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Abstract 
In this paper, we describe how a stochastic PERT network can be 
formulated as a Bayesian network. We approximate such PERT Bayesian 
network by mixtures of Gaussians hybrid Bayesian networks. Since there 
exists algorithms for solving mixtures of Gaussians hybrid Bayesian 
networks exactly, we can use these algorithms to make inferences in PERT 
Bayesian networks. 

1 Introduction 

Program Evaluation and Review Technique (PERT) was invented in 1958 
for the POLARIS missile program by the Program Evaluation branch of the 
Special Projects Office of the U. S. Navy, assisted by consultants from Booz, 
Allen and Hamilton [13]. A parallel technique called Critical Path Method 
(CPM) was invented around the same time by Kelley and Walker [9]. Both 
PERT and CPM are project management techniques whose main goal is to 
manage the completion time of a large project consisting of many activities 
with precedence constraints, i.e., constraints that specify which other 
activities that need to be completed prior to starting an activity. 
 In PERT, a project is represented by a directed acyclic network where 
the nodes represent duration of activities and the arcs represent precedence 
constraints. In classical PERT, duration of activities are assumed to be 
known constants, and the task is to identify a “critical path” from start-time 
to finish-time such that the project completion time is the sum of the duration 
of the activities on the critical path. These activities are called critical, since 
a project could be delayed if these activities were not completed in the 
scheduled time. In stochastic PERT, activities are considered as random 
variables with probability distributions, and the main task is to compute the 
marginal probability distribution of the project completion time. 
 The problem of computing the marginal probability distribution of the 
project completion time is a difficult problem. Thus many approximate 
techniques have been developed. A classic solution proposed by Malcolm et 
al. [13] is to assume that all activities are independent random variables and 
that each activity has an approximate beta distribution parameterized by 
three parameters: mean time m, minimum (optimistic) completion time a, 
and maximum (pessimistic) completion time b. The expected duration of 
each activity is then approximated by (a + 4m + b)/6, and its variance is 
approximated by (b – a)2/36. Using the expected duration times, the critical 
path is computed using the classical deterministic method. The mean and 



184 E. N. CINICIOGLU, P. P. SHENOY 

variance of the distribution of the project completion time is then 
approximated as the sum of the expected durations and the sum of variances 
of the activities on a critical path. 
 Another approximation is to assume that all activity durations are 
independent and having the Gaussian distribution [15]. The completion time 
of an activity i is given by Ci = Max{Cj | j ∈Π(i)} + Di, where Cj denotes the 
completion time of activity j, Dj denotes the duration of activity j, and Π(i) 
denotes the parents (immediate predecessors) of activity i. The maximum of 
two independent Gaussian random variables is not Gaussian. However, the 
distribution of Ci is assumed to be Gaussian with the parameters estimated 
from the parameters of the parent activities. Depending on the values of the 
parameters, this assumption can lead to large errors. 
 Kulkarni and Adlakha [10] compute the distribution and moments of 
project completion time assuming that the activity durations are independent 
and having the exponential distribution with finite means. They call such 
stochastic PERT networks Markov networks. 
 If we don’t assume independence of activity durations, the problem of 
computing the marginal distribution of the project completion time becomes 
computationally intractable for large projects. One solution to this problem is 
to use Monte Carlo techniques with variance reduction techniques to 
estimate the distribution of project completion time or its moments [2, 5, 7, 
17, 18]. Another solution is to provide lower bounds for the expected project 
completion time [see e.g., 4, 6, and 14]. Elmaghraby [4] provides a review of 
Monte Carlo and bounding techniques. 
 Jenzarli [8] suggests the use of Bayesian networks to model the 
dependence between activity durations and completions in a project. 
However, such Bayesian networks are difficult to solve exactly since they 
may contain a mix of discrete and continuous random variables. One solution 
recommended by Jenzarli is to use Markov chain Monte Carlo techniques to 
estimate the marginal distribution of project completion time. 
 In this paper, we explore the use of exact inference in hybrid Bayesian 
networks using mixtures of Gaussians proposed by Shenoy [16] to compute 
the exact marginal distribution of project completion time. Activities 
durations can have any distribution, and may not be all independent. We 
model dependence between activities using a Bayesian network as suggested 
by Jenzarli [8]. We approximate non-Gaussian conditional distributions by 
mixtures of Gaussians, and we reduce the resulting hybrid Bayesian network 
to a mixture of Gaussian Bayesian networks. Such hybrid Bayesian networks 
can be solved exactly using the algorithm proposed by Lauritzen and Jensen 
[2001], which is implemented in Hugin, a commercially-available software 
package. We illustrate our approach using a small PERT network with five 
activities. 

