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Abstract

Some independence models not necessarily closed with respect to sym-
metry property are briefly recalled and they arise in different framework.
The L-separation criterion for directed acyclic graphs is useful for effective
description of such models. Since independence structures are richer than
the graphical ones, the notion of minimal I-map has been redefined in this
context and its properties are detected.

1 Introduction

In probability and statistics graphs are used to describe conditional indepen-
dence structures (or analogously dependence/association structures) and to “sim-
plify” the computations for learning structures and numerical evaluations. Ac-
tually, there are three main classic approaches based on undirected graphs [18],
directed acyclic graphs [20], or chain graphs [22].

These graphical structures obey graphoid properties (i.e. symmetry, de-
composition, weak union, contraction, intersection). However, in literature
more general models have been introduced, which do not obey the above usual
graphoid properties. In particular we focus on those not necessarily closed
with respect to symmetric property (called briefly non-symmetric independence
models). This means that a model M may contain an independence statement
X⊥⊥Y |Z, but not the statement Y⊥⊥X|Z.

Thus, in the following we provide a very brief review of some non-symmetric
independence models, which arise from different formalisms or uncertainty mea-
sures.

We stress as done in [21, 1] that the ordinary independence notion of proba-
bility theory is a concept without any “direction” and indicates usually a mutual
association between two random variables or processes. We recall that indepen-
dence models induced by a positive probability satisfy all the graphoid properties
[10], while if the positive condition fails also the intersection property can fail.

162



A note on non-symmetric independence models 163

This is connected with the fact that the classic definition of stochastic indepen-
dence presents counter-intuitive situations when zero or one probability events
are involved (see, for example, [6, 8]): for example, a possible event with zero
or one probability is independent of itself. Zero probability values and logical
constraints among random variables (which can be more general than linear
dependence) are interesting not only from a merely theoretical point of view,
but they are met in many real problems, for example in medical diagnosis [11],
statistical mechanics, physics, etc. [17]. The counter-intuitive situations cannot
be avoided within the usual framework of conditional probability, while in the
more general framework (de Finetti [12], Dubins [14]), a definition of stochas-
tic independence, which avoids these critical situations, has been introduced in
[6] and the main properties connected with graphoid structures were proved in
[23]: these independence models generally are not closed with respect to the
symmetry property and this is due essentially to the presence of “unexpected
events” (it means with zero probability).

Concerning other independence models arising in different uncertainty for-
malisms (as in possibility theory) we referee to the papers [3, 15, 4, 9, 26], where
also in these cases some non-symmetrical structures come out.

Moreover, independence relations not necessarily symmetric have been in-
troduced starting (as far as we know) from 70th years: we recall that ones
related to some multistate stochastic processes (see e.g. [21, 1, 13]) applied to
event history analysis and time series analysis. The crucial concept is that of
local independence (introduced in [21] and generalized in [1]) and it allows a
one-side influence (or, dually, independence), then it radically differs from the
usual stochastic independence notion. For example, in a medical application
the question is whether a particular disease of skin is related to the time of
menopause and the analysis consists into claiming that menopause increases
the risk of disease whereas the skin disease does not influence the menopause
time. Let X = {Xt} and Y = {Yt} be two stochastic processes and in [21] X
and Y are time-continuos Markov chain on some finite state space where the
two components cannot change value at the same time. The process Y is said
locally independent of X over some time interval if the transition intensities
for changes in Y are independent of the value of X for all time in the inter-
val. Naturally, Y is locally dependent on X if it is not locally independent. In
[1] the notion is extended to more general processes and it is compared with
ortogonality concept.

Furthermore, in the context of special cases of event history analysis (as
survival analysis) also logical constraints come out and this carries again to
non-symmetric independence models, in fact the occurrence of a specific event
marks the transition into an absorbing state: let Yt = 1 describe the survival
status and the covariate processes X1, ..., XK the occurrence of intermediate
events (as e.g. a side effect of a medicamentation) and we could have [2] that
Xj (j ∈ {1, ..., K}) is not locally independent of Y since after death no further
transitions are possible (so a logical constraints is present), while some covariates
Xj are locally independent on the survival.

