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Abstract

In the graphical models field, a graph (nodes connected by edges)
is used to represent the conditional independence structure induced by
a set of random variables. The paper summarizes the known results on
conditional independence structures that can be induced by four random
variables and inspects a possibility of using these results to the structure
learning.

1 Introduction

Theory of graphical models like Bayesian networks has become an essential part
of probabilistic reasoning. The conditional independence relationships appear
naturally in such highly structured stochastic systems. An interesting ques-
tion coming originally from the work of J. Pearl (cf. [10]) is the problem of
probabilistic representability, i.e. for which lists of conditional independence
constraints (here called “independence models”) there exists a random vector
satisfying these and only these conditional independencies. The problem is usu-
ally examined in the given distributional framework.

It was proved by M. Studeny in [15] that that there is no finite character-
ization (i.e. finite set of inference rules) of independence models representable
by a collection of discrete variables. Analogical results (characterization by for-
bidden minors) also exist for binary and Gaussian distributional frameworks,
cf. [12]. Therefore, the only hope to find the characterization of representable
independence models is to restrict the number of random variables.

F. Matus and M. Studeny characterized models that are representable by
a vector consisting of four (or less) discrete variables in a series of papers [5],
[6] and [7]. Later on, F. Matis and R. Lnéni¢ka found all models representable
by a regular Gaussian distribution over three and four variables (cf. [8] and
[2], respectively). These results were further generalized to (general) Gaussian
distributional framework, cf. [13]. Partial results also exists for representability
in binary and positive discrete frameworks, cf. [14].
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The paper summarizes known answers to the representability question. Fur-
ther, it is discussed using the knowledge of representable models to the structure
learning. The most difficult obstacle is how to fit data to the given list of condi-
tional independencies. Some simulations are presented in the regular Gaussian
distributional framework.

2 Basics Concepts

For the reader’s convenience, auxiliary results related to probability theory and
independence models are recalled in this section.

The object of our interest will be a random vector & = (£,)qen indexed
by a finite set N = {1,2,...,n}. Its distribution will be denoted by P. For
A C N, asubvector (§,)qca is denoted by £ 4; &y is presumed to be a constant.
Analogously, if € = (z4)een Is a constant vector then x4 is an appropriate
coordinate projection.

The singleton {a} will be shorten by a and the union of sets AU B will be
written simply as juxtaposition AB. For a square matrix X, let 7%, 7, |X|
and dim(3X) denote its inverse, generalized inverse, determinant and rank, i.e.
the dimension of the space spanned by its rows (or columns), respectively.

Provided A, B, C' are pairwise disjoint subsets of N, “€ , 1L € 5|€,” stands for
a statement £ 4 and & are conditionally independent given &£,. In particular,
unconditional independence (C = () is abbreviated as € 41L& 5.

2.1 Gaussian distributional framework

A Gaussian distribution of a random vector € = (§1,...,&,) is a probability
distribution specified by its characteristic function

. ) t'Xt
@¢(t) = Eexp(it'€) = exp (zt’u - 2) ;
where the vector g and the symmetric positive semi—definite matrix ¥ are mean
and variance parameters, respectively. If ¥ is regular, the distribution is called
regular Gaussian distribution and has a density with respect to Lebesgue

measure o 1 N 7(X_u)/2_1(x_u)
1= o 2 )

Given a matrix 3 = (04.p)a,be{1,...,n} and A, B non-empty subsets of {1, 2,
..., n}, the submatrix with A-rows and B—columns will be denoted by

4.8 =(0ab)acA, beB-

The following lemma shows that both marginal and conditional distributions of
a Gaussian distribution are also Gaussian.
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Lemma 1. Let A and B be disjoint subsets of N = {1,2,...,n}.

i) The marginal distribution € 4 is Gaussian distribution with the variance
matric 4. 4.