2 An Example of a PERT Bayes Net 

Consider a PERT network as shown in Figure 5 with five activities, A1, …, 
A5. S denotes project start time, and F denotes project completion time. The 
directed arrows in a PERT network denote precedence constraints. The 
precedence constraints are as follows. A3 and A5 can only be started after A1 
is completed, and A4 can only be started after A2 and A3 are completed. The 
project is completed after all five activities are completed. 
 Using the technique described in Jenzarli [8], we will describe the 
dependencies of the activities by a Bayesian network. Let Di denote the 
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duration of activity i, and let Ci denote the earliest completion time of 
activity i. Let C23 denote earliest completion time of activities 2 and 3. Since 
our goal is to compute the marginal distribution of the earliest completion 
time of the project, we will assume that each activity will be started as soon 
as possible (after completion of all preceding activities). Also, we assume 
that S = 0 (with probability 1). 
 The interpretation of PERT networks as Bayes Nets allows us to depict 
the activity durations that are dependent on each other. For instance, in the 
current example durations of activities 1 and 3 and durations of activities 2 
and 4 are positively correlated. Considering the dependencies between the 
activities, we convert the PERT network to a Bayes net following two basic 
steps. First activity durations are replaced with activity completion times, 
second activity durations are added with an arrow from Di to Ci so that each 
activity is represented by two nodes. However, notice that the activities 1 and 
2 are represented just by their durations, as D1 and D2. The reason for that is 
that they are starting activities and since they do not have any predecessors, 
the completion times of the activities will be the same as their durations. 

 
Figure 1: A stochastic PERT network with five activities. 

 
Figure 2: A Bayes net representation of the dependencies of the activities in 

the PERT network of Figure 1. 
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3. Mixtures of Gaussians Bayesian Networks 

Mixtures of Gaussians (MoG) hybrid Bayesian networks were initially 
studied by Lauritzen [1992]. These are Bayesian networks with a mix of 
discrete and continuous variables. The discrete variables cannot have 
continuous parents, and all continuous variables have the so-called 
conditional linear Gaussian distributions. This means that the conditional 
distributions at each continuous node have to be Gaussian such that the mean 
is a linear function of its continuous parents, and the variance is a constant. 
MoG Bayesian networks have the property that for each instantiation of the 
discrete variables, the joint conditional distribution of the continuous 
variables is multivariate Gaussian. Hence the name ‘mixtures of Gaussians.’ 
An example of a MoG Bayesian network is as shown in Figure 3. 

 
Figure 3: An example of a MoG Bayes net. 

4 Converting a non-MoG Bayes Net to a MoG Bayes Net 

Consider the Bayes Net shown in Figure 2. It is not a MoG Bayesian network 
since D5 has a non-Gaussian distribution, and C23 and F have a non-linear 
conditional Gaussian distribution. 
 We will convert this Bayes net to a MoG Bayes net so that we can use 
the Lauritzen-Jensen algorithm to compute marginals of the MoG Bayes net. 
Before we do so, we first explain how we can approximate a non-Gaussian 
distribution by a MoG distribution, and how we can approximate a max 
deterministic function by a MoG distribution. 