In this note, we show how to represent such non-symmetrical independence
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models (together with logical constraints) through directed acyclic graphs by
using L-separation criterion [24]. Since these structures are richer than the
graphical ones (see [25]): some independence models cannot be completely de-
scribed by a graph. Hence, we provide in this context the notion of minimal
I-map (a concept already well-known inside classic graphical models [20, 16])
and we show how to build it, by underling the main differences arising from
the lack of symmetry property such minimal I-maps, and, in addition, we prove
that any ordering on the variables gives rise to an I-map for any independence
model M obeying to non necessarily symmetric graphoid properties. On the
other hand, the ordering has a crucial role: in fact, if a perfect I-map (able to
describe all the independence statements) exists, it can be built using only some
specific ordering on the variables.

2 Basic graphical concepts

A l-graph G is a triplet (V, E,B), where V is a finite set of vertices, E is a set of
edges (i.e. a subset of ordered pairs of distinct vertices of V ×V \{(v, v) : v ∈ V })
and B is a family (possibly empty) of subsets of vertices. The elements of the
family B = {B , B ⊆ V } are represented graphically by boxes enclosing the
vertices in B. If B is empty, then the l-graph is a graph.

The attention in the sequel will be focused on directed acyclic l-graphs, and
to introduce this kind of l-graphs we need to recall some basic notion from graph
theory [18, 20].

A directed l-graph is a l-graph whose set of vertices E satisfies the following
property: (u, v) ∈ E ⇒ (v, u) 6∈ E. A directed edge (u, v) ∈ E is represented by
an arrow pointing from u to v, u → v. We say that u is a parent of v and v a
child of u. The set of parents of v is denoted by pa(v) and the set of children of
u by ch(u).

A path from u to v is a sequence of distinct vertices u = u1, . . . , un = v,
n ≥ 1 such that either ui → ui+1 or ui+1 → ui for i = 1, . . . , n − 1. A directed
path from u to v is a sequence u = u1, . . . , un = v of distinct vertices such
that ui → ui+1 for all i = 1, . . . , n − 1. If there is a directed path from u
to v, we say that u is an ancestor of v or v a descendant of u and we write
u 7→ v. The symbols an(v) and ds(u) denote the set of ancestors of v and the
set of descendants of u (vertices that u ∈ an(v) and v ∈ ds(u)), respectively.
Note that, according to our definition, a sequence consisting of one vertex is a
directed path of length 0, and therefore every vertex is its own descendent and
ancestor, i.e. u ∈ an(u), u ∈ ds(u).

A reverse directed path from u to v is a sequence u = u1, . . . , un = v of
distinct vertices such that ui ← ui+1 for all i = 1, . . . , n− 1.

A n-cycle is a sequence of u1, . . . , un, with n > 3, such that un → u1 and
u1, . . . , un is a directed path. A directed graph is acyclic if it contains no cycles.

Given an acyclic directed graph G, the relation 7→ defines a partial ordering
≺G on the set of vertices, in particular for any u, v ∈ V we have that if u ∈ an(v),
then u ≺G v, while if u ∈ ds(v), then v ≺G u.
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2.1 L-graphs and logical constraints

To visualize which variables are linked by a logical constraint we need to refer
to the family B of subsets of vertices. Since, given a random vector X =
(X1, . . . , Xn), a vertex i is associated with each random variable Xi, by means
of the boxes B ∈ B, we visualize the sets of random variables linked by a
logical constraint (more precisely, a logical constraint involves the events of
the partitions generated by the random variables). Recall that the partitions
E1, . . . , En are logically independent if for every choice Ci ∈ Ei, with i = 1, ..., n,
the conjunction C1 ∧ . . . ∧ Cn 6= ∅.

Obviously, if n partitions are logically independent, then arbitrary subsets
of these partitions are logically independent.