1) The conditional distribution of € 4 given £ = Xp is a Gaussian distribu-
tion with the variance matriv ¥ 4.4p = ¥a.4 — Xa.Xg pXp.a, where
X 5.5 18 any generalized inverse of Xp.p.
i41) Moreover, if ¥ > 0 then also 4.4 > 0 and X 4. 45 > 0.
Proof. See [1], pp.256. O

Let us emphasize that the variance matrix of conditional distribution ¥ 4. 45
does not depend on the choice of xp.

Lemma 2. Let a andb be distinct elements of {1,...,n} and C C {1,...,n}\ab:
i) €ullEy <= 0ap = 0.
i) I Sp.p >0, then £u1LE|€y <= |Sup.pe| = 0.
iii) If D C C such that Xp.p > 0 and dim(Zp.p) = dim(Zc.¢), then
§a L€ = &alL&|€p <= [Zapwp| = 0.

Proof. The first part is a well-known fact (cf. [1], pp.257). Let us expand the
matrix ¥, p..p with using easily verifiable identity

R S\ (1 —-Su*\'(R-SUT 0 I o0\ "
T U ) \0 I 0 U —U-iT I ’
to derive that under the assumption |Xp5.5| # 0

|2aB-cB| =0 & O—a~c_2a-BEE.1BEB-c =0 & (Eac-ac\B)avc =0 & €GL€C‘§B~

The third part follows from Lemma 1 ii) by constructing the generalized inverse
(cf. [11], section 1b.5) as follows

_ [z, 00

2.2 Discrete distributional framework

A random vector € = (&1,...,&,) is called discrete if each £, takes values in
a state space X, such that 1 < |X,| < oco. In particular, € is called binary if
Va : |X,| = 2. Further, a discrete random vector £ is called positive if

Vee X =][X.: 0<P¢=m)<L
a=1
In the case of discretely distributed random vector, variables &, and &, are
independent given £ if and only if for any .o € Xaso

P(&upc = zarc)P(€c = xc) = P(€uc = Tac) P (e = Tio)-
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2.3 Independence models

Let N = {1,2,...,n} be a finite set and 7y denotes the set of all pairs (ab|C)
such that ab is an (unordered) couple of distinct elements of N and C' C N\ ab.

Subsets of 7Ty will be referred here as formal independence models over
N. The independence model Z(£) induced by a random vector &€ = (&1,...,&,)
is the independence model over {1,2,...,n} defined as follows

Z(8) = {{xy|2); €all&ylE7}

Let us emphasize that an independence model Z(£€) uniquely determines also all
other conditional independencies among subvectors of & (cf. [3]).

Diagrams proposed by R. Lnénicka will be used here for a visualisation of
independence model I over N such that |[N| < 4. Each element of N is plotted
as a dot. If (ab|@) € I then dots corresponding to a and b are joined by a line.
If {ab|c) € I then we put a line between dots corresponding to a and b and add
small line in the middle pointing in c—direction. If both (ablc) and (ab|d) are
elements of I, then only one line with two small lines in the middle is plotted.
Finally, if (ablcd) € T is visualised by a brace between a and b. See example in
Figure 1.

®
4 \mpud 3

Figure 1: Diagram of the independence model I = {(12|0), (23[1), (23[4),
(34]12), (14(0), (14]2)}.

Two independence models I and J over N are isomorphic if there exists a
permutation m on N such that

(zy|Z) € I & (x(2)7(y)|w(2)) € J,

where 7(Z) stands for {m(z); z € Z}. See Figure 2 for an example of three
isomorphic models.

An equivalence class of independence models with respect to the isomorphic
relation will be referred as type.

If T is an independence model over N = {1,...,n} and E, F are disjoint
subsets of N then let us define the minor / [g as an independence model over
N\ EF

I[h = {{(ab|C); EN (abC) =0, (ab|CF) € I}.
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®e—©0 f.

® ® ——@
Figure 2: Example of three isomorphic models.

Note that I [y = I and (I[})[12 = I[552.

