—o Akademie v&d Ceské republiky

UT-'A Ustav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

NEDOMA, P., BouM, J., Guy, T. V., JirsA, L., KARNY, M.,
NAGy, I., TESAR, L., ANDRYSEK, J.

Mixtools:User’s Guide

No. 2060 November 2002

UTIA AVCR, P.0.Box 18, 182 08 Prague,
Czech Republic
Fax: (+420)286890378, http://www.utia.cas.cz, E-mail:

utia@utia.cas.cz

UTIA AV CR, P. O. Box 18, 182 08 Prague, Czech Republic
Telex: 122018 atom ¢, Fax: (+420)(2)6884 903
E-mail: utia@utia.cas.cz

This report constitutes an unrefereed software description. Any opinions and conclusions expressed in
this report are those of the author(s) and do not necessarily represent the views of the Institute.

MixTools

Toolbox for

Mixtures

User’s Guide
EU project IST ProDaCTools No. IST-1999-12058

Contents
1 Introduction

2 Bridge between theory and software

2.1 Common theoretical notation L
2.2 Coding agreements v it e e e e e e e e e e e e e e e e
2.3 Basic learning scenario Lo e e
2.4 Basic scenario for design and advising oL oL
2.5 Theory and its software images e
2.6 Dirichlet pdf for estimating mixture weights 0oL,
2.7 Normal parameterized factor and conjugate prior oL L.
2.8 Prediction with normal parameterized factor and conjugate prior
2.9 Conditional KL distances e e

3 Software representation of mixtures

3.1 Types related to normal ARX mixtures . . .
3.1.1 Coding of estimation results
3.1.2 Coding of prediction results

3.2 Creating of mixture elements

3.3 Factors.
3.3.1 ARX factor
3.3.2 ARX LSfactor

3.4 Components
3.4.1 ARX components.
3.4.2 ARX LS components
3.4.3 Matrix ARX components
3.4.4 Matrix ARX LS component

3.5 Mixtures
3.5.1 ARX mixture — basic estimation form
3.5.2 ARX LS mixture
3.5.3 Matrix ARX mixture.
3.5.4 Matrix ARX LS mixture.
3.5.5 Summary of coding

3.6 Conversions

4 Software representation of advisory mixtures

5 Data management
5.1 Access to data sample
5.2 Huge data sample processing

ORI

UL U W

6 Data preprocessing
6.1 Preprocessing requirements o e e e e e
6.2 Preprocessing rum oL e e e e e e e e
6.3 Preprocessing algorithmso
6.4 Filters e
6.4.1 Remark to filter usage of L L
6.5 Examples e e
6.5.1 Example 1. e e e e
6.5.2 Example 2. e e e e
7 Mixtools functions
7.1 Function arguments L L e e e e e e
7.2 Mixtools user’s functions L e e e
8 Tutorial on mixture simulation, initialization and estimation
8.1 Case study: static mixture e e e
8.1.1 Simulation e e e e
8.1.2 Initialization of mixture estimationo Lo
8.1.3 Mixture estimation Lo
8.1.4 Test function "statsim” e e
8.2 Dynamic mixture exampleo L e
8.2.1 Simulation e e e e
8.2.2 Initialization of mixture estimation
8.2.3 Mixture estimation Lo e
9 Initialization of mixture estimation
9.1 Processing logic e
9.2 Inmitialization options L. L.
9.3 Processing example L e e
9.3.1 Long processingot i e e e e e e e e
9.3.2 Huge data sample processingo o e
9.4 Test case studies L e e
9.4.1 Static mixture, 2 dimensions, 4 components 0L
9.4.2 Static mixture, 2 dimensions, 10 components
9.4.3 Static mixture, 4 dimensions, 4 components e e
9.4.4 Dynamic mixture, 2 dimensions, 2 components 0.
10 Aproximate parameter estimation of ARX mixtures
10.1 Implementation notes L e e
10.2 Summary of mixture estimation functionso
10.3 Initial mixtures for estimation
10.4 Estimation statistics L e e e e e e e e e
10.5 Quasi-Bayes mixture estimationo
10.6 Batch quasi-Bayes mixture estimation oL Lo
10.7 Quasi-Bayes mixture estimation based on forgetting branching
10.8 Mixture estimation with fixed covariances
10.9 Iterative estimation and mixture flattening
10.10Processing of huge data samples
11 Mixture prediction
11.1 Mixture projection 0 0 e e e e e e e e e e e
11.2 Prediction with mixture projection e e
11.3 Prediction with mixture and related functions oL,
11.4 Prediction examples e e e e e e e e e
11.4.1 Tutorial example e e e e e e e
11.4.2 Prediction with scaled data L