However, n partitions E1, . . . , En need not be logically independent, even if
every n − 1 partitions can be logically independent; it follows that there is a
logical constraint such that an event of the kind C1∧ . . .∧Cn is impossible, with
Ci ∈ Ei. For example, suppose E1 = {A,Ac}, E2 = {B,Bc} and E3 = {C,Cc}
are three distinct partitions of Ω with A ∧ B ∧ C = ∅. All the couples of that
partitions are logically independent, but they are not logically independent.
Actually, the partition E1 is not logically independent of the partition generated
by {E2, E3}. The same conclusion is reached replacing E1 by E2 or E3.

Given n partitions and some logical constraints among such partitions, it is
possible, for each constraint, to find the minimal subset {E1, . . . , Ek} of partitions
generating it. Actually, E1, . . . , Ek are such that C1 ∧ . . .∧Ck = ∅, with Ci ∈ Ei,
and, in addition, for all j = 1, . . . , k, C1∧ . . .∧Cj−1 ∧Cj+1 ∧ . . .∧Ck 6= ∅. Such
set of partitions {E1, . . . , Ek} is said the minimal set generating the given logical
constraint, and it is singled-out graphically by the box B = {1, . . . , k}, which
includes exactly the vertices associated to the corresponding random variables
X1, . . . , Xk. Then, in the sequel we call the boxes B ∈ B logical components.

2.2 Separation criterion for directed acyclic graphs

To represent non-symmetric independence models we need to recall L-separation
criterion . In fact, the classic separation criterion for directed acyclic graphs (see
[20]), known as d-separation (where d stands for directional), is not suitable for
our purposes, because it induces a graphoid structure, and so it is not useful to
describe a model where symmetry property may not hold.

Definition 1 Let G be an acyclic directed graph. A path u1, . . . , un, n ≥ 1 in
G is blocked by a set of vertices S ⊂ V , whenever there exists 1 < i < n such
that one of the following three condition holds:

1. ui+1 → ui → ui−1 (i.e. ui−1, ui, ui+1 is the reverse directed path) and
ui ∈ S

2. ui−1 ← ui → ui+1 and ui ∈ S

3. ui−1 → ui ← ui+1 and ds(ui) 6∈ S
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Figure 1: Blocked paths

The three conditions of Definition 1 are illustrated by Figure 1 (the grey
vertices belong to S). Note that the definition of blocked path strictly depends
on the direction of the path, in fact the main difference between our notion
and that used in d-separation criterion [20] consists essentially in condition 1 of
Definition 1. The path ui−1, ui, ui+1 drawn in the left-side of Figure 1 is blocked
by ui, while its reverse is not blocked by ui because of the direction. Hence,
the reverse path of a blocked one is not necessarily blocked according to our
definition, so the blocking path notion does not satisfy the symmetry property.

The second and third cases of Definition 1 are like in d-separation criterion.

Definition 2 Let G be a directed acyclic l-graph and let U , W and S be three
pairwise disjoint sets of vertices of V . We say that U is L-separated from W by
S in G and write symbol (U,W |S)l

G, whenever every path in G from U to W is
blocked by S and moreover, the following “logical separation” condition holds

∀B ∈ B s.t. B ⊆ U ∪W ∪ S one has either B ∩ U = ∅ or B ∩W = ∅. (1)

Figure 2 clarifies when condition (1) holds (the set of vertices Vi and S are
represented as ovals).

V1
V2S

B1

B2

V1 S V2

B

Figure 2: Representation of logical components: in the left-side V1 and V2 are
not connected, in the right-side they are connected by B

Since the notion of blocked path is not necessarily symmetric, it follows that
(U,W |S)l

G 6⇒ (W,U |S)l
G. Actually, the lack of symmetry property depends on

the notion of blocked path and not on the condition of logical separation (1).

Theorem 1 [24] Let G = (V,E,B) be a graph. The following properties hold
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1. (Decomposition property)

(U,W ∪ Z|S)l
G =⇒ (U,W |S)l

G

2. (Reverse decomposition property)

(U ∪ Z, W |S)l
G =⇒ (U,W |S)l

G

3. (Weak union property)

(U,W ∪ Z|S)l
G =⇒ (U,W |Z ∪ S)l

G

4. (Reverse weak union property)

(U ∪ Z, W |S)l
G =⇒ (U,W |Z ∪ S)l

G.