An independence model I is said to be Gaussian (g-), regular Gaussian
(g7—), discrete (d—) and/or positive discrete (dT—) representable if there exists
a random vector & such that it is Gaussian, regular Gaussian, discrete or positive
discrete, respectively, and I = Z(€).

It is easy to see that models of the same type are either all representable or
none of them is representable. Consequently, we can classify the entire type as

representable or non-representable.

Lemma 3. Let a,b,c be distinct elements of N = {1,...,n} and D C N \ abc.
If an independence models I over N is either discrete or Gaussian representable,
then

({{ableD), (ac|D)} C I) <= ({{ac|bD), (ab|D)} C I).

Moreover, if I is positively discrete or reqular Gaussian representable, then
({{ab|cD), (ac|bD)} C I) => ({(ab|D), (ac|D)} C I).

Proof. These are so called “semigraphoid” and “graphoid” properties, cf. [1] or
[16] for more details. O

In the discrete distributional framework, the intersection of representable
models is also representable (cf. [18], pp. 5., for proof):

Lemma 4. If I = Z(¢) and I* = Z(£") are d-representable, then I N I* is
also d—representable. In particular, if they are d*—representable then I N I* is
d* —representable, too.

Lemmas 1 and 4 follows that if I is an independence model representable in
any of the above mentioned sense, then all its minors I [g are also representable
in the same sense; i.e. the classes of g—/g"—/d—/d*—representable models are

closed with respect to the operation of minorization!.

Another useful result exists for gt-representability (cf. [2] for proof):

Lemma 5. If [ = Z(£) is g™ —representable model over N, then I* = {{ab|N \
abC) : (ab|C € I)} is gt -representable by Gaussian vector with the variance
matriz that is inverse to the variance matriz of €.

However, this property does not hold for the class of independence models representable
by binary random vectors.



156 P. SIMECEK

3 Representable models in the case |N| =4

For N consisting of three or less elements, the problem of representability is easy
to solve. In this case, all independence models not contradicting properties from
Lemma 3 are discrete representable. The same hold for Gaussian representabil-
ity with the exception of three types: {(ab|0), (bc|0)}, {{ab|D), (bc|d), (ac|d)} and
{(ab|0), (ablc)} that are not g-representable (cf. [16] and [8]).

That is why we focus on N = {1,2, 3,4} from now to the end of the section.
The results presented here comes from [2] and [13] for the Gaussian distribu-
tional framework and from [17] and [4] for the discrete distributional framework.
All results will be stated without proof. The reader should consult the cited
sources.

The web page with data files and utilities related to these results is

http://5r.matfyz.cz/skola/models

3.1 Gaussian distributional framework

The g™ -representable models must necessarily have g*-representable minors.
The list of all types on N = {1,2, 3,4} that have g™ -representable minors are
plotted in Figure 3 on page 7, M1-M58. As shown in [2], the last 5 ones,
M54-M58, are not gt -representable. Therefore, there are 629 g™-representable
independence models corresponding to 53 types.

For the general Gaussian representability, in [13] the following two properties
are shown:

Lemma 6. Let I be a g—representable independence model and a, b, ¢ and d
distinct elements of N.

i) if {{ab|c), (ac|b)} C I then either & ~ &. or {{ab|0), (ac|®)} C I,

i) if {(ablcd), {aclbd)} C I, then either & ~ &. or {{ab|d), (ac|d)} C I or
(adlbe) € 1,

where &, ~ &, stands for
{{ab|c), (bd|c), {ac|b), {cd|b), {ablcd), (bd|ac), (ac|bd), {cd|ab)} C I.

