
On the connection between marginal

problem, statistical estimation, and
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Abstract

A solution to the marginal problem is obtained in a form of para-
metric exponential (Gibbs-Markov) distribution, where the unknown pa-
rameters are obtained by an optimization procedure that agrees with the
maximum likelihood (ML) estimate. With respect to a difficult perfor-
mance of the method we propose also an alternative approach, providing
the original basis of marginals can be appropriately extended. Then the
(numerically feasible) solution can be obtained either by the maximum
pseudo-likelihood (MPL) estimate, or directly by Möbius formula.

1 Introduction

In the present paper we address the so-called marginal problem, i.e. the problem
of reconstruction of a joint (global) distribution from a collection of marginal
(local) ones.

To the contrary with some other approaches, where the problem is studied
either by graphical or combinatorial reasoning, or by iterative computational
algorithms (see, e.g., [9] or [10]), here the problem is studied, more-or-less,
from the ”statistical” point of view. The “input” information contained in
the system of marginal (local) distributions is understood as an evidence, and
the problem of finding the unknown joint distribution is re-formulated as a
parameter estimation problem.

Namely, in order to find a unique representing joint distribution for the sys-
tem, we employ the maximum entropy principle (MAXENT). Then, providing
some technical assumptions being satisfied, the solution agrees with a para-
metric exponential (Gibbs) distribution as the most natural and convenient
representative. The distribution is also Markovian with the neighborhood sys-
tem induced by the system of marginals (Section 7.). Thus the structure of the
distribution is known but the parameters are given only implicitly. In order
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to fix the parameters, we have to solve the same task as within the problem
of statistical estimation. In particular, the parameters are obtained by an op-
timization procedure that agrees with the maximum likelihood (ML) estimate
(as if the marginals were obtained from data). But, as it is well known, under
a certain size of the model, any direct optimization method is unfeasible. Thus,
for calculating parameters of the representing distributions in full generality we
need to apply some simulation procedures, usually based on the Markov Chain
Monte Carlo methods (see Section 8.).

Nowadays, a standard choice for statisticians is a substitution of the ML
estimator for multidimensional models by a more suitable alternative estimator,
usually the maximum pseudo-likelihood (MPL) one, which is numerically easily
feasible. We show that within the marginal problem the MPL approach would
lead to the true parameter as well (Section 9.). Unfortunately, the formula for
the MPL estimate involves marginals over larger sets of nodes, namely over the
neighborhoods of particular nodes. Thus, for an easy calculation of the maximal
entropy solution to the marginal problem by the MPL approach, we have, at
first, to extend the original marginals to these larger sets, at least approximately.

But, as we show finally in Section 10., once having the needed extended
marginals, we can also apply directly the combinatorial Möbius formula for
direct evaluating the potentials of the Gibbs distributions, and these potentials
are equal exactly to the unknown parameters.

For many topics of the present paper [10] or [11] are the basic references. For
exponential distributions see [1] and [6] or, more generally, [3]. For stochastic
gradient method see [12] or [11], for general MCMC simulations see [4]. The
maximum pseudo-likelihood method was at first mentioned in [2], detailed treat-
ment can be found, e.g., in [5]. For the marginal problem see, e.g., [9] and the
references therein.

2 Basic definitions

Let us consider a finite set S of indices (sites, variables, nodes), and the space
of configurations

XS =
⊗
s∈S

Xs

where Xs is a finite state space for every s ∈ S. For every V ⊂ S we denote
by PrV : XS → XV the projection onto the space XV =

⊗
s∈V Xs, and by

BV = σ(PrV ) the σ-algebra of cylinder (local) sets.
Further, by PV we denote the class of all probability measures on BV , and

by FV the class of all real-valued BV -measurable functions. (PV can be al-
ternatively understood as the set of probability measures on XV , and FV as
the set of functions on XV . We shall not distinguish these two modes.) For
PV ∈ PV and W ⊂ V we shall denote by PV/W ∈ PW its projection into the
space PW , i.e., the corresponding marginal distribution. ( Whenever no confu-
sion may occur, we shall write directly PW .) On the other hand, by PA|B for
A,B ⊂ S, A ∩B = ∅, we denote the corresponding conditional distribution.
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3 Problem

Let us consider a system of (non-void) subsets V ⊂ expS and a collection of
marginal distributions

Q = {QV }V ∈V

where
QV ∈ PV for every V ∈ V.