5. (Contraction property)

(U,W |S)l
G & (U,Z|W ∪ S)l

G =⇒ (U,W ∪ Z|S)l
G

6. (Reverse contraction property)

(U,W |S)l
G & (Z, W |U ∪ S)l

G =⇒ (U ∪ Z, W |S)l
G

7. (Intersection property)

(U,W |Z ∪ S)l
G & (U,Z|W ∪ S)l

G =⇒ (U,W ∪ Z|S)l
G

8. (Reverse intersection property)

(U,W |Z ∪ S)l
G & (Z,W |U ∪ S)l

G =⇒ (U ∪ Z, W |S)l
G

3 Minimal I-map

Given an independence model M over a set of variables (possibly) linked by a
set of logical constraints, we look for a directed acyclic l-graph G describing all
the statements T in M and localizing the set of variables involved in some logi-
cal constraint. But, generally, it is not always feasible to have such graph G (i.e.
describing all the independence statements) for a given M as it happens for the
classical independence models and also for non-symmetrical ones, see [23] for in-
dependence model in a coherent setting: as well as the independence model MP

containing the statements (X3, X4)⊥⊥X1|X2 , X3⊥⊥X4|X2 , X3⊥⊥X4|(X1, X2) ;
X4⊥⊥X3|X2 , X4⊥⊥X3|(X1, X2) , X3⊥⊥X4 , X4⊥⊥X3.

Note that MP is not completely representable by a directed acyclic l-graph.

Hence, analogously as in [20], the notion of I-map is needed to be introduced.

Definition 3 A directed acyclic l-graph G is an I-map for a given independence
model M iff every independence statement represented by means of L-separation
criterion in G is also in M.
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Thus an I-map G for M may not represent every statement of M, but those
represented belong actually to M, it means that the set MG of statements
described by G is contained in M.

An I-map G for M is said minimal if removing any arrow from the l-graph
G the obtained l-graph will no longer be an I-map for M.

Given an independence model M over a random vector (X1, ..., Xn), let
π = (π1, ..., πn) be any ordering of the given variables, and, in addition, for
any j, let Uπj

= {π1, ..., πj−1} be the set of indexes before πj , and Dπj
the

minimal subset of Uπj
such that Xπj

⊥⊥XRπj
|XDπj

where Rπj
= Uπj

\ Dπj
.

Moreover, let Wπj the minimal subset of Uπj such that XSπj
⊥⊥Xπj

|XWπj
where

Sπj
= Uπj

\Wπj
.

The subset Θπ = {Xπj
⊥⊥XRπj

|XDπj
, XSπj

⊥⊥Xπj
|XWπj

: j = 1, ...n} is said
the basic list of M relative to π. From the basic list Θπ and the set of logical
components B, a directed acyclic l-graph G (related to π) is obtained by drawing
the boxes B ∈ B and designating Dπj

as parents of vertex πj (for any vertex
v ∈ Dπj , an arrow goes from v to πj), moreover, for any vertex πi ∈ Wπj \Dπj

check if the are only directed paths from πi to πj otherwise draw an arrow from
πi to πj .

This construction of G from the basic list differs from the classic construction
given for directed acyclic graphs with d-separation [20] essentially for the second
part, which is useful to avoid the introduction of symmetric statements not in
the given independence model.

For example, consider the independence model M = {X1⊥⊥X3|X2} and
considering the ordering π = (2, 3, 1), the related directed acyclic l-graph is
obtained following these steps: draw an arrow from 2 to 3, then consider the
vertex 1 and draw an arrow from 2 to 1; now since D3 = {2}, but the statement
X3⊥⊥X1|X2 is not in M, we must draw an arrow from 3 to 1.

Now, we must prove that such directed acyclic l-graph obtained from the
basic list Θπ is an I-map for M.