Thus, M1-MS88 in Figure 3 are types having g-representable minors and
not contradicting Lemma 6. However, it is proved in [12] that M54-M58 and
MS86-MS88 are not g-representable. Therefore, there are 877 g-representable
independence models corresponding to 80 types.
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3.2 Discrete distributional framework

In brief, due to Lemma 4 an intersection of two d-representable models is also
d-representable. Therefore, the class of all d-representable models over N can
be described by the set C of so called irreducible models, i.e. nontrivial d—
representable models that cannot be written as an intersection of two other
d-representable models. It is not difficult to evidence that a nontrivial inde-
pendence model I is d-representable if and only if there exists A C C such

that
I= ﬂ C.
CeA

As shown in [5], [6] and [7] there are only only 13 types of irreducible models,
see Figure 4, and 18478 d-representable independence models corresponding to
1098 types.

Model M1 Model M2 Model M3 Model M4
@ @
——
Model M5 Model M6 Model M7 Model M8
p——
Model M9 Model M10 Model M11 Model M12
— » <>
e—Y ¢ e——o e—< @
Model M13
»
e——9

Figure 4: Irreducible types.

Surprisingly, only partial results exist for d*—representability at this moment
(cf. [14] for an overview).

4 Graphical Independence Models

In the applications, the independence model determining a class of probability
distributions is not usually given as a list of prescribed conditional indepen-
dencies but as an undirected or directed acyclic graph. That is not only for
interpretation reasons but also because of nice properties of such models. The
theory is described in details in [1] (or [9]). An independence model will be
called graphical if it can be derived from some undirected graph by the global
Markov property.
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The main drawback of such approach is that there are much more repre-
sentable models than just graphical ones. For instance, in the case |N| = 4
there are 11 graphical types only while there are 80 g-representable, 53 g*—
representable, 1098 d-representable and at least 299 d'-representable types.
On the other hand side, it is unfeasible to fit data to the most of non—graphical
independence models.

To the end of the section we will restrict ourselves to the regular Gaussian
distributional framework and take an advantage that all 53 gT-representable
models over N = {1,2,3,4} can be parametrized and fitted to data (by iterative
likelihood maximization).

In the regular Gaussian distributional framework, the class of graphical mod-
els plays an important role: all graphical models are g*-representable (cf. [2])
and they are regular exponential families (cf. [1]). More important, the latter
property can also be reversed?.

Lemma 7. If the class of all regular Gaussian distribution corresponding to an
independence model I is reqular exponential family, then I is graphical.

Proof. Without any loss of generality we may take into account just distribu-
tions with zero expected value, assume that the exponential family is minimal
and the reference measure is Lebesgue.

Further, if @ = (0*,...,0™) is a parameter then (to get the parametrization
of Gaussian distributions) necessarily

fo(x) = exp (—;x’ ('K'+- - +0"K™)x — we) : (1)

where K, ..., K™ are some matrices and g is a normalization constant.

The independence model is graphical if and only if it contains only triplets of
the type (ab|N \ ab) and triplets that can be derived from them by the lemma 3.
In particular, for g*-representation &€ with corresponding concentration matrix
K = 271 it implies that Z(£) is graphical if and only if

VabC C N : |Kucoc|l =0 = There is a zero row/column in K,che. (2)

On contrary, let us assume that for the parametrization (1) there exists
a submatrix

Kocpo= ("K' +-- + 0" K™) 0

contradicting (2), i.e. having zero determinant for all 8 and no zero column
at the same moment. However, that would mean that one column of K ,c.p¢
is a linear combination of the others for any 0 following that for all K*, ...,
K™ (and thus also K) one column is the same linear combination of the oth-
ers. But that is a contradiction that the exponential family really contains all
distributions corresponding to given independence model. O

2 would like to thank F. Matus for drawing my attention to that fact.
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Now, lets start with the simulation. First, for each of 53 models the variance
matrix and 1000 datalines have been generated. Then model search based on
that dataset has been performed. The true model has been chosen in roughly
half cases (45%). However, this number may be influenced by numerical insta-
bility of likelihood maximization for some models.

The future simulations should work out these problems, increase the sample
size and inspect whether the ”right” one of graphical independence models is
chosen. The program for the statistical environment R may be downloaded from
the above mentioned web page.
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