Let us denote

PQ = {PS ∈ PS ;PS/V = QV for every V ∈ V}.

If PQ 6= ∅ we quote the collection Q as strongly consistent.
The problem to be solved now consists in finding a suitable representative

PS ∈ PQ,

providing Q is strongly consistent.

4 Maximum entropy principle

Whenever |PQ| > 1 we have to employ some additional criterion for selecting
PS , which, in our case, will be the maximum entropy principle (MAXENT).
For a justification of such approach see, e.g., [8] as the standard reference.

Let us recall the formulas for the entropy and the I -divergence, respectively,
namely

H(P ) =
∫
− log P dP =

∑
xS∈XS

− log P (xS) P (xS),

and

I(P |Q) =
∫

log
P

Q
dP =

∑
xS∈XS

log
P (xS)
Q(xS)

P (xS)

providing the terms are well defined. Otherwise we set I(P |Q) = ∞.
Thus, applying the MAXENT, we seek for

PS ∈ argmaxPS∈PQH(PS)

or, more generally,
PS ∈ argminPS∈PQI(PS |RS)

where RS ∈ PS is some fixed reference probability measure.
For the sake of brevity, we shall deal directly with the first definition, which,

after all, agrees with the latter one for uniform RS .
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5 Maximum entropy with linear constraints

Primarily, let us formulate the solution in a more general framework. Let us
consider a collection of statistics

f = {fj}j∈K with |K| < ∞,

where
fj ∈ FS for every j ∈ K.

Moreover, in order to guarantee the basic regularity (identifiability) condition,
we assume the system

1, {fj}j∈K

to be linearly independent. (If we assume in addition, e. g., fj(xS) = 0 for every
j ∈ K and some fixed xS ∈ XS , we may omit the constant from the collection.)

Further,let us introduce the exponential distribution Pα
S given by

Pα
S (xS) = exp

∑
j∈K

αj fj(xS)− c(α)


where α = (αj)j∈K ∈ RK is a parameter, and

c(α) = log
∑

xS∈XS

exp

∑
j∈K

αj fj(xS)


is the appropriate normalizing constant.

Now, thanks to the identifiability condition above, we have a one-to-one
relation between the parameter α and the exponential distribution Pα

S . Namely,
for Pα

S = P β
S we have 〈α− β, f〉 = const. Further, c(α) is obviously (by Hölder

inequality) convex function of α ∈ RK, with the gradient ∇c(α) =
∫

f dPα
S

and the Hessian matrix ∇2c(α) = covP α
S
(f ,f), and due to the identifiability

condition it is also strictly and even strongly (with the positive definite Hessian
matrix) convex.

Now, for a collection of constants m = {mj}j∈K we denote

M(m,f) = {PS ∈ PS ;
∫

fj dPS = mj for every j ∈ K}.

Proposition 1.
Let Pα

S ∈M(m,f). Then

H(Pα
S ) ≥ H(PS)

for every PS ∈M(m,f) with the equality iff PS = Pα
S .
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Proof.
As it is well-known, we have

0 ≤ I(PS |Pα
S ) = c(α)− 〈α, m〉 −H(P ) = H(Pα

S )−H(PS)

where the inequality turns into equality iff PS = Pα
S .

Moreover, whenever Pα
S ∈M(m,f) exists, it is given uniquely.

Proposition 2.
Let Pα

S , P β
S ∈M(m,f). Then α = β.

Proof.
We observe

0 ≤ I(Pα
S |P

β
S ) + I(P β

S |P
α
S ) = 〈β − α,

∫
f dP β

S −
∫

f dPα
S 〉 = 0.

Hence Pα
S = P β

S , and, due to the identifiability condition, we have α = β.

Thus, we may conclude that whenever there exists the exponential repre-
sentative PS = Pα

S ∈M(m,f) then it satisfies the MAXENT.

6 Existence

Let us consider the problem of existence

Pα
S ∈M(m,f)

for some α ∈ RK. Thus, α should be given implicitly as a solution of the system
of equations ∫

f dPα = m.

Due to the convex property of the normalizing constant c(α) as a function of α,
the above condition is equivalent to the variational principle

α = argmin
α∈RK

{c(α)− 〈α, m〉} .