Theorem 2 Let M be an independence model over a set of random variables
linked by a set of logical constraints. Given an ordering π on the random vari-
ables, if M is an a-graphoid (i.e. closed with respect to decomposition, weak
union, contraction, intersection and their reverse properties), then the directed
acyclic l-graph G generated by the basic list Θπ is an I-map for M.

Proof: For an a-graphoid of one variable it is obvious that the directed acyclic
l-graph is an I-map. Suppose for a-graphoid structure with less than k variables
that the directed acyclic l-graph is an I-map.

Let M be an independence model under k variables. Given an ordering
π on the variables, let Xn be the last variable according to π (n denotes the
vertex in G associated to Xn), M′ the a-graphoid formed by removing all the
independence statements involving Xn from M and G′ the directed acyclic l-
graph formed by removing n and all the arrows going to n (they cannot depart
from n because is the last vertex) in G.
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Since Xn is the last variable in the ordering π, it cannot appear in any set
of parents Dπj

and it cannot appear in any Wπj
(with j < k), and the basic list

Θ′ = Θ \ {Xn⊥⊥XRn
|XDn

, XSn
⊥⊥Xn|XWn

} generates G′. Since M′ has k − 1
variables, G′ is an I-map of it.

G is an I-map of M iff the set MG of the independence statements repre-
sented in G by L-separation criterion is also in M.

If Xn does not appear in T , then, being T = (XI⊥⊥XJ |XK) ∈MG , T must
be represented also in G′, if it were not, then there would be a path in G′ from
I to J that is not blocked (according to L-separation) by K. But then it must
be not blocked also in G, since the addition of a vertex and some arrows going
to the new vertex cannot block a path. Since G′ is an I-map of M′, T must be
an element of it, but M′ ⊂M, so T ∈M.
Otherwise (if Xn appears in T ), T falls into one of the following situations. First
of all, suppose that T = ((XI , Xn)⊥⊥XJ |XK) ∈ MG, let Xn⊥⊥XRn

|XDn
∈ M

(by construction). Obviously J and Dn have no vertices in common, otherwise
we would have a path from a vertex in j ∈ J ∩ Dn pointing to n, so by L-
separation n would not be separated from J given K in G.
Since there is an arrow from every vertex in Dn to n and every path from n to
J is blocked by K in G, then every path from Dn to J must be blocked by K
in G. Therefore, every path from both Dn and I to J are blocked by K in G.
Now, if there is a logical component B ∈ B such that B ⊆ Dn ∪ I ∪ J ∪K and
both B ∩ (Dn ∪ I) and B ∩ J are not empty, then remove a suitable vertex in
B from Dn, w.l.g. Hence, the statement (XI , XDn)⊥⊥XJ |XK belongs to MG.
This statement does not contain the variable Xn, hence, being G′ an I-map for
M′ ⊂M, then (XI , XDn)⊥⊥XJ |XK ∈M.
Since M is closed under a-graphoid properties, (by weak union property)
Xn⊥⊥XJ |(XI , XDn , XK) ∈M and it follows (XI , XDn , Xn)⊥⊥XJ |XK ∈M (us-
ing reverse contraction property), so (XI , Xn)⊥⊥XJ |XK ∈M by decomposition
property.

Now, suppose that T = (XI⊥⊥(XJ , Xn)|XK) ∈ MG, it means, by definition
of L-separation and from the assumption that n is the last vertex in the ordering,
that every path going from I to J ∪ n is L-separated by K. Therefore, when
((XJ , Xn)XI⊥⊥|XK) ∈MG, the proof goes in the same line of that in previous
step. Otherwise, there is at least a path as in condition 1 of Definition 5. Since
there is a subset Wn ⊆ Un such that every path between n and I ∪K is blocked
by Wn. Note that, Wn = W 1 ∪W 2 (W 1 or W 2 can be empty) with W 2 ⊆ Dn.
Hence, W 2 and I cannot have common vertices. Moreover, let J = J1∪J2∪J3