11.4.3 Data-dependent approximate predictiono

15
15
15
15
17
18
18
18
18

20
20
21

23
23
23
26
26
26
27
27
29
30

30
31
32
33
34
35
35
35
35
35
35

38
38
38
39
39
40
41
41
41
42
45

11.4.4 Prediction with grouped data oL oL oo
11.4.5 Prediction n-steps aread L
11.5 Reduction of data space e e

12 Visualization

13 Model validation

13.1 Test data sample o L L L e e e e e
13.2 Model validation via simulation L e e e
13.3 Stabilized forgetting
13.4 Prediction based tests - static mixtures. Lo oL
13.5 Prediction based tests - dynamic mixtureso Lo

14 Channels descriptions

14.1 Access to description fields oL

15 Design and advising

15.1 Academic design e e e e e
15.2 Industrial design L. e e e e e e e
15.3 Simultaneous design L L e
15.4 Design validation L
15.5 Signaling L e e e e e e e

16 Tutorial on design and advising

16.1 Academic design and advising Lo e
16.2 Industrial design and advising Lo
16.3 Simultaneous design and advising L e e e

17 ARX mixture simulation

17.1 Distribution of process noise Lo e e
17.2 Covariance of regression coefficients in simulation 0L,
17.3 Markov switching among components Lo

18 Estimation of structure of mixture factors

19 Selected techniques

19.1 Mixtools global matrices
19.2 Kullback - Leibler distance L
19.2.1 Kullback - Leibler distance in parameter space
19.2.2 Kullback - Leibler distance in data space,
19.3 Setting "dbstop” in dialog oL e

20 Mixtools design base

20.1 Design base functions oL e e
20.2 Alphabetic list of Mixtools functions L
20.3 List of recommended identifiers L
20.4 Alphabetic list of recommended identifiers oL oo

21 Mixtools MEX and API functions

21.1 Mixtools MEX functions e e e e e e
21.1.1 Getting data vector e e

22 Mixtools Application Program Interface

22.0.2 Communication with MATLAB e
22.0.3 Programming e e e e e e e e e e
22.0.4 Memory managementot u e e e e e e e e e e e e e e e e e
22.0.5 Getting data vector L L
22.0.6 In-place processing L.

57

60
60
61
63
65
65

66
67

68
68
71
71
4
(0]

75
76
7
7

80
81
81
81

82

84
84
84
84
85
85

86
86
88
90
93

95
95
95

22.0.7 Example of stand-alone program 0L

23 Termbase
23.1 Use of termbase in ascii texts .
23.2 Use of termbase in Latex texts

A Example of channel descriptions
B Example of identification

C Example of design

Acknowledgment

99
99
100

101

104

107

The work described in this report was done with support of EU project IST ProDaCTools No. IST-1999-

12058

1 Introduction

This guide deals with software aspects of the probabilistic advisory system relying on Bayesian estimation
and prediction of a finite mixture of probability density functions (pdf) based on a sample of multivariate
data. At present, it serves for developers of the system and their nearest co-workers. Guides for a wider
set of users will be created after stabilizing the whole system. The underlying theory is described in [?].
Knowledge of Bayesian learning related to auto-regression models with external inputs (ARX) and basic
knowledge of normal mixtures are necessary pre-requisite for understanding various parts of the text.

