 <* ¢) (non-triviality);
(A3) for all events X, Y, X CY — (X *Y) (monotonicity ).

*

If X* is a total preference order, ~* and <* are its symmetric and asymmetric

factors, respectively.

To deal with partial assessments, we consider two distinct but correlated rela-
tions, modeling weak and strict user’s preferences, respectively. More formally:

Definition 2 Let < and < be binary relations over a set of events £, such that
E, < Ey — E; < E>. The pair (X,<) is a weak preference structure for &£
(w.p.s., for short) if it exists a total preference order <* over Ag such that:
VE,Ey €& ((El <FE, — E x* Ez) A (El < By — By <* Eg))

Notice that Definition 2 does not require neither < or < to be total orders, nor
=< to be the asymmetric factor of <. On the other hand, it is required that <*
extends =, and that <* (the asymmetric factor of <*) extends <.

Example 1 Consider the following decision making problem in gastroenterol-
ogy.? Patients might suffer from three possible diseases: Peptic ulcer, gastric
cancer, and biliar disease. The symptoms that might be associated to such dis-
eases are jaundice, weight loss, and dark stools. Presence of jaundice indicates
biliar disease, weight loss can be associated to gastric cancer, dark stools might
indicate peptic ulcer or gastric cancer. From data provided by the hospitals we
know that the incidence of peptic ulcer is greater than the incidence of gastric
cancer, while biliar disease affect the majority of the patients. Information use-
ful to make a diagnosis includes age and sex of the patient: Peptic ulcer and

Lin what follows, given any binary relation R, the writing —~(XRY) means that the pair
(X,Y) does not belong to R.

2This example is hypothetical and for illustrative purpose only. It is not intended to express
any clinical competence.
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gastric cancer are more frequent in men; biliar diseases are more often com-
plained by women. Moreover, in male population, incidence of ulcer is greater
then the incidence of biliar disease. As regards age, we can reasonably affirm
that older people are more subject to peptic ulcer or gastric cancer than young
people. This scenario can be so represented:

GC = The real state of suffering from gastric cancer JA = Jaundice symptoms

PU = The real state of suffering from peptic ulcer WL = Weight loss symptoms
BD = The real state of suffering from biliar disease =~ DS = Dark stools

Let M (resp., W) denote the event The patient is male (resp., female), and
OA (resp., YA) denote the event The patient is old (resp., young). Finally, let
us assume that any patient suffers from at most one disease. The knowledge
about diseases and symptoms can be so described in terms of logical constraint:
JANGC=JANPU=WLNPU=¢, WLNBD =DSNBD = ¢, GCNPU =GCNBD =
PUNBD = ¢, GCUPUUBD = Q, OANYA=MNW = ¢, OAUYA = MUW = Q.
Due to events’ meaning, it seems reasonable to describe a w.p.s. as follows:
¢ <GC<PU<BD<Q, GCNW<GCNM,PUNW<PUNM, BDNM <BDNW,
BDNM < PUNM, YAN(GCUPU) x OAN (GCUPU). (]

As regards w.p.s., we have the these counterparts of conditions (A1)—-(A3):
Proposition 1 For any w.p.s. (%, <) for &, the following properties hold:

(A1) if there exist Fy,...,E, € £ such that E1 < By < ... < E, < E1, then
—(E; < Ej) foralli,je{1,...,n};

(A2) —(2<9);
(A?)’) fOT’ all El,Eg S 5, FE1 < Ey — Ey g E.

Conditions (A1’)—(A3’) ensure the existence of a total preference order <*
which enlarges (<, <). Considering numerical approaches to uncertainty, Capac-
ities measures constitute the most general framework, as they express “common
sense” behaviors. Any reasonable relation < must be representable by a partial
Capacity (i.e., a restriction of a Capacity measure to the set of events at hand).
This corresponds to the satisfaction of the conditions (A1’)-(A3’). Notice that,
in the light of (A3’), in what follows we assume all orders being closed under
monotonicity (i.e. for all Fy,Es € £ E1 C Ey — By < E»).

Differentiations among uncertainty notions are done by considering the spe-
cific way of combining distinct pieces of information (e.g. for Probabilities ad-
ditivity is adopted). Within the numerical context, this yields a taxonomy of
numerical measures that reflects on a diversification of preference relations.

The correspondence between a qualitative uncertainty notion and a numer-
ical measure is given in terms of a representability result.