We define the closed convex hull

Cf = co {f(xS);xS ∈ XS} ⊂ RK,

and its (relative) interior riCf .
Then, directly by the definitions

M(m,f) 6= ∅ iff m ∈ Cf .
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Proposition 3. The exponential representation Pα ∈ M(m,f) exists for
some α ∈ RK iff m ∈ riCf .

Proof.
See [1] for the general result, or, e. g. [10], Theorem D.1, for the formulation.

Remark The condition of the above proposition is obviously equivalent to the
following one:

max
xS∈XS

〈α, f(xS)〉 > 〈α, m〉

for every α ∈ S1 = {α ∈ RK; ‖α‖ = 1}, i. e. m can be separated by a hyperplane
from any face (external subset) of the convex set Cf . This equivalence can also
serve as a key for the proof of Proposition 3.

Anyhow, the condition m ∈ riCf is the crucial condition for the exis-
tence of the exponential representation.

7 Application to the marginal problem

In order to apply the above results to the marginal problem we have to find a
suitable collection of statistics f and a collection of constants m so that

PQ = M(m,f).

Natural candidates for the statistics {fj}j∈K are the Dirac functions (indi-
cators)

DV = {δxV
}xV ∈XV ,V ∈V

but these are apparently linearly dependent. Thus, we have to choose a reason-
able basis.

Let us fix a configuration 0S ∈ XS . For V ⊂ S we denote X 0
V =

⊗
v∈V (Xv \

{0v}). Further, we denote

V = {W ⊂ S; ∅ 6= W ⊂ V for some V ∈ V}.

Now, we set
D0
V = {δxW

}xW∈X 0
W

,W∈V .

Proposition 4. We have

i) 1, D0
V linearly independent,

ii) DV ⊂ Lin(1, D0
V).
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Proof.
We shall omit the tedious calculations of the general proof. Let us only

illustrate the terms for the special case of S = {1, 2}, V = {{1, 2}}. Then
V = {{1}, {2}, {1, 2}} and D0

V = {δx1 , δx2 , δx1x2}x1x2∈X 0
{1,2}

.
Suppose

α +
∑

x1∈X 0
{1}

αx1δx1 +
∑

x2∈X 0
{2}

αx2δx2 +
∑

x1x2∈X 0
{1,2}

αx1x2δx1x2 = 0.

Then by substituting (01, 02) we obtain α = 0, by substituting (01, y2) we
obtain αy2 = 0 for every y2 ∈ X 0

{2}, etc. This proves i).
In order to prove ii) we observe

δ01x2 = δx2 −
∑

x1∈X 0
{1}

δx1x2 for every x2 ∈ X 0
{2},

symmetrically for δx102 , and

δ0102 = 1−
∑

x1∈X 0
{1}

δx1 −
∑

x2∈X 0
{2}

δx2 +
∑

x1x2∈X 0
{1,2}

δx1x2 .

From now,we shall understand f = {fj}j∈K = D0
V with K =

⋃
W∈V X

0
W ,

and consequently, we set

m = {mxW
}xW∈X 0

W
,W∈V

where mxW
= QV/W (xW ) for some V ⊃ W,V ∈ V. Obviously, due to the

(strong) consistency ofQ the above terms are well defined since QV1/W = QV2/W

if W ⊂ V1 ∩ V2.
Then, providing the crucial condition m ∈ riCf is satisfied, we obtain by

the MAXENT the exponential representative PS = Pα
S in the form

Pα
S (yS) ∝ exp{

∑
xW∈X 0

W
,W∈V

αxW
δxW

(yW )}.

If we denote Uα
W =

∑
xW∈X 0

W
αxW

δxW
, we have Uα

W ∈ FW and we may write

Pα
S (yS) ∝ exp{

∑
W∈V

Uα
W (yW )}.

Thus, Pα
S is the Gibbs distribution with the potential Uα = {Uα

W }W∈V (see,
e.g., [11] for detailed treatment). Moreover, since

Pα
{s}|S\{s}(y{s}|yS\{s}) ∝ exp{

∑
W∈V,W3{s}

Uα
W (yW )},
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Pα
S is also Markovian with the neighborhood system ∂ = {∂(s)}s∈S given by

t ∈ ∂(s) iff {t, s} ⊂ W for some W ∈ V.

Hence, the form and the structure of the solution PS is known, and it only
”remains” to identify the unknown parameters α.