Section 2 serves as a bridge between theoretical notions and their software images. Then, the Section 3
provides general software representation and its specification for basic normal mixtures. Other representa-
tions, like Markov chains will be gradually added.

The adopted data management is characterized, Section 5. Important data preprocessing is dealt with
in Section 6. The Mixtools functions are summarized in the Section 7.

Knowledge of the introduced notions allows to follow tutorial on mixture handling, Section 8.

The rest of sections include detailed discussion of selected topics — initialization of mixture estimation,
Section 9, approximate mixture parameter estimation, Section 10, mixture prediction, Section 11, visualiza-
tion, Section 12, mixture simulation, Section 17 and estimation of mixture factors, Section 18.

The use of the toolbox functions is documented in the form of MATLAB diaries. The identifiers used
follow coding conventions summarized in subsection 20.3.

intro.tex, MK, PN June 25, 2004

2 Bridge between theory and software

Here, a bridge between the learning part of the underlying theory and its software image is presented.
Theoretical background and toolbox are developed by the team whose communication is much simplified by
adopting common theoretical notation and coding agreements. Often, this guide uses them without repeated
explanation.

2.1 Common theoretical notation

The following common symbols used in the theoretical description [?] are useful here:

Symbol | Meaning

x* means the set of all values of z

T denotes cardinality of z*

Ty is z at discrete time t € t* = {1,...,t},

x(t) means the sequence z1,...,z; and x;4 is i-th entry of z;,

© € ©* | denotes unknown model parameters,

fG19) is a common symbol for conditional pdfs: versions are distinguished by identifiers in arguments,
x means equality up to a normalizing factor.

2.2 Coding agreements
The coding agreements are:
1. The functions to be converted to MEX-files are limited to use the following MATLAB entities:

e (1-by-1) structure, called structure,
o (1-by-n) cell list, called list,

e 1 or 2-dimensional numerical array, called vector or matrix, respectively.
2. Default values have to be located in the function ”defaults”.
3. Identifiers have to meet the following basic rules:

e Global variables have upper case identifiers. They should be eliminated from processing with the
exception of global matrices (DATA, TIME, see Section 5.

{scenarion}

{coding}

o Structures and cell lists begin with an upper case letter, other identifiers are coded by lower case
letters;

o Identifiers used should be selected from a common list given in subsections 20.3, 20.4.

e The function names have maximum length of 8 characters and consist of lower case letters and
digits.

2.3 Basic learning scenario
A sequence d(f) of data records d; is observed and mutual relationships are searched for. They are modeled
by the joint pdf

fd®le) = T f(dild(t - 1),0)

tet*

conditioned on unknown parameters ©. The considered parameterized mizture model has the form

fdild(t —1),0) = > acf(di|d(t — 1), 00, ¢). (1)

cec*

The individual pdfs f(di|d(t — 1), O, ¢) are called parameterized components. The unknown parameter ©

consists of probabilistic weights of components o = (a1,....q) € o* = {a. > 0,> ... a. = 1} and by
individual parameters ©., ¢ € c¢*, of components. The components are decomposed by the chain rule
(dt‘d(t_l) Hf zt|¢zcta ZC,Z,C) (2)
IS

where f(di.t|Vicit, Oicy 1, ¢) are called parameterized factors. They predict scalar entries d;.; of d; called factor
outputs. They are assumed to depend on regression vectors ;.. that consist of current values of other record
entries dj,;, j > ¢ and several delayed record values d;_, k > 1. The factorization (2) allows us to combine
entries of logical and continuous nature, to consider factors of different types.