Definition 3 Let £ be a set of events. A total preference order <* over Ag

is said to be representable by a numerical measure f : Ag — [0,1] if for all
El,EQ € Ag it holds that E1 4* E2 — f(El) < f(EQ)
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A w.p.s. (Z,=) for & is said to be representable by a partial uncertainty mea-
sure g : € — [0, 1] if it admits an enlargement <™ over Ag which is representable
by an uncertainty measure g* : Ag — [0, 1] extension of g to Ag.

By following [11, 14, 15, 3, 6], we refer to any specific class of preference orders
according to their agreement with the numerical models. The starting assump-
tion is a w.p.s. (g, <) for & satisfying (A1’)—(A3’). Then, any of the following
specific axiom expresses a necessary and sufficient condition for the existence of
an enlargement <* over Ag which is representable by an uncertainty measure:

(B’) (Comparative belief)
foral XY, ZWe€st. XCY,ZCWCY,W\ZCY\X it holds that
X~Y — —\(Z < W)
(0M’) (Comparative 0-monotonicity)
forall X,Y,Z e &st. X CY,Z CY\ X it holds that
X~Y — (¢ =<2).
(PL’) (Comparative plausibility)
foral XY, Z,We€st. XCY,ZCWCY,W\Z=Y\X it holds that
X <Y = ~(Z~W).
(0A’) (Comparative 0-alternation)
for all X,Y € £€s.t. X CY, it holds that
X~Y ->o(XUQ\Y)=<Q).

Unfortunately, to the best of our knowledge, there exists no purely qualita-
tive characterization of comparative probabilities. This notion seems to have
an intrinsically numerical character. Among the possible characterizations pro-
posed in literature, the following one is drawn from [7]:

(CP) (Comparative probability)
for any Xq,...,X,,Y1,...,Y, € & with Y; < X;,Vi=1,...,n, such that for
some 71,...,T, >0 sup (E?:l ri(a; — bi)) < 0, implies that X; ~Yj, for all
it =1,...,n (where a;,b; are the indicator functions of X;,Y;, resp.).

Axiom (CP) involves quantitative notions (e.g., indicator functions and sum-
mations) and its verification requires numerical elaborations. Nevertheless, it
is possible to (qualitatively) state a necessary, but not sufficient, condition for
representability of an order through a probability function:

(WC) (Weak comparative probability)
forall X,Y,Z €& st. XNZ =Y NZ= ¢, it holds that
XY —->-YUZ<XUZ).

Example 2 Let A, B, and C be three companies, each of them potential buyer
of a firm that some other company wants to sell. Even being distinct, both
A and C belong to the same holding. Hence, the following uncertainty order,
about which company will be the buyer could reflect specific information about
the companies’ strategies (by abuse of notation, let A denote the event “the
company A buys the firm”, and similarly for B and C): ¢ < A < B <
BUC < AUC < Q. Since A, B and C are incompatible, the order relation
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is not representable by a probability because it violates axiom (WC), while it
can be managed in line with belief-functions behaviors because it agrees with
axiom (B’). O

3 Reasoning tasks for preference orders

In this section we describe two reasoning tasks to be seen as the basic con-
stituents of any expert system or decision-support tool that needs to handle
qualitative knowledge in form of comparative assessments.

Qualitative framework detection. This is a classification task: Given
a (partial) assessment (which means a description of domain of discernment,
constraints, and preferences), the goal consists in detecting which is the most
stringent among all compatible uncertainty frameworks. As mentioned, by pro-
ceeding in this way, we invert the usual attitude towards qualitative management
of uncertainty. In fact, specific axioms are usually set in advance, so that only
relations satisfying them are admitted. Here, on the contrary, given a fixed
preference relation, the goal consists in ascertain which are the reasonable rules
to work with. Considering an assessment as the outcome of a reasoning process
performed by an agent (human or not), detecting the correct uncertainty frame-
work provides useful information about the cognitive schema of the agent. This
guides one in determining agent’s conceptualization of uncertainty (i.e., its way
of expressing lack of information and variability of phenomena) and its (implicit)
model of the problem at hand. Such a detection process can be, for instance in a
multi-agent system, of great help in constructing more informed representation
of (other) agents’ models of reality. This translates in better strategies in agent
modeling, decision making, and plan recognition (i.e., the attempt of inferring
the plans of other agents by communicating with them or by observing their
behaviors). The following is an example of framework detection.