4.1 Non-Gaussian Distributions 

In this subsection, we will describe how the exponential distribution E[1] can 
be approximated by a MoG distribution. 
 Let A denote a chance variable that has the exponential distribution with 
mean 1, denoted by E[1], and let fA denote its probability density function 
(PDF). Thus 

fA(x)  = e–x  if 0 ≤ x 
 = 0  otherwise 

 In approximating the PDF fA by a mixture of Gaussians, we first need to 
decide on the number of Gaussian components needed for an acceptable 
approximation. In this particular problem, more the components used, better 
will be the approximation. However, more components will lead to a bigger 
computational load in making inferences. We will measure the goodness of 
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an approximation by estimating the Kullback-Liebler divergence measure 
between the target distribution and the corresponding MoG distribution. 
 Suppose we use five components. Then we will approximate fA by the 
mixture PDF gA = p1 ϕµ1, σ1

 +… + p5 ϕµ5, σ5
, where ϕµi, σi

 denote the PDF of a 
uni-variate Gaussian distribution with mean µi and standard deviation σi > 0, 
p1, …, p5 ≥ 0, and p1+…+ p5 = 1. To estimate the mixture PDF, we need to 
estimate fourteen free parameters, e.g., p1, …, p4, µ1, …, µ5, σ1, …, σ5. To 
find the values of the 14 free parameters, we solve a non-linear optimization 
problem as follows: 

Find p1, …, p4, µ1, …, µ5, σ1, …, σ5, so as to minimize δ(fA, gA) 
subject to: p1 ≥ 0, …, p4 ≥ 0, p1+ … +p4 ≤ 1, σ1 ≥ 0, …, σ5 ≥ 0, 

where δ(fA, gA) denotes a distance measure between two PDFs. A commonly 
used distance measure is Kullback-Leibler divergence δKL defined as 
follows: 
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 In practice, we solve a discrete version of the non-linear optimization 
problem by discretizing both fA and gA using a large number of bins. To 
discretize gA, we assume that the domain of ϕµi, σi

 extends only from µi – 3σi 
to µi + 3σi. With probability greater than 0.99, the domain of E[1] extends 
from [0, 4.6]. To match the domain of the E[1] distribution, we constrain the 
values µi – 3σi ≥ 0 and µi + 3σi ≤ 4.6 for i = 1, …, 5. Suppose we divide the 
domain into n equally sized bins. Let fi and gi denote the probability masses 
for the ith bin corresponding to PDFs fA and gA, respectively Then the 
discrete version of the non-linear programming problem can be stated as 
follows: 
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 subject to:  p1 ≥ 0, …, p4 ≥ 0, p1+ … + p4 ≤ 1,  
  σ1 ≥ 0, …, σ5 ≥ 0, 
  µ1 – 3σ1 ≥ 0, …, µ5 – 3σ5 ≥ 0, 
  µ1 + 3σ1 ≤ 4.6, …, µ5 + 3σ5 ≤ 4.6 
 One can use the solver in Excel to solve such optimization problems 
taking care to avoid local optimal solutions. An optimal solution computed in 
Excel with n = 100 (shown rounded to 3 digits) is shown in Table 1. 

i pi µi σi 
1 0.051 0.032 0.011 
2 0.135 0.143 0.048 
3 0.261 0.415 0.138 
4 0.341 1.014 0.338 
5 0.212 2.300 0.767 

Table 1: Parameters of the MoG Approximation to the E[1] distribution. 

 A graph of the two PDFs overlaid over each other is shown in Figure 4. 
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Figure 4: A 5-component MoG approximation (solid) of the E[1] distribution 

(dashed). 

 
Figure 5: The CDFs of the E[1] distribution (dashed), and its MoG 

approximation (solid). 

 To measure the goodness of the approximation, we can compute the 
Kullback-Leibler (KL) divergence of the two distributions over the domain 
[0, 4.6] where both densities are positive. The KL divergence is 
approximately 0.021. We can also compare moments. The mean and 
variance of the E[1] distribution are 1 and 1. The mean and variance of the 
MoG approximation are 0.96 and 0.76. We can also compare the cumulative 
distribution functions (CDF). A graph of the two CDFs overlaid over each 
other is shown in Figure 5. 
 If we need to get a MoG approximation of the E[λ] distribution, we can 
derive it easily from the MoG approximation of the E[1] distribution. If X ~ 
E[1], and Y = λ X, then Y ~ E[λ]. Thus, to get a MoG approximation of 
E[25], e.g., the mixture weights pi’s don’t change, but we need to multiply 
each mean µi and σi in Table 1 by 25. 