The adopted Bayesian estimation modifies a chosen prior pdf f(©) by applying Bayes rule [?] in order

get the posterior pdf f(©|d(t))))
f(O[d(t)) o< f(d(t)|©)f(O). (3)

This pdf is the most general result of Bayesian estimation. From the software point of view, the estimation
transforms data sample d() into the statistic S = S(d(f)) that compresses information contained in historical
data sample. It may serve for obtaining point estimates of the unknown © and information about precision
of these estimates. Some of its parts serve for judging quality of the estimate. They are referred to as states.
The collected statistics also serves for computing predictions

F(dp, / F(dhp,©)f(Old(i)) do (4)

They have to be complemented by information that allows to select entries d to be predicted and construct
the value of the regression vector .

2.4 Basic scenario for design and advising

Learning provides multiple-mode model f(d(t)) of the managed system. Design modifies the elements of the
model that are supposed under the operator control. The modification is designed so that the resulting ideal
pdf T £(d(t)) is the closest to the user ideal pdf (user target) [U1f(d(f)) reflecting managing aims. Advising
then reduces to presentation of properly selected low-dimensional projections of the designed ideal pdf. Three
types of design are developed. Academic design optimizes pointers to recommended components, industrial
design optimizes recommended recognisable actions and simultaneous design optimizes both pointers to
recommended components and recommended recognisable actions. From here onwards, if not defined more
precisely, all types of designs are meant under term design.

To evaluate the closeness of pair pdfs, Kulback-Leibler distance (KLD) is employed. It can be expressed
as additive loss function summing conditional KLD

[I]f(dt|ata dit —1))
ot =)= [lasate vy (et) aa o

{MKmixture}

{MKfactors}

{MKpostpdf }

{MKpredict}

{cKLD}

where U f(dy|as, d(t — 1)) results from design. Tt is estimated model modified by advises a;.
Advises, i.e. actions available to p-systems

a; = (¢4, Uoyts St,pt) are interpreted as follows. (6) {5pact}

Recommended pointers {c¢;}ie+, ¢ € ¢* = {1,...,¢}, are pointers to the components that are recom-
mended to be kept active at respective time moments.

Recommended pointers are academic advises.

Recommended recognizable actions {u,;}ici+ guide the user in selecting recognizable actions.

These advises result either from the industrial or from simultaneous design.

Priority actions {p;}ics+ select entries of {d;}1c¢+ to be shown to the operator.

These advises are called assigning priorities.

Signaling actions {s;}ic+, s¢ € s* ={0,1}, stimulate the operator to take some measures when behavior
of the o-system significantly differs from the desired one.

These advises are called signaling.

2.5 Theory and its software images

The software entities inherit names of the underlying parameterized notions. For instance, a (software) factor
represents relevant part of statistics describing its estimation together with information about type of the
factor, structural information on modeled output, regression vector and possibly state of the estimation. The
software entities serving for predictions are distinguished by prefix “p” whenever necessary. They have to
contain information necessary for constructing of the current regression vector in addition to the information
describing estimation results.

The theoretical entities are implemented as (software) structures or (1-by-n) cell lists referred to as cell
lists or just lists.

The (software) structures contain a field type. It contains numerical code of the structure type. The
type=0 means ”"not specified”.

The structures can have a field ”states”. It contains an auxiliary information needed for convenient
processing of different tasks, e.g. statistics computed in mixture estimation. The content of states still varies
so that their detailed description is postponed.

The most important relationships of the basic software entities and their theoretical counterparts are

summarized in the following table:

Basic software en-
tity

Software name (meaning) & represen-
tation

Theoretical counterpart

. ndat, scalar t
horizon
hn, scal d
number of chan- HEH, seatar
nels
DATA, (nchn,ndat) matrix d(t)

data sample

channel

row number DATA, scalar

index of d;(t)

mixture

maxture type

list of factors

components

degrees of freedom
of components

Structure containing:

type, scalar

Facs, cell list

coms, (ncom,nchn) matrix

dfcs, vector

f(©) or f(©ld(t))

code of the form and use of statistics
S(d(t)

labls of parameterized factors available
c-th row lists factors in c-th com-
ponent ¢ € ¢ = {l,...,¢ =
tncom, ie. f(dy|d(t—1),0.,¢) =]]
f(dist|digse - -
weights
statistics k estimating
weights «, see Section 2.6