Example 3 A physician wants to perform a preliminary evaluation of the reli-
ability of a test for SARS (Severe Acute Respiratory Syndrome). Up to his/her
knowledge, the diagnosis is based on moderate or severe respiratory symptoms
and on the positivity or indeterminacy of a clinical test about the presence of the
SARS-associated antibody coronavirus SARS-CoV. The elements appearing in
such analysis are: A = Normal respiratory symptoms, B = Moderate respiratory
symptoms, C = Severe respiratory symptoms, D = Moderate or severe respiratory
symptoms, E = Death from pulmonary diseases, F = Positive or indeterminate
clinical test, subject to these (logical) restrictions: ANB=(, BNC=0, ANC=0,
AUBUC=(, D=BUC, ECC, FNA= (). Due to events’ meaning, the w.p.s. (%, <)
so described: )<C, C<B, B<A, C<D, E<C, E<D, F<A, AUE~AUC, seems rea-
sonable. Such w.p.s. agrees with the basic axioms of Sec. 2; but it cannot be
managed by using neither a Probability nor a Belief, since it does not satis-
fies the corresponding axioms. However, one can use comparative plausibility,
0-monotone or O-alternating functions. (See Example 5 below.) g
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Qualitative inference. Strictly related to the previous one, this task con-
sists in exploiting the properties of a partial model to infer new knowledge. This
ultimately amounts to finding an extension of a preference relation so as to take
into account one or more events extraneous to the initial assessment. Clearly,
this should be achieved in a way that the extension retains the same character
of the initial order (e.g., both should satisfy the same axioms). More precisely,
let be given an initial (partial) assessment expressed as a w.p.s. (=<, <) over set
of known events £. Assume that (=, <) satisfies the axioms characterizing a
specific class, say C, of orders. Consider a new event S (not in &), implicitly
described by a collection C’ of set-theoretical constraints involving the events
of £. In the spirit of [7, Thm. 3], the problem can be formulated as: Determine
which is the “minimal” extension (x+,<T) (over €U {S}) of (%, =), induced
by the new event, which still belongs to the class €. In other words, we are
interested in ascertaining how the new event S must relate to the members of
& in order that (1, <™) still is in €. To this aim we want to determine the
sub-collections Ls, WLs, Us, and WlUs, of £ so defined:

E € Ls iff no extension <* of < can infer that S <* F
E e WLs iff no extension <* of < can infer that S <* F
FE e€lUs iff no extension <* of < can infer that £ <* S
E € Wids iff no extension <* of < can infer that £ <* S

Consequently, in order to satisfy the axioms characterizing C, any w.p.s. (7

,<T) extending (<, <) must, at least, impose that:

E<*tS VEe€CLs, E<tS VEeWCs,
S<tE VEcUs, S<tE VEeWlUs.

Example 4 Consider the w.p.s. of Example 3 and the new event S = The real
state of suffering from SARS, subject to SCF and FNECS. Since in Example 3
we discovered that the initial preference relation satisfies axiom (PL’), we want
to impose such axiom and compute the extension of the initial order. We will see
in Example 6, that to satisfy (PL’), the following relationships among events
have to be verified: S<AUC, S<AUE, S<D, S<A, S<Q, 0<S, S<F. In other
words, we have § € WLs, {AUC,AUE,D,AQ} C Us, and F € Wlds. Then,
apart from obvious relations induced by monotonicity, no significant constraint
involving S can be inferred. Since S and E can be freely compared, this result
suggests that, either further investigation about relevance of the clinical test or
a revision of the initial preference relation, should be done. O

The availability of automated tools able to extend preference orders, when-
ever new knowledge is acquired, directly suggests applications in expert sys-
tems and decision-support tools. In automated diagnosis, planning, or problem
solving, to mention some examples, one could easily imagine scenarios where
knowledge is not entirely available from the beginning. We could outline how
a rudimental inference process could develop, by identifying the basic steps an
automated agent should perform:
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0) Acquisition of an initial collection of observations about the object of the
analysis, together with a (qualitative) partial preference assessment;

1) Detection of which is the most adequate (i.e., the most discriminant) uncer-
tainty framework;

2) Whenever new knowledge becomes available, refine agent’s description of the
real world by performing order extension.

The results of step 2) can be used to guide further investigations on the real

world and to obtain new knowledge; the process iterates until further pieces of

information can be obtained or an enough accurate degree of believe is achieved.