4.2 Maximum of Two Random Variables 

In this subsection, we will describe how a deterministic variable that is a 
maximum of two random variables can be approximated by a MoG Bayes 
net. Consider a Bayes net as shown in Figure 6. We will describe how this 
non-MoG Bayes net can be converted to a MoG Bayes net. 
 The Bayes net shown in Figure 6 has three random variables: C3 ~ N(14, 
3), D2 ~ N(14, 9). D2 and C3 are independent, and C23 is conditionally 
deterministic. Since the deterministic function is not linear, the joint 
distribution of C3, D2, and C23 is not multivariate normal. 
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 In approximating a Bayes net with MoG Bayes net, we will assume that 
the effective domain of a univariate Gaussian distribution with mean µ and 
standard deviation σ is (µ – 3σ, µ + 3σ). Thus, the domain of C3 is (3.18, 
24.82) and the domain of D2 is (5, 23). 
 Our first step is to introduce a new discrete random variable B23 as 
shown in Figure 7. B23 has two states b2 and b3, and with C3 and D2 as 
parents. The conditional distributions of B23 are as follows: P(b2|c3, d2) = 1 if 
c3 − d2 ≤ 0, and P(b2|c3, d2) = 0 if c3 − d2 > 0. Thus we can think of B23 as an 
indicator random variable which is in state b2 when c3 ≤ d2, and in state b3 
when c3 > d2. We make B23 a parent of C23, and the conditional distributions 
of C23 can now be expressed as a conditional linear Gaussian as shown in 
Figure 7. Notice that the conditional distributions of all continuous variables 
are conditional linear Gaussians. The Bayes net is not a MoG Bayes net yet 
since B is a discrete random variable with continuous parents C3 and D2. 

 
Figure 6: A Bayes net with a max deterministic variable 

 
Figure 7: The augmented Bayes net with an additional discrete random 

variable B23 

 Our next step is to do a sequence of arc reversals so that the resulting 
Bayes net is an equivalent MoG Bayes net. We need to reverse arcs (C3, B23) 
and (D2, B23) in either sequence. Suppose we reverse (C3, B23) first and then 
(D2, B23). 
 Since C3 is continuous and B23 is discrete, we use the notation of mixed 
potentials introduced by Cobb and Shenoy [2006]. Let ε denote the mixed 
potential at C3, and let β denote the mixed potential at B23. Thus, ε(c3) = (1, 
ϕ14, 13 (c3)), where ϕµ, σ(.) denotes the probability density function of a 
univariate Gaussian distribution with mean µ and standard deviation σ, and β 
is as follows: 

 β(b2, c3, d2) = (1, ι)  if c3 − d2 ≤ 0 
   = (0, ι)  if c3 − d2 > 0 
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 β(b3, c3, d2) = (0, ι)  if c3 − d2 ≤ 0 
   = (1, ι)  if c3 − d2 > 0 

 
Figure 8: The Bayes net resulting from reversal of arc (C3, B23) 

 Now reverse the arc (C3, B23), we first combine ε and β (obtaining ε⊗β), 
then compute the marginal of ε⊗β by removing C3 (obtaining (ε⊗β)–C3, and 
finally divide ε⊗β by (ε⊗β)–C3 (obtaining (ε⊗β)/(ε⊗β)–C3). The potential 
(ε⊗β)–C3 (= β′, say) is then associated with B23 and the potential 
(ε⊗β)/(ε⊗β)–C3 (= ε′, say) is associated with C3 in the new Bayes net shown 
in Figure 8. The details of these potentials are as follows. 