i€i*

. d;;td(t— 1)) component

component

factor

factor output

factor type

factor structure

factor statistics

degrees of freedom
of factor

regression vector

states

Structure containing:

ychn, scalar

type, scalar

str, two-row matrix

fields containing statistics typically
“LD” matrix or vector “Eth” matrix
“Cth”, scalar “cove”

dfm, scalar

psiO, vector

states, structure

index ¢ of the modeled channel (of the
factor output dj;

code distinguishes type of the factor
(normal, Markov chain), form of statis-
tics S (basic, least squares (LS) form
(estimator or predictor)

it describes structure of regression vec-
tor; list 5% of channels dj.;_j in regres-
sors; 1st row contains channel numbers
7, the 2nd one their time delays k € k*
optional column [0; value] defines factor
offset factor offset is ;. x “value”
statistics S;; form is implied by the
type: the first option basic, the second
one LS

degrees of freedom v — 2

description of used in
prediction
it contains initial conditions, statistics

used in tests ...not stabilized yet

regressor

2.6 Dirichlet pdf for estimating mixture weights

Mixture weights form the probabilistic vector

aEa*E{aCEO,Zac—l}

cec*

{Dir}

They are universally described by the Dirichlet pdf
f(a) = Dig(k) x H afie (7) {piri}

cec*

This pdf is shaped by the ¢é-vector statistic k with positive entries k.. This prior form is preserved for all
considered approximate estimations.
The vector k is stored under the name “dfcs”.

2.7 Normal parameterized factor and conjugate prior

The considered parameterized normal factors, called ARX factors (auto-regression with exogeneous signals),
have the form

fdly,0) = Ny(0'y,r) = (2mr)" " exp {—2171 ([—1,0']\11)2} , where (8) {MKnor}

" denotes transposition,
© = [0, r] = [regression coefficients, noise variance],
U = [d,¢']’ = [regressand, regression vector].

The factor output d is coded by the channel number “ychn” pointing to row of global data matrix
“DATA”, see Section 5. Structure of the regression vector is coded by the two-row vector “str”.

The conjugate prior pdf f(©) that preserves its functional form during Bayes estimation of the model
(8) is Gauss-inverse-Wishart (GiW) pdf [?]

f(©) = GiWp, (L, D,v) v % exp {21[1, ¢'|L'DL[-1, 0']'} , where (9) {MKGiw}
r

v > 0 is the number of degrees of freedom of f(©) that can be interpreted as an effective counter of number
of data used; it is coded by “dfm”=v — 2,
L'DL is an extended information matrix in numerically advantageous L’ DL decomposition in which
L is lower triangular matrix with a unit diagonal,
D is diagonal matrix with positive entries.

Both matrices are stored in the matrix “LD”, which coincides with L whose unit diagonal is replaced by
the diagonal of D.

The split version of L'’ DL decomposition

1 0
L =
[de Ly

can be unambiguously transformed into well known least squares (LS) quantities

} , D = diag[Dg, Dy|, Dy is scalar (10) {MKsplitLD}

0 = L;lLdlp is LS estimate of 0, stored as “Eth” (11) {mkLS}

D
7 = Z%is LS estimate of r stored as “cove” (12)
v

fL;lDJI(LQI))*l is covariance matrix of the LS estimate of 0

L' D Ldecomposition of L, *D,*(Ly,)~" is stored as “Cth”.

Thus, ARX factor coincides with the description of the GiW pdf with the sufficient statistic S;;; = [Li.¢, Dyt Vist]-
The factor is called ARX LS factor if the statistic S;;x = [éi;t, Pists L;il;t, D;&t, Vi;t} represents it.