4 PreC: Working with preference orders

In this section we briefly describe the tool PreC. We start by providing an exe-
cutable declarative specification of the uncertainty notions introduced in Sec. 2.
In doing this we exploit the framework of Answer Set Programming (ASP). A
detailed treatment of such a form of logic programming can be found, for in-
stance, in [1]. To fit the purposes of this article, we limit ourselves to present a
simplified form of ASP (namely, we do not deal with classical negation). In this
logical framework, a problem can be encoded—by using a function-free logic
language—as a set of properties and constraints which describe the (candidate)
solutions. More specifically, an ASP-program is a collection of rules of the form

Ly;---5Lg;not Lgyq;---3not Ly - Loyq, ..., Ly, not Lyyyq,...,not Ly,
where n > m > /¢ > k > 0 and each L; is an atom A (note that in generic ASP
each L; could be an atom A or the classical negation of an atom —A). Here
“not” stands for negation-as-failure.®> The left-hand side and the right-hand
side of the rule are said head and body, respectively. A rule with empty head
is a constraint. (Intuitively speaking, the literals in the body of a constraint
cannot be all true, otherwise they would imply falsity.)

Semantics of ASP is expressed in terms of answer sets. Consider first the
case of an ASP-program P which does not involve negation-as-failure (i.e., £ = k
and n = m). In this case, a set X of atoms is said to be closed under P if for each
rule in P, whenever {L;11,..., Ly} C X, it holds that {L1,..., Ly} N X # 0.
If X is inclusion-minimal among the sets closed under P, then it is said to be
an answer set for P. Such a definition is extended to any program P containing
negation-as-failure by considering the reduct PX (of P). P¥ is defined as the
set of rules of the form Lqi;---;Lg - Lgiq,..., Ly, for all rules of P such that
X contains all the atoms Ly1, ..., Ly, but does not contain any of the atoms
Lys1s...,Ly. Clearly, PX does not involve negation-as-failure. The set X is
an answer set for P if it is an answer set for PX.

Once a problem is described as an ASP-program P, its solutions (if any)
are represented by the answer sets of P. Notice that an ASP-program may
have none, one, or several answer sets. As a simple example, let us consider the
program P consisting of the two rules p; ¢ :-. and 7 :- p. Such a program has two

3In ASP syntax, ’, and ;' stand for logical conjunction and disjunction, respectively.
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answer sets: {p,r} and {q}. If we add the rule (actually, a constraint) :-gq. to
P, then we rule-out the second of them, because it violates the new constraint.
This simple example reveals the core of the usual approach followed in formaliz-
ing/solving a problem with ASP. Intuitively speaking, the programmer adopts
a “generate-and-test” strategy: First (s)he provides a set of rules describing the
collection of (all) potential solutions. Then, the addition of constraints rules-
out all those answer sets that are not desired real solutions. Expressive power
of ASP, as well as, its computational complexity have been deeply investigated
(see [9], among others). Several ASP-solvers have became available and can be
used to find the solutions of an ASP-program [16].

Apart from qualitative probabilities, all axioms in Sec. 2 involve only log-
ical and preference relations and are of direct declarative reading. It is then
rather immediate to provide an ASP specification of them. We start by defining
in ASP the predicates prec(-,-), precneq(-,-), and equiv(-,-), to render the rela-
tors <, <, and ~, respectively. Potential legal answer sets are characterized
by asserting properties of prec(-,-), precneq(-,-), and equiv(-,-). (Auxiliary predi-
cates/functions set-theoretical constructs, such as event(-), subset(-,-), diffset(-,-),
are introduced and are of immediate reading.) For instance (A3’) is rendered
by weeding out all answer sets where X C Y AY < X holds for some X and Y:

- event(X), event(Y), subset(X,Y), precneq(Y,X).
As regards preference classification, let us consider one of the axioms of Sec. 2,
say (B’). The following rule is also of immediate reading:
failsB :- event(X), event(Y), event(Z), event(W),

subset(X,Y), X!=Y, subset(Z,W), ZI=W, subset(W,Y), WI=Y,

subset(diffset(W,Z),diffset(Y,X)), equiv(X,Y), precneq(Z,W).
Namely, the fact failsB is true (i.e., belongs to the answer set) whenever there
exist events falsifying (B’). All other axioms can be treated similarly.

When an ASP-solver is fed with such program and a description of a pref-
erence relation (i.e., a set of facts of the forms prec(-,-), precneq(-,-), equiv(-,-)),
different outcomes may be obtained. Namely, if no answer set is produced, then
the input w.p.s. violates some basic requirement, such as axioms (A1’)—(A3’).
Otherwise, if an answer set is generated, there exists a numerical (partial) model
representing the input w.p.s. The presence in the answer set of a fact of the form
failsC (say failsB), witnesses that the corresponding axiom ((B’) in the case) is
violated. Consequently, the given order (as well as any of its extensions) is not
compatible with the uncertainty framework ruled by C.

Example 5 Consider the Example 3. The w.p.s. (5, <) can be so described in
the syntax of ASP:*

precneq(N,C) :- empty(N). precneq(C,B). precneq(C,D). precneq(E,C).
equiv(unionset(A,E),unionset(A,C)). precneq(E,D). precneq(F,A). prec(B,A).