(ε⊗β)(b2, c3, d2) = (1, ϕ14, 13 (c3)) if c3 − d2 ≤ 0 
    = (0, ϕ14, 13 (c3)) if c3 − d2 > 0 

(ε⊗β)(b3, c3, d2) = (0, ϕ14, 13 (c3)) if c3 − d2 ≤ 0 
    = (1, ϕ14, 13 (c3)) if c3 − d2 > 0 

 (ε⊗β)–C3 (b2, d2) = β′(b2, d2) = ( !
"#

2
d

ϕ14, 13 (c3)dc3, ι) 

 (ε⊗β)–C3 (b3, d2) = β′(b3, d2) = ( !
"

2
d

ϕ14, 13 (c3)dc3, ι) 

 Let P(b2|d2) denote !
"#

2
d

ϕ14, 13 (c3)dc3. Notice that !
"

2
d

ϕ14, 13 (c3)dc3 =  

1 − P(b2|d2). The details of ε′ are as follows. 

ε′(b2, c3, d2) = (1/P(b2|d2), ϕ14, 13 (c3))  if c3 − d2 ≤ 0 
   = (0, ϕ14, 13 (c3))   if c3 − d2 > 0 
ε′(b3, c3, d2)  = (0, ϕ14, 13 (c3))   if c3 − d2 ≤ 0 
   = (1/(1 – P(b2|d2)), ϕ14, 13 (c3)) if c3 − d2 > 0 

 Notice that the conditional probability densities of C3 (given B23 and D2) 
are no longer conditional linear Gaussians. Later (after we are done with arc 
reversals), we will approximate these conditional distributions by mixtures of 
Gaussians. 
 Next we need to reverse (D2, B23). Suppose the potential at D2 is denoted 
by δ. Details of the arc reversal are as follows: 
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δ(d2) = (1, ϕ14,3(d2)), β′(b2, d2) = (P(b2|d2), ι),  
  β′(b3, d2) = (1 − P(b2|d2), ι) 

(δ⊗β′)(d2, b2,) = (P(b2|d2), ϕ14,3(d2)) = (1, P(b2|d2) ϕ14,3(d2)) 
(δ⊗β′)(d2, b3) = (1−P(b2|d2), ϕ14,3(d2)) = (1, (1 − P(b2|d2) ϕ14,3(d2)) 

(δ⊗β′)–D2(b2) = β′′(b2) = ( !
"

"#

P(b2|d2)ϕ14,3(d2)dd2, ι) = (0.5, ι) 

(δ⊗β′)–D2(b3) = β′′(b3) = ( !
"

"#

(1 – P(b2|d2)ϕ14,3(d2)dd2, ι) = (0.5, ι) 

(δ⊗β′)/(δ⊗β′)–D2(d2, b2) = δ′(d2, b2) = (1, 2P(b2|d2) ϕ14,3(d2)) 
(δ⊗β′)/(δ⊗β′)–D2(d2, b3) = δ′(d2, b3) = (1, 2(1 − P(b2|d2)) ϕ14,3(d2)) 

 Notice that the potential δ′ represents conditional probability densities 
for D2 given b2 and b3. Clearly, these are not conditional linear Gaussians. 
The revised Bayes net is shown in Figure 9. 
 Notice that the Bayes net in Figure 9 is almost a MoG BN except for the 
fact that the potentials ε′ and δ′ are not conditional linear Gaussians. We can 
approximate these potentials by mixtures of Gaussian potentials using the 
optimization technique described in Shenoy [2006]. 

 
Figure 9: The Bayes net after reversal of arc (D2, B23) 

 First, we need to approximate δ′, the conditional density functions δ′(d2, 
b2) = (1, 2P(b2|d2)ϕ14,3(d2)) and δ′(d2, b3) = (1, 2(1 − P(b2|d2))ϕ14,3(d2)) by 
mixtures of Gaussians. For that, first we need to decide how many Gaussian 
components are needed for an acceptable approximation. Increasing the 
number of components used, might improve the approximation however with 
more components in use the computational load will also increase. Keeping 
that in mind three Gaussian distributions will be used for the approximation 
of δ′. That means we will approximate δ′ by the mixture pdf g = p1 ϕµ1, σ1 

+ 
p2 ϕµ2, σ2

 + p3 ϕµ3, σ3
, where ϕµi, σi

 denote the pdf of a uni-variate Gaussian 
distribution with mean µi and standard deviation σi > 0, p1, …, p3 ≥ 0, and p1 
+ p2 + p3 = 1. For the estimation of each conditional density function eight 
free parameters, e.g., p1, p2, µ1, …, µ3, σ1, …, σ3 will be used which will be 
estimated through the solution of the following non-linear optimization 
problem. 

