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Abstract

We consider the problem of induction over languages with binary pred-
icates and show that a natural generalization of Johnson’s Sufficientness
Postulate eliminates all but two solutions. We discuss the historical con-
text and connections to the unary case.

1 Introduction

In his posthumously published paper of 1932 [1], W.E.Johnson introduced a
principle of inductive reasoning, subsequently called Johnson’s Sufficientness
Principle by I.J.Good, which was to be independently rediscovered some 20
years later by Rudolf Carnap in his programme of formulating what he termed
Inductive Logic. Roughly (a precise statement will be given later) the principle
asserts that if we run an experiment with some finite number of outcomes,
b1, b2, . . . , bk say, some n times then the probability we should give to the n+1st
run of the experiment yielding a particular outcome b1 should only be a function
of n and the number of previous occasions on which the outcome b1 had been
observed.

This was a central principle for Johnson and Carnap because imposing it,
along with some few other generally uncontentious requirements, constrained
the assigned probabilities to lie within a particularly simple parameterized fam-
ily now referred to as Carnap’s Continuum of Inductive Methods.

Despite this remarkable success of the principle it is certainly not without
criticism (for an extensive discussion see chapter 4 of [6]). For example should
not the distribution of outcomes amongst the other possible b2, b3, . . . , bk also
be relevant to the probability one should assign to b1 on the n + 1st run?
Even the advantage that this principle yielded a simple parameterized family of
possibilities has since been challenged by the alternative Nix-Paris Continuum,
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again based on seemingly reasonable assumptions. In this note we present a
result which could be seen as offering another serious criticism of this principle.

Expressed in terms of the predicate calculus Johnson’s and Carnap’s pro-
grammes can be seen as applying simply to a unary language, that is a language
with only unary predicates and a countable collection of constants which are
intended to exhaust the universe. Whilst Kemeny in 1963 (see [3]) noted that
the next step was to generalize the work of Johnson, Carnap et al to higher
arity languages, progress along these lines (with the lone exception of [4]) had
to wait until recent work of Nix and Paris ([5], [6]). What we shall show is that
within the context of binary languages a natural generalization of Johnson’s
Sufficientness Principle is inconsistent with any nontrivial solutions, at least in
the presence of another requirement, which is generally assumed. This then
provides a further, to our minds strong, criticism of this general principle.

2 Framework

Let L be a language for the predicate calculus with ri-ary predicates Pi for
i ∈ {1, 2, . . .m}, constants a1, a2, . . . and no function symbols. The intention
here is that the constants name all the individuals in the universe, or putting it
another way, that we are limiting ourselves to structures in which this is true.

Let FL denote the set of formulae of L, SL the set of sentences of L (with
connectives ¬,∧,∨,→,↔). The ‘problem of induction’ which we are interested
in is the following:

Given some finite consistent subset Γ of SL, and nothing more, what belief
should we give to some other θ in SL?

We identify ’belief’ with probability, that is, a function w that assigns to each
formula from SL a number between 0 and 1, satisfying the following: for any
θ, φ ∈ SL and ψ(x) ∈ FL,

(P1) if ² θ then w(θ) = 1
(P2) if ² ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ)
(P3) w(∃xψ(x)) = limn→∞w(

∨n
i=1 ψ(ai))

We remark that by a theorem of Gaifman [7], w is uniquely determined by
its restriction to the quantifier free sentences of L, and any function w on the
quantifier free sentences of L satisfying (P1) and (P2) extends to SL so as
to satisfy (P3). Hence we can essentially restrict our attention to probability
functions w defined on the quantifier free sentences of L.

We also assume that the above problem essentially is the problem of choosing
a w on the basis of zero knowledge, i.e. empty Γ, by identifying ’the belief of
θ given Γ’ with ’the conditional probability of θ given

∧
Γ according to w’, i.e.

with
w(θ ∧∧

Γ)
w(

∧
Γ)

(assuming w(
∧

Γ) 6= 0).
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Note that whatever w we choose, it will give value 1 to tautologies and value 0 to
contradictions. To be able to say anything else, we need some principles which
would narrow down the possibilities. The most commonly accepted principle
is that of exchangeability, or ’the permutation postulate’ in the terminology
W.E.Johnson (1924) [8].