As expected, if such ASP specification is given as input to Smodels, the an-

4For the sake of readability, in Examples 5 and 6 we use the symbols A, B, C, D, E, F, and
S to denote specific events. In the real ASP-program such symbols have to be replaced by the
proper constants chosen to represent the events at hand.
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swer set found includes the facts failsB1 and failsWC, testifying that the given
assessment does not satisfy both axioms (B’) and (WC). O

In the case of order extension, the input knowledge consists in a set of events
together with a collection of logical constraints and preferences, a description of
a the new event, and one or more axioms to be imposed. The handling of the
imposed axioms is done by ASP-rules of the form:

:- holdsB, event(X), event(Y), event(Z), event(W),

subset(X,Y), XI=Y, subset(Z,W), ZI=W, subset(W,Y), WI=Y,

subset(diffset(W,Z),diffset(Y,X)), equiv(X,Y), precneq(Z,W).
Compare this constraint with the similar rule introduced to implement the clas-
sification task. Since a constraint is satisfied when at least one of the atoms
in its body is false, by such rule we declare “undesirable” any extension for
which an axiom ((B’), in this case) is violated. Intuitively speaking, whenever
the fact holdsB is true, in order to satisfy the above rule, at least one of the
other facts must be false. (Notice that, these facts are all true exactly when
(B’) is violated.) In order to activate this constraint (i.e. to impose axiom (B’))
it suffices to add the fact holdsB to the input of the solver. In general, more
than one extension is possible, hence the collections Ls, WLs, Us, and Wls
can be obtained by computing the intersection Cn of all the answer sets (Or,
equivalently, by computing the set of logical consequences of the ASP-program,
if this feature is offered by the specific ASP-solver under consideration.) This
allows one to detect the minimal extension of the preference relation which is
mandatory for each total order.

Example 6 Consider the Example 4. The following facts belong to each answer
set and are obtained by filtering Smodels’ output: precneq(S,AC), precneq(S,AE),
precneq(S,D), precneq(S,A), precneq(S,0), prec(E,S), prec(S,F), where AC, AE,
0, and E are instantiated to the events AUC, AUE, €, and (), respectively. [

The executable specifications we outlined in this section (together with the
ASP-solver and a C-library of functions designed to efficiently handling sets
and operations on sets) constitute the core inference-engine of the prototypical
tool PreC. This tool is aimed at assisting the user in interactively dealing with
(partial) preference orders and qualitative uncertainty. PreC offers an user-
friendly and mouse-oriented interface to input, modify, and manage assessments;
to activate the reasoning tasks; and to handle order extensions as described in
the previous sections. In this manner the user does not interact directly with
the ASP-solver and does not handle any ASP-specification. Actually, due to
the declarative nature of the ASP rules, it is rather immediate to plug a (new)
specification of an axiom within the application. Moreover, both the solver
and the ASP code could be changed or improved in a transparent manner to
improve and extend the tool. Figure 1(1) depicts the main window of PreC,
through which the user can describe, manage, and modify his/her assessments.
The visualization of preference orders in form of graphs (cf., Figure 1(r)) allows
the user to modify or extend the set of events, for instance in preparation of the
execution of one of the inference tasks of Sec. 3.
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Figure 1: Browsing (1) and visual management (r) of preferences in Prec.

Conclusions

In this article we proposed a straightforwardly translation of partial preference
axiomatizations into an executable specification in a declarative programming
framework. This allowed us to explore the potentialities offered by Answer
Set Programming for building decision support systems based on qualitative
judgments. Hence, an implementation of what could be thought as a kernel of
an inference engine sprouted almost naturally. Moreover, the highly declara-
tive character of the encoding of the axioms into executable ASP-specifications
makes it possible to easily modify and extend the treatment to deal with new no-
tions of uncertainty. Similarly, the discovery of alternative axiomatizations of an
uncertainty notion can be immediately “plugged-in” the framework just modify-
ing or adding suitable ASP rules (consider, for instance, the case of comparative
Probabilities, for which no qualitative characterization has been found to date).
Alternatively, a challenging goal for future research consists in completing our
approach so as to handle comparative Probabilities through integration with
efficient numerical approaches such as linear optimization tools (e.g., column
generation techniques, cf. [13], among others). More in general, we envisage the
design of a full-blown automated system which integrates different (in some way
complementary) techniques and methods for uncertainty management; compre-
hending mixed numerical/qualitative assessments and extending the range of
applicability to conditional probability frameworks [8].
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