 Find p1, p2, µ1, …, µ3, σ1, …, σ3 so as to minimize δKL(δ′, g) 
Subject to: p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ 1, σ1 ≥ 0, …, σ3 ≥ 0. 
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 In order to solve the problem we are going to discretize both δ′ and g 
using a large number of bins. Let δ′i and gi denote the probability masses for 
the ith bin corresponding the PDFs δ′ and g, respectively. Then the discrete 
version of the nonlinear programming problem can be stated as follows: 

 Minimize !
=

n

i 1

δ′i ln(δ′i/gi) 

Subject to: p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ 1, σ1 ≥ 0, …, σ3 ≥ 0. 

 For this optimization problem, we are going to use the solver in Excel. 
Notice that, in the solution of the problem we should take care to avoid local 
optimal solutions. The optimal solutions computed in Excel are as follows: 

 2 P(b2|d2) ϕ14, 3(d2) ≈ 0.484 ϕ14.820, 2.352 + 0.083 ϕ15.647, 2.393 + 0.433 ϕ16.298, 
2.631 
 2(1 − P(b2|d2)) ϕ14, 3(d2) ≈ 0.433 ϕ11.702, 2.631 + 0.083 ϕ13.180, 2.393 + 0.484 

ϕ12.186, 2.352 

A graph of the conditional density fb2|d2
 overlaid with the MoG approximation 

is shown in Figure 10. 
 We have completed approximating the mixed Bayesian network by a 
mixture of Gaussians (MoG) Bayesian network. The original Bayesian 
network and its MoG approximation are shown in Figure 9. 

5 Converting the PERT Bayes net to a MoG Bayes Net 

Notice that the PERT Bayes net in Figure 2 is not a MoG BN. The variables 
C23 and F are conditionally deterministic variables that are not linear, and D5 
has a non-Gaussian distribution. Using the techniques described in 4.1 and 
4.2 above, these variables need to be approximated by MoG distributions. 
For that reason, as shown in top left panel of Figure 11, we add three discrete 
variables, B5, BF, and B23, with the appropriate discrete distributions. 

 
Figure 10: A graph of the conditional density fd2|b2

 overlaid on its MoG 
approximation 

 As mentioned before, in MoG Bayes nets, discrete nodes cannot have 
continuous parents. B23 has two continuous parents C3 and D2, and BF has 
two continuous parents C4 and C5. We use arc reversals to address this 
situation. 
 First, notice that C3 is a conditionally deterministic variable, i.e., there 
are no conditional density functions for C3. So, before we can reverse arc 
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(C3, B23), we need to reverse (C3, D3) first. The BN that results from 
reversing arc (D3, C3) is shown in the top right panel of Figure 11. Notice 
that the natures of the nodes D3 and C3 have changed. C3 is conditionally 
non-deterministic and D3 is conditionally deterministic. 
 Now we reverse arc (C3, B23). When an arc between two nodes is 
reversed, the nodes inherit the each others parents. So B23 inherits D1 as its 
parent, and C3 inherits D2 as its parent. The resulting BN is shown in bottom 
left panel of Figure 11. 
 Next, we reverse arc (D2, B23). After reversing this arc, D2 inherits D1 as 
its parent. The resulting BN is shown in the bottom right panel of Figure 11. 

  

  
Figure 11: Top Left: PERT BN after adding discrete nodes. Top Right: After 
reversal of arc (D3, C3). Bottom Left: After reversal of arc (C3, B23). Bottom 

Right: After reversal of arc (D2, B23). 