For communication purposes, factors in single components are described in a common matrix way as-
suming that structure of their state. Then, matrix version

2.8 Prediction with normal parameterized factor and conjugate prior (,
MKpredi

The predictive (p-) factor — modeling i-th channel that corresponds to the normal parameterized factor and

GiW factor given by the sufficient statistics S = [L, D,v] — can be shown to have Student pdf [?] with

moments

di = Eldil,S) =0, #a=covldilw, S] = #(1+¢), ¢ = ¢'I'DLy. (13) {MKstudent}

These moments together with degrees of freedom v determine unambiguously the form of Student distribu-
tion.

Note that for a higher v, Student distribution is well approximated by the normal pdf with above
moments. In this case, it is also often possible to neglect the term ¢ whose evaluation is computationally
expensive.

In addition to statistics obtained in estimation, predictor has to store the value “psi0” of regression vector
1) used in its condition.

2.9 Conditional KL distances

Design with normal mixtures reduces to manipulations with conditional KL distances that have common
form of so-called lifted quadratic forms

k+¢'LDL'+, where (14)

L is lower triangular matrix with unit diagonal and D is positive diagonal matrix. t; is regression vector
that reduces to the state vector ¢}_; = [dj_q,...,d, 4,1],0 > 0 if there is no recognizable action in the
problem. The lifted quadratic forms (14), used in the description of individual factors, components and its
average counterpart, also describe approximate Bellman function.

User pf for recommended pointers is determined also in terms of a lifted quadratic form. For instance,
in the academic design

U
[U]f(0t|d(t - 1)) !V flet) exp [*0-5([U]]€ct;t—1 + ¢;71[}Lcm [U]Dcﬁt [U}L/ct;td:q)]) (15)
where [U] f(ct) eliminates pointers to the components, operation on that may lead to wrong behaviour of the
system (so-called dangerous components) while the used KLD in exponent of (15) defines preferences among
pointers to components.

scenario.tex, written by MK June 25, 2004

3 Software representation of mixtures

The basic software entities are listed in Section 2 with relation to their mathematical counterpart. This Sec-
tion partially repeats their description and extend them to (derived) software entities like matrix components
or matrix mixtures.

The software entities are realized as structures and cell lists. The structures may have a field states that
contains an auxiliary fields explained in relevant sections. The software entities are summarized and related
to different types of normal ARX factors, components and mixtures. These forms are distinguished by field
” type” .

We are oriented on dynamic miztures containing dynamic factors. Regression vector of dynamic factor
contains some delayed values of the factor output or other channels. The structure of regression vector is
coded by (factor) structure, i.e. by 2-rows matrix. The 1st row lists the involved channels and the 2nd one
the corresponding time delays. For instance,

str=[11 22
12 01]

means that the regression vector at a time ¢ is composed of the data value on the channel 1 with delays 1
and 2 (it means DATA(1, t-1) and DATA(1, t-2)) together with the data value on the channel 2 with delays
0 and 1 (DATA(2, t) and DATA(1, t-1)).

Optionally, str may contain the column

[0; value]
that introduces factor offset and the scaling ”value” (often 1).

The special case of static mixtures consisting of static factors. Their regression vectors contain at most

zero-delayed values of other channels and the value multiplying the offset. Thus, no delayed data are
considered.

{coKLD}

{cKLDN}

{ufc}

{represent}

3.1 Types related to normal ARX mixtures

Here, various types ARX mixtures are characterized. It has to be stressed that also mode of the use of
software entities has to be respected, i.e. the entities related to estimation or prediction are distinguished
by the “type” also.