The Constant Exchangeability Principle (Ex) If θ ∈ SL and θ′ is the
result of replacing the distinct constant symbols ai1 , ai2 , . . . , ain

which occur in
θ respectively by distinct ak1 , ak2 , . . . , akn then w(θ) = w(θ′).

In what follows we shall assume Constant Exchangeability.

3 Unary Case

For this section let us assume that L is purely unary, as indeed was the case in
the work of Johnson, Carnap et al. In this case, the Constant Exchangeability
principle allows a very pleasing characterization of the w which satisfy it, due
to de Finetti (see [9]). Before stating it, we introduce some notation:

Let P1, . . . , Pm be the predicate symbols of L, all unary. An atom of L is a
formula of the form

m∧

i=1

P εi
i (x)

where the εi ∈ {0, 1} and P 1 = P, P 0 = ¬P . The atoms will be denoted
αh(x), h = 1, . . . , 2m. Sentences of the form

p∧

i=1

αhi(ai)

where p ∈ N, are called state descriptions. Note that Gaifman’s theorem implies
that w is determined by its values on the state descriptions.

Theorem 1 [De Finetti’s Representation Theorem] If w satisfies Ex then
there is a probability measure µ on

Dm =

{
〈x1, x2, . . . , x2m〉 | x1, x2, . . . , x2m ≥ 0 and

2m∑

i=1

xi = 1

}

such that

w

(
n∧

i=1

αhi(ai)

)
=

∫

Dm

2m∏
r=1

xnr
r dµ(~x),

where nr is the number of elements of {i | hi = r} for r = 1, 2, . . . , 2m.

De Finetti’s theorem, although extremely satisfactory (even more so when con-
trasted with the lack of a similar result for binary predicates to date), does not
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help us a great deal in choosing a w since there are many of them satisfying
exchangeability.

Continuing to consider a language L with finitely many unary predicates P1, . . . ,
Pm, we come to Johnson Sufficientness Postulate, which does determine a one-
parametric family of w, the Carnap Continuum of Inductive Methods, and hence
provides some sort of partial answer to our question.

Johnson Sufficientness Postulate JSP w (α(an+1) |
∧n

i=1 αhi(ai)) depends
only on n and on the number of times that the atom α appears amongst the
αh1 , . . . , αhn

.

In the unary case which we are considering, JSP implies that all atoms are
equivalent in the sense that w (

∧n
i=1 αhi

(ai)) is a function of the 2m sizes nk of
the sets {i | hi = k} (k = 1, 2, . . . , 2m) regardless of which atom is associated
with which size. This property is referred to as Atom Exchangeability (Ax).
(JSP has been considered in a weaker form where it is assumed that w(α(an+1) |∧n

i=1 αhi
(ai) depends on n, on the number of times that the atom α appears

amongst the αh1 , . . . , αhn
, and on α, (cf [10]), in which case Ax does not follow,

but a modification of Carnap’s contimuum can still be obtained.)

Carnap’s continuum of inductive methods was first derived by Johnson in [1]
(1932) and then, independently by Kemeny in 1952 (published 1963, see [3]) and
Carnap-Stegmuller (1959) (see [11]). It is described by the following theorem.

Theorem 2 Under the assumptions of Ex and JSP and assuming that the lan-
guage has at least two predicates, either

w

(
α(an+1) |

n∧

i=1

αhi(ai)

)
=

s + λ
2m

n + λ
(1)

for some 0 < λ ≤ ∞ where s is the number of times that the atom α appears as
a conjunct in

∧n
i=1 αhi(ai) or

w

(
n∧

i=1

αhi(ai)

)
=

{
2−m if all the hi are equal
0 otherwise.

Note that (1) uniquely determines w since we have

w (
∧n

i=1 αhi(ai)) =

= w(αhn(an) | ∧n−1
i=1 αhi(ai))·w(αhn−1(an−1) |

∧n−2
i=1 αhi(ai)) . . . w(αh1(a1)).