(J1 or J2 or J3 can be empty) with T2 = (XI⊥⊥(XWn , XJ1)|XK) ∈ MG, while
J2 ⊆ W 2 and J3 = J \(J1∪J2). Therefore, by construction, one has that every
path between n∪J3 and I ∪K∪J1 is blocked by Wn. Hence, one has that from
the previous step (XI , XK , XJ1)⊥⊥(Xn, XJ3)|XWn and its symmetric statement
belong toM. Therefore, one has XI⊥⊥(Xn, XJ3)|(XWn , XK , XJ1) ∈M by weak
union property. Since T2 ∈ MG does not involve n, T2 ∈ M, so the statement
XI⊥⊥(Xn, XWn , XJ1 , XJ3)|XK) belong to M (by contraction property), and it
follows that XI⊥⊥(Xn, XJ )|XK belongs to M (by reverse decomposition).

Now, the last cases that can happen is T = (XI⊥⊥XJ |(XK , Xn)) ∈ MG. It



170 B. VANTAGGI

must be the case that I is L-separated by J given K in G for if it were not, then
there would be a path from some vertex in I to some vertex in J not passing
trough K. But I is separated by J given n and K, so this path would pass
through n; but n is the last vertex in the ordering, so all arrows go on it. Hence,
it cannot block any unblocked path, and so T1 = (XI⊥⊥XJ |XK) ∈MG.
The statements T1 and T imply that either (XI , Xn)⊥⊥XJ |XK or
XI⊥⊥(XJ , Xn)|XK holds in G: in fact, if both I and J are connected to n,
since n is the last vertex (from n an arrow cannot leave), then there is a
directed path from I to n and another from J to n, so that one would get
XI⊥⊥XJ |(XK , Xn) 6∈ MG. So, the conclusion follows by the previous steps.

Example 1 – Consider the independence modelMP over the binary random
variables Xi with i = 1, ..., 4, such that (X1 = 1) ⊆ (X2 = 1), containing
the following statements (X3, X4)⊥⊥X1|X2 , X3⊥⊥X4|X2 , X3⊥⊥X4|(X1, X2) ;
X4⊥⊥X3|X2 , X4⊥⊥X3|(X1, X2) , X3⊥⊥X4 , X4⊥⊥X3. This independence model
can arise from a conditional probability, see [25]. The following pictures show
the minimal I-map obtained by means of the proposed procedure for two possible
orderings: (1, 2, 3, 4) on the left-side and (3, 4, 1, 2) on the right-side

2

4

1

4

3 3

12

Figure 3: Two possible I-Maps for the independence model MP of Example 1

Actually, the picture in the left-side represents the independence statements
(X3, X4)⊥⊥X1|X2 , X3⊥⊥X4|X2 , X4⊥⊥X3|X2 and those implied by a-graphoid
properties; while that one on the right-side describes the statement X3⊥⊥X4 and
its symmetric one. Note that these two graphs actually are minimal I-maps; in
fact removing any arrow from them, we may read independence statements not
in MP . The block B = {1, 2} localizes the logical constraint A1 ⊂ A2.

If for a given independence model over n variables there exists a perfect
map G, then (at least) one of n! orderings among the variables will generate
the l-graph G. More precisely, such orderings, which give rise to G, are all the
orderings compatible with the partial order induced by G.

4 Conclusions

The L-separation criterion for directed acyclic graphs has been recalled together
with its main properties. This is very useful for effective description of inde-
pendence models induced by different uncertainty measures [4, 5, 6, 7, 8, 19,
23, 25, 26]. In fact, these models cannot be represented efficiently by the well-
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known graphical models [18, 20], because the related separation criteria satisfy
the symmetry property.

By considering the L-separation criterion introduced in [23], we show that for
some independence models there is not a perfect map even using L-separation
criterion. Therefore, the notion of minimal I-map has been redefined in this
context and we have shown how to build it given an ordering on the variables.
In addition, we have proved that for any ordering on the variables there is a
minimal I-map for a given independence model obeying to asymmetric graphoid
properties.
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