3.1.1 Coding of estimation results

Estimation describes distribution of parameters, formally GiW pdf (9). Numerical values of various statistics
are updated by data sample.
The factors are structures. They are coded according to their software representation (e.g. basic or LS
ones):
1 ARX factor corresponding to the form (9)
2 ARX LS factor — corresponding to the LS (least-squares) form (11)
Note that the value of "type” begins each line above.
A component is a list of factors. The factors listed can be of different forms. Then the component type
code is 0. Special cases are supported if all the factors are of the same type:
11 ARX component — all factors are ARX factors, the form 1
12 ARX LS component — all factors are ARX factors, the form 2
If moreover all ARX factors have a common regression vector, the matriz type of components are also
considered:
13 matrix ARX component — matrix version similar to ARX factor
14 matrix ARX LS component — matrix LS version similar to ARX LS factor but regression coefficients
and noise covariance estimates are matrices.
A mixture is a structure. It is realized as a list of components together with degrees of freedom of
components.
Mixture can contain components of different type then the type code is 0. Special cases are supported
if all components are of the same type:
21 ARX mixture
22 ARX LS mixture
23 matrix ARX mixture
24 matrix ARX LS mixture

3.1.2 Coding of prediction results

Prediction describes distribution of data, formally Student distribution with moments (13). It does not
modify numerical values of the estimation statistics but exploits them for the current value of regression
vector.

Prediction counter-parts of estimation results are given the same names. In text, if there is a danger of
misunderstanding they are given prefix p-. So we have p-factors, p-components and p-miztures. Codes of
p-elements are obtained by adding 100 to codes of estimation counterparts. Thus, the following p-elements
are considered:

101 ARX factor

102 ARX LS factor

111 ARX component

112 ARX LS component

113 matrix ARX component
114 matrix ARX LS component
121 ARX mixture

122 ARX LS mixture

123 matrix ARX mixture

124 matrix ARX LS mixture

The p-elements are obtained from corresponding estimation elements by mixture projection (marginaliza-
tion, conditioning, regressor substitution), see Section 11. In the projection, the original states are changed.

3.2 Creating of mixture elements

Estimation elements (factors, components, mixture) are created by:

e constructors with fields filled by defaults (default factor,...) and overridden by user so that initial
element (initial factor,...) arises;

e conversions from other existing form;

e operations from initial values through initialization, estimation etc. while processing data.
Prediction elements are created by:

e projection - transformation of estimation results while supplying information on predicted channels,
channels in condition and their values, see Section 11;

e conversions from other existing p-forms.

3.3 Factors

The factors used in estimation are discussed. The corresponding p-factors are obtained from estimation
factors by projection.

The factors are elaborated for a specific modeled channel. Their regression vectors are described by the
factor structure. As static factors we refer to factors with modeled channel independent of delayed data. Its
structure either contains offset or is empty.

The factors are structures built by factor constructors. A constructor creates factor with default values

referred to as an default factor. The factor fields are filled later on by the user so that initial factor is
obtained.

3.3.1 ARX factor
The ARX factor is described by (9). It is created by the constructor ”facarx”, e.g.

ychn = 1; % modeled channel
str =11 22 0;12 01 1]; % dynamic factor structure
%

Fac facarx(ychn, str) build ARX factor

Fac =
ychn: 1 > modeled channel
str: [2x5 double] — > factor structure

dfm: 1 — > degrees of freedom v — 2
type: 1 — > type: ARX factor
LD: [6x6 double] — > L’DL decomposition of extended inf. matrix

The "LD” field is the L' DL decomposition of the extended information matrix introduced in (10), ” dfm”
is the field used for degrees of freedom v — 2. It represents the effective number of data items processed.

The "L” is a lower triangular matrix with units on diagonal. The diagonal matrix "D” is held on the
"1” diagonal. The extended information matrix is V' = L'DL.

3.3.2 ARX LS factor

The least squares representation (LS) of an ARX factor, ARX LS factor, deals with the LS form of the
sufficient statistics (11). The factor is built by the constructor ”facarxls”:

ychn = 1; % modeled channel
str =11 22 0;12 01 1]; % dynamic factor structure
Fac = facarxls(ychn, str) % build ARX LS factor
Fac =
ychn: 1 — > modeled channel
str: [2x5 double] — > dynamic factor structure
dfm: 1 — > degrees of freedom v — 2
type: 2 — > type: ARX LS factor

cove: 1.0000e-010 —
Eth: [0 0 0 0 0] -
Cth: [5x5 double] -

LS estimate 7 of noise variance
LS estimate 0 of regression coefficients
LD decomposition of LS covariance (L'DL)™!