Carnap’s continuum has been widely discussed both by Carnap and later authors
(see e.g. [12], [6]). We will only mention one recent development in the debate,
due to Nix and Paris [13]. They introduced a principle called the Generalized
Principle of Instantial Relevance (GPIR)1 and showed that just as JSP leads to

1The Principle of Instantial Relevance (PIR) says that for atoms α, αh1 , . . . , αhn ,
w
�
α(an+2) | α(an+1 ∧

Vn
i=1 αhi

(ai)
� ≥ w

�
α(an+1) |

Vn
i=1 αhi

(ai)
�
. PIR follows from Ex.

GPIR says that if θ(x) ² φ(x) then w(θ(an+2) | φ(an+1) ∧ ψ(a1, . . . , an)) ≥ w(θ(an+2) |
ψ(a1, . . . , an)).



Binary induction and Carnap’s continuum 177

Carnap’s continuum, GPIR leads to another ’continuum of inductive methods’
defined by

w

(
n∧

i=1

αhi(ai)

)
= 2−m

2m∑
r=1

γn−nr (γ + δ)nr

where nr is the number of elements of {i | hi = r} for r = 1, 2, . . . , 2m, δ+2mγ =
1 and 0 ≤ δ ≤ 1.

4 Binary Case

In the rest of this paper we work with a language L containing m predicates
R1, . . . , Rm, all binary. Atoms (denoted β1(x, y), . . . , β2m(x, y)) are now the
formulas

m∧

i=1

Rεi
i (x, y)

and state descriptions (which determine w) are the sentences

p∧

i,j=1

βrij (ai, aj)

In [5] and [6] it is argued that apart from Ex, it is reasonable to impose a property
analogous to the Atom Exchangeability mentioned above in the unary context.
To formulate this property, we need the concept of a spectrum associated with
a state description:

Given a state description of our binary language

p∧

i,j=1

βrij (ai, aj),

let r be the p × p matrix with entries rij . We define the relation Ir to hold
between 1 ≤ i, j ≤ p just if rhj = rhi and rih = rjh for 1 ≤ h ≤ p. Ir is clearly
an equivalence relation on {1, . . . , p}.
The spectrum of r, S(r) is the tuple 〈| I1 |, | I2 |, . . . , | Iq |〉, where | I | denotes
the number of elements of I and I1, . . . , Iq are the equivalence classes of Ir

arranged in non-increasing order of size.

Spectrum Exchangeability Principle (Sx) If o and r from {1, 2, . . . , 2m}p×p

have the same spectrum then .

w




p∧

i,j=1

βrij (ai, aj)


 = w




p∧

i,j=1

βoij (ai, aj)


 .

By analogy with the unary case we formulate
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Johnson’s Binary Sufficientness Postulate JBSP For a natural number p
and r ∈ {1, 2, . . . , 2m}(p+1)×(p+1),

w




p+1∧

i,j=1

βrij
(ai, aj) |

p∧

i,j=1

βrij
(ai, aj)


 (2)

depends only on p and on the number s of k, 1 ≤ k ≤ p such that

rp+1i = rki and rip+1 = rik for all 1 ≤ i ≤ p + 1.

In the unary case it is easy to see that Johnson’s Postulate implies Atom Ex-
changeability. In the binary case the situation concerning the analogous result
(that JBSP implies Sx) is more complicated. Below we shall prove that Sx does
in fact follow from JBSP if we also have Ex. Then we shall show that JBSP
and Ex hold simultaneously for only two probability distributions w neither of
which is an ideal answer to our original question. Since Ex is a widely accepted
assumption in this area, the result shows JBSP in a rather unfavourable light.

Given w satisfying JBSP let g(p, s) denote the probabilities defined in (2). For
r ∈ {1, 2, . . . , 2m}(p+1)×(p+1) we have

w
(∧p+1

i,j=1 βrij (ai, aj)
)

=

= w
(∧p+1

i,j=1 βrij (ai, aj) |
∧p

i,j=1 βrij (ai, aj)
)
×

× w
(∧p

i,j=1 βrij (ai, aj) |
∧p−1

i,j=1 βrij (ai, aj)
)
× . . .

× w
(∧2

i,j=1 βrij (ai, aj) | βr11(a1, a1)
)
× w(βr11(a1, a1))

Therefore

w




p+1∧

i,j=1

βrij (ai, aj)


 = g(p, sp)× g(p− 1, sp−1)× . . . × g(1, s1)× g(0, 0)

where for 1 ≤ l ≤ p, sl is the number of k, 1 ≤ k ≤ l such that

rl+1i = rki and ril+1 = rik for all 1 ≤ i ≤ l + 1.