 Next, we reverse arc (D1, B23). D1 and B23 do not have any other parents, 
and consequently, no additional arcs will be added after reversing (D1, B23). 
The resulting BN is shown in the top left panel of Figure 12. 
 Next, BF has continuous predecessors C5, C4, and C23, all of which are 
conditionally deterministic. We will address this situation next. First, we 
reverse (D5, C5). C5 inherits B5 as its parent, and D5 inherits D1 as its parent. 
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The resulting BN is shown in the top right panel of Figure 12. Notice that the 
natures of the nodes D5 and C5 have interchanged. Second, we reverse arc 
(D4, C4). D4 inherits C23, and C4 inherits D2 as their parents. The resulting 
BN is shown in the bottom left panel of Figure 12. Notice that the natures of 
the nodes D4 and C4 have interchanged. Third, we reverse arc (C3, C23). C23 
inherits D1 as its parent. The resulting BN is shown in the bottom right panel 
of Figure 12. Notice that the natures of the nodes C3 and C23 have 
interchanged. All the predecessors of BF are now conditionally non-
deterministic, and we can proceed to reverse the corresponding arcs in 
sequence. 
 Next, we reverse arc (C4, BF). BF inherits D2 and C23 as its parents, and 
C4 inherits C5 as its parent. The resulting BN is shown in the top left panel of 
Figure 13. 
 Next, we reverse arc (C23, BF). BF inherits D1 and B23 as its parents, and 
C23 inherits C5 as its parent. The resulting BN is shown in the top right panel 
of Figure 13. 

  

  
Figure 12: Top Left: After reversal of arc (D1, B23). Top Right: After reversal 

of arc (D5, C5). Bottom Left: After reversal of arc (D4, C4). Bottom Right: 
After reversal of arc (C3, C23). 
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 Next, we reverse arc (D2, BF). D2 inherits C5 as its parent. The resulting 
BN is shown in the bottom left panel of Figure 13. 
 Next, we reverse arc (C5, BF). C5 inherits B23 as its parent, and BF 
inherits B5 as its parent. The resulting BN is shown in the bottom right panel 
of Figure 13. 
 Finally, we reverse arc (D1, BF). D1 inherits B5 as its parent. The 
resulting BN is shown in Figure 14. 

  

  
Figure 13: Top Left: After reversal of arc (C4, BF). Top Right: After reversal 
of arc (C23, BF). Bottom Left: After reversal of arc (D2, BF). Bottom Right: 

After reversal of arc (C5, BF). 

 We are now done with arc reversals. The discrete nodes B5, B23, and BF, 
do not have continuous parents. In the process of arc reversals, the potentials 
at some of the continuous nodes are no longer conditional linear Gaussian. 
We can address this as discussed in sub-section 4.1. At the end of this 
process, the hybrid Bayes net is now a MoG Bayes net, and we can proceed 
to make inferences using the Lauritzen-Jensen algorithm. 
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6 Summary and Conclusions 

The goal of this paper has been to make inferences in PERT Bayes nets. Our 
main strategy is to approximate a PERT Bayes net by a MoG Bayes net, and 
then use the Lauritzen-Jensen algorithm to make exact inferences in the MoG 
Bayes net. The Lauritzen-Jensen algorithm is implemented in Hugin, a 
commercially available software, and thus our strategy can be used in 
practice. 

 

Figure 14: After reversal of arc (D1, BF). 

 Some disadvantages of our strategy are as follows. In the process of arc 
reversals, we increase the domains of the potentials. This increases the 
complexity of inference. In our toy example, the complexity is still 
manageable. For large examples, the resulting complexity may make this 
strategy impractical. Another disadvantage is arc reversals make Gaussian 
distributions non-Gaussian. We can approximate non-Gaussian distributions 
by mixtures of Gaussians. However, when the non-Gaussian distribution has 
many continuous variables in its domain, the task of finding a mixture of 
Gaussians approximation by solving an optimization problem can be difficult 
in practice. 
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