8 Parameter identification

Let us recall that the collection of parameters α is given implicitly as a solution
of the system of equations ∫

f dPα = m.

or, equivalently, as

α = argmin
α∈RK

{c(α)− 〈α, m〉} .

where m and f are specified in the preceding section. Thus, for real computing
we need a convenient numerical method. Any version of the most common
Newton’s method yields an iterative procedure in the form

α(n+1) = α(n) + ρn

(
m−

∫
f dPα(n)

)
where ρn should be, in the optimal case, inverse to the Hessian matrix of the
function c(α) at α(n). It could be, if needed, substituted by some more simple
term but, anyhow, each step of the procedure involves evaluating the expectation∫

f dPα(n)

which is numerically hardly feasible for large S. Hence, the stochastic gradient
method (cf. [12] or [11], Section 15.4) was introduced, consisting in substituting
the “theoretical” term by its empirical counterpart∫ ̂f dPα(n) =

1
L

L∑
`=1

f(x(`)
S )

where x
(1)
S , . . . , x

(L)
S is a long enough sequence simulated with the distribution

Pα(n)
.

The Markov Chain Monte Carlo (MCMC) – or some similar method – can
be used for the simulation (cf., e. g., [4] for a survey).

With an appropriate choice of ρn (cf. [12]) the procedure converges in the
a.s. sense but, obviously, it is tedious, time consuming, and it may be unstable.
On the other hand, let us emphasize that the exponential form distribution with
local statistics is extremely well suited for the MCMC type simulations.
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9 Maximum pseudo-likelihood

In principle, the above way of identifying the parameters α agrees with the sta-
tistical parameter estimation, namely the maximum likelihood (ML), or, equiv-
alently, the minimum I-divergence method. The only difference consists in the
fact that within the statistical estimation the collection of constants m is given
as the ”evidence” obtained from observed data, in particular mxW

= P̂S/W (xW )
for every xW ∈ X 0

W ,W ∈ V where P̂S is the empirical distribution. In order to
avoid computational problems as indicated in previous section, the ML approach
is sometimes exchanged with the maximum pseudo-likelihood (MPL) one. The
MPL estimate of the parameter α is given by the following formula:

α̂ ∈ argmaxα∈RK

∑
s∈S

∫
log Pα

{s}|S\{s}(y{s}|yS\{s})dP̂S(yS) =

= argminα∈RK

∑
s∈S

I(P̂{s}|S\{s}|Pα
{s}|S\{s}).

Evidently, the MPL estimate can be also understood as the minimum con-
ditional I-divergence estimate.

Since every Pα
S , α ∈ RK, is Markov with the neighborhood system ∂ =

{∂(s)}s∈S , for solving the above optimization problem we actually need to have
marginal distributions {

P̂S/∂(s)

}
s∈S

where ∂(s) = ∂(s) ∪ {s}.
Let us illustrate how the MPL idea could be applied to our marginal problem.

We still assume to have a strongly consistent system Q = {QV }V ∈V so that
Pα

S ∈ PQ for some α ∈ RK. Now, let us suppose we are able to extend the
system Q consistently to a system Q∂ = {Q∂(s)}s∈S so that Pα

S ∈ PQ∂ as well.
Then, following the MPL approach, we can obtain the unknown parameter
α ∈ RK as

α = argmaxα∈RK

∑
s∈S

∫
log Pα

{s}|∂(s)

(
y{s}|y∂(s)

)
dQ∂(s)(y∂(s)).

The statement is worth to be proved.

Proposition 5. Let Pα
S ∈ PQ ∩ PQ∂ . Then

α = argmaxα∈RK

∑
s∈S

∫
log Pα

{s}|∂(s)

(
y{s}|y∂(s)

)
dQ∂(s)(y∂(s)).
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Proof. Let α∗ be the maximizer. Since∑
s∈S

I
(
Q{s}|∂(s)

∣∣Pα
{s}|∂(s)

)
≥ 0

with the equality iff Q{s}|∂(s) = Pα
{s}|∂(s) for every s ∈ S, and Pα

S/∂(s)
= Q∂(s)

by the assumption, we have

Pα∗

{s}|∂(s) = Pα
{s}|∂(s) for every S.