Theorem 3 JBSP and Ex imply Sx.

To prove the theorem, we need the following lemma:

Lemma 1 Let r ∈ {1, 2, . . . , 2m}p×p have spectrum 〈1, 1, . . . , 1︸ ︷︷ ︸
p times

〉. There exists a

permutation σ of {1, 2, . . . , p} such that o ∈ {1, 2, . . . , 2m}p×p defined by

oij = rσ−1(i)σ−1(j) for i, j ∈ {1, . . . , p}
is such that o restricted to (k×k) has spectrum 〈1, 1, . . . , 1︸ ︷︷ ︸

k times

〉 for each 1 ≤ k ≤ p.
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Proof First we shall show that there must exist some k ≤ p such that swapping
the kth and pth row and the kth and pth column produces u ∈ {1, 2, . . . , 2m}p×p

such that u restricted to (p− 1)× (p− 1) has spectrum 〈1, 1, . . . , 1︸ ︷︷ ︸
p−1 times

〉 If there was

no such k then each k could be associated with a pair mk, qk such that

〈rmki, rimk
〉 = 〈rqki, riqk

〉 for i ∈ {1, . . . , p} − {k}

and
〈rmkk, rkmk

〉 6= 〈rqkk, rkqk
〉.

This produces a graph on {1, . . . , p} with p edges, one for each k, connecting mk

and qk. Such a graph must contain a cycle, but that is plainly absurd - a vertex
m corresponds to the vector 〈〈rmi, rim〉, i = 1, . . . , p〉 and vertices connected by
an edge in this graph correspond to vectors differing precisely on one 〈rmk, rkm〉,
with each k used only once.

The lemma now follows since we can generate σ by swapping p with k as
above, producing u, then p−1 with some k found analogously from u restricted
to (p− 1)× (p− 1) etc.

Proof of Theorem 3 Let r ∈ {1, 2, . . . , 2m}p×p have spectrum ~p = 〈p1, . . . , pq〉.
Let σ be a permutation of {1, . . . , p} such that {σ−1(1), . . . , σ−1(q)} contains ex-
actly one element of each equivalence class of Ir, {σ−1(q+

∑i−1
j=1 pj+1), . . . , σ−1(q+∑i−1

j=1 pj +pi−1)} (which is empty if pi = 1) contains all the remaining elements
of Ii and moreover if o ∈ {1, 2, . . . , 2m}p×p is defined by

oij = rσ−1(i)σ−1(j) for i, j ∈ {1, . . . , p}

then o restricted to (k × k) has spectrum 〈1, 1, . . . , 1︸ ︷︷ ︸
k times

〉 for each 1 ≤ k ≤ q. That

such a σ exists is clear from the lemma. By Ex, we have

w




p∧

i,j=1

βrij (ai, aj)


 = w




p∧

i,j=1

βoij (ai, aj)




and by JBSP we have

w




p∧

i,j=1

βoij (ai, aj)


 = g(0, 0)× g(1, 0)× . . . g(q − 1, 0)

× g(q, 1)× . . .× g(q + p1 − 1, p1 − 1)
× g(q + p1, 1)× . . .× g(q + p1 + p2 − 1, p2 − 1) . . .

This shows that w
(∧p

i,j=1 βrij (ai, aj)
)

depends only on the spectrum ~p, as
required.
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Theorem 4 If w satisfies JBSP and Ex then w is either the independent dis-
tribution such that for each p and r ∈ {1, 2, . . . , 2m}p×p,

w




p∧

i,j=1

βrij (ai, aj)


 = (2−m)p2

or the distribution defined by

w




p∧

i,j=1

βrij
(ai, aj)


 =

{
2−m if all the rij are equal
0 otherwise.

Proof By virtue of Theorem 3 our assumptions imply Sx. Hence for all r ∈
{1, 2, . . . , 2m}p×p with a given spectrum ~p, w

(∧p
i,j=1 βrij

(ai, aj)
)

is the same.
For simplicity, we write w(~p) to denote it.

Let p ≥ 3 and let ~p = 〈p1, . . . , pq〉 be such that
∑q

i=1 pi = p and 1 < q < p,
that is, the spectrum is not 〈1, . . . , 1〉 nor 〈p〉. Let r ∈ {1, 2, . . . , 2m}p×p have
spectrum ~p and moreover satisfy the following:

• the equivalence class Iq (by convention, the smallest class) is {p − pq +
1, p− pq + 2, . . . , p}

• r restricted to (p − pq) × (p − pq) has spectrum 〈p1, . . . , pq−1〉, i.e. the
other equivalence classes are differentiated already within r restricted to
(p− pq)× (p− pq)

• r11 6= rp1

We have

w(~p) = w




p∧

i,j=1

βrij (ai, aj)




and

w




p∧

i,j=1

βrij (ai, aj)


 = g(p− 1, sp−1)× . . . × g(1, s1)× g(0, 0)

where for 1 ≤ l ≤ p− 1, sl is the number of k, 1 ≤ k ≤ l such that

rl+1i = rki and ril+1 = rik for all 1 ≤ i ≤ l + 1.

Note that sp−pq = 0, sp−pq+1 = 1, sp−1 = pq − 1 Modifying r by replacing
all of the r1j , for p − pq + 1 ≤ j ≤ p (note that they are equal) by another
element of {1, 2, . . . , 2m} (so that they remain equal but it is no longer the case
that r1p = rip for i ∈ I1, i 6= 1 produces o ∈ {1, 2, . . . , 2m}p×p with spectrum
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~o = 〈p1 − 1, . . . , pq, 1〉 (if p1 = p2 = . . . pv then p1 − 1 should be moved after pv

to observe the convention of listing spectrum in non-increasing order). We have

w(~o) = w




p∧

i,j=1

βoij
(ai, aj)




= g(p− 1, sp−1)× . . . × g(1, s1)× g(0, 0)

for the same sp−1, . . . , s1. (This is the case since rij = oij for 1 ≤ i, j ≤ p− pq

so sl remains the same for 1 ≤ l ≤ p− pq − 1 and both for r and o, sp−pq
= 0,

sp−pq+1 = 1,. . . ,sp−1 = pq − 1. Hence w(~p) = w(~o) and repeating the same
procedure until no equivalence class has more than 1 element yields

w(~p) = w(〈1, 1, . . . , 1︸ ︷︷ ︸
p times

〉) for all ~p 6= 〈p〉.

Note that this has been proved for any p ≥ 3 and ~p 6= 〈p〉. For p = 2, we have
only spectra 〈1, 1〉 and 〈2〉, and for p = 1 only 〈1〉.
For p ≥ 1 define

wp = (〈1, 1, . . . , 1︸ ︷︷ ︸
p times

〉) and hp = w(〈p〉)

Clearly, w1 = h1 = 2−m. For p ≥ 2, considering in turn some r ∈ {1, 2, . . . , 2m}p×p

with spectrum 〈p〉, and r ∈ {1, 2, . . . , 2m}p×p with another spectrum, extended
to r+ ∈ {1, 2, . . . , 2m}(p+1)×(p+1) respectively so that p + 1 does not fall to any
equivalence class of r, we see that

hpg(p, 0) = wp+1, wpg(p, 0) = wp+1.

Hence if wp+1 6= 0, g(p, 0) 6= 0 and hp = wp.

However, for p ≥ 2, picking some r ∈ {1, 2, . . . , 2m}p×p with spectrum other than
〈p〉, we note that any of its (2m)2p+1 extensions belonging to {1, 2, . . . , 2m}(p+1)×(p+1)

has spectrum other than 〈p + 1〉, so

wp = (2m)2p+1wp+1

and consequently only two possibilities arise:

• wp 6= 0 for all p ≥ 2 and hence wp = hp for all p ≥ 1. This corresponds to
the independent distribution described in the proposition.

• wp = 0 for all p ≥ 2. This corresponds to the other probability function
w described in the proposition.

The theorem follows.

We remark that neither solution appears particularly suitable as an answer to
our question, since using the independent one means that past information has
no effect, and using the other one means that probability 1 is given to all future
experiments having the same outcome as the first.
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