Then Pα∗

S = Pα
S by the Hammersley–Clifford identity:

PS(xS) = PS(0S) ·
∏
s∈S

P{s}|∂(s)

(
x{s}|0∂(s)+ , x∂(s)−

)
P{s}|∂(s)

(
0{s}|0∂(s)+ , x∂(s)−

)
where ∂(s)− = {t ∈ ∂(s); t ≺ s} with some fixed linear ordering ≺.

Thus α∗ = α finally by the identifiability condition.

The main advantage of the MPL approach consists in dealing with the local
characteristics Pα

{s}|∂(s) which can be easily evaluated, and, whenever the size
of the neighborhoods {∂(s)}s∈S is reasonable, the problem can be numerically
solved rather directly, without any stochastic algorithm. Moreover, since the
objective function is concave, the maximum can be obtained also as a solution
of the normal equations, i. e.

mxW
=

1
|W |

∑
s∈W

{
PαQ

}(s)

∂(s)/W
(xW )

for every xW ∈ X 0
W , W ∈ V, where{

PαQ
}(s)

∂(s)
(x∂(s)) = Pα

{s}|∂(s)

(
x{s}|x∂(s)

)
·Q∂(s)/∂(s) (x∂(s)).

Let us recall that within the ML approach we have simply Pα
S/W (xW ) on the

right hand side.

10 Möbius formula

Nevertheless, with the information as assumed in the preceding section, there is
much more straightforward method, given by Möbius formula (see, e.g., [11]),
for identifying the parameters. Let us introduce the formula in a general form.
We shall denote S = expS \ {∅} and

U0 = {U = (UA)A∈S ;UA ∈ FA and UA(xA) = 0 for every xA ∈ XA \X 0
A}

Then U0 is the space of so-called vacuum potentials (see, e.g., [5]). For
our purpose it is important that each UA, A ∈ S can be written as UA =∑

xA∈X 0
A

αxA
δxA

, see Section 7.
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Proposition 6.
i) Let Φ ∈ FS . If we set

UA(xA) =
∑
B⊂A

(−1)|A\B|
[
Φ(xB , 0S\B)− Φ(0S)

]
for every A ∈ S and xA ∈ XA

then U ∈ U0 and

Φ(xS) = Φ(0S) +
∑
A∈S

UA(xA) for every xS ∈ XS .

ii) If

Φ(xS) = const. +
∑
A∈S

UA(xA) for every xS ∈ XS

where U ∈ U0 then

UA(xA) =
∑
B⊂A

(−1)|A\B|
[
Φ(xB , 0S\B)− Φ(0S)

]
for every A ∈ S and xA ∈ XA.

Proof.
The relations can be verified by direct substitutions.

Now, let us apply the preceding statement ii) to the function Φ(xS) =
log Pα

S (xS) with α ∈ RK such that again Pα
S ∈ PQ ∩ PQ∂ . We obtain

αxW
=

∑
B⊂W

(−1)|A\B|
[
log

Pα
S (xB , 0S\B)

Pα
S (0S)

]
=

=
∑

B⊂W\{s}

(−1)|A\B|
[
log

Pα
S (xB , 0S\B)

Pα
S (xB∪{s}, 0S\{B∪{s}})

]
=

=
∑

B⊂W\{s}

(−1)|A\B|
[
log

Pα
{s}|∂(s)(0{s}|xB∪{s}, 0S\{B∪{s}})

Pα
{s}|∂(s)(x{s}|xB∪{s}, 0S\{B∪{s}})

]
=

=
∑

B⊂W\{s}

(−1)|A\B|
[
log

Q{s}|∂(s)(0{s}|xB∪{s}, 0S\{B∪{s}})
Q{s}|∂(s)(x{s}|xB∪{s}, 0S\{B∪{s}})

]

for every xW ∈ X 0
W ,W ∈ V, where s ∈ W is arbitrary fixed.

Thus, whenever we are able to extend the original system of marginals Q
into the system Q∂ , we can calculate the parameters α directly from the
Möbius formula. Actually, we do not need to know the complete distributions
Q∂(s), s ∈ S, but only Q∂(s)(xW , 0∂(s)\W ) for every W ∈ V,W ⊂ ∂(s), and
xW ∈ XW .
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Remark (Concluding)
Obviously, whenever we are not able to calculate the extended marginals,

we still can use some approximation (see, e.g., [9] or [7]) in order to obtain at
least approximative solution α̃. But the question of approximation is behind
the scope of the present paper.
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