VVVVVVYV

The covariance matrix ”Cth” is held in the form of its L’ DL decomposition, i.e. the lower triangular ”L”
with its unit diagonal replaced by the diagonal of the matrix "D”.

3.4 Components

A component describes parameter estimates related to multivariate pdf of selected channels. We refer to the
selection as modeled channels. The distribution of modeled channels may be influenced by data measured
on channels whose distribution is not modeled. These channels are introduced by the structures involved.
We refer to them as not-modeled channels.

Components are of different forms described in subsections.

3.4.1 ARX components

As a basic form, the component is expressed as a list of individual factors. This form is used in estimation.
The list of factors should be ordered according to mutual dependencies but the Mixtools functions do
not require to specify the correct order of factors the sorting is done internally if needed be.

3.4.2 ARX LS components

This component consists of ARX LS factors only. This type (converted to predictor) is used in simulation.

3.4.3 Matrix ARX components

The estimated parameterized component is a multivariate normal pdf that predicts the modeled channels
by a multivariate ARX model with a common regression vector. It and its estimates can be written in the
form similar to ARX factor.

The matrix ARX component has "nchn” modeled channels. The common length of the regression vector
is "npsi”. The ARX component is then described by the fields:

ychns (1-by-nchn) % ordered list of modeled channels: d;;x depends on dit1., ..., d;;t
str (2-by-npsi) % regression-vector structure common for all factors
dfm (1-by-1) % degrees of freedom v — 2
LD (nLD-by-nLD) % L' DL decomposition of the extended information matriz, size nchn+npsi
The matrix ARX component is built by the constructor ”comarx”, e.g.
ychns = [3 2 1]; % modeled channels
str = [1 1 22 0;12 12 1]; % common regressor structure
Com = comarx(ychns, str) % build matriv ARX component
Com =
ychns: [3 2 1] — > modeled channels
str: [2x5 double] — > component structure
dfm: 1 — > component degrees of freedom
type: 13 — > component type, matriz ARX
LD: [8x8 double] — > LD decomposition of extended inf. matrix

3.4.4 Matrix ARX LS component

The estimated parameterized component is multivariate normal pdf that describes the modeled channels by
a multivariate ARX model.

It has a common regression vector and it is written in the form mimic to ARX LS factor. The estimated
regression coefficients and noise covariance only become matrices. The component structure does not contain
zero delays of the modeled channels - those dependencies are respected by non-diagonal covariance whose
estimate is non-diagonal matrix ”cove”.

This type of components is employed mainly in the problem formulation and interpretation of results.

The matrix ARX LS component has “nchn” modeled channels. The common length of the regression
vector is "npsi”. The ARX component is then described by the fields:

ychns (1-by-nchn) % list of modeled channels ordered

str (2-by-npsi) % regression-vector structure common one

dfm (1-by-1) % degrees of freedom of a factor

Eth (nchn-by-npsi) % point estimate of regression coefficients matrix £[0|L, D, V]

Cth (npsi-by-npsi) % covariance of regression coefficients the same as for single modeled chanel
L'DL version stored

cove (nchn-by-nchn) point estimate of noise covariance matrix E[r|L, D, v]

L' DL version stored
The matrix ARX LS component is created by the constructor ”comarxls” e.g.

ychns = [3 2 1]; % modeled channels
str =11 22 0;12 12 1]; % common regressor structure
Com = comarxls(ychns, str) % build matric ARX LD component
Com =
ychns: [3 2 1] — > modeled channels
str: [2x5 double] — > component structure
dfm: 1 — > component degree of freedom
type: 14 — > component type, matric ARX LS
cove: [3x3 double] — > point estimate of noise covariance
Eth: [3x5 double] — > point estimate of regression coefficients
Cth: [5x5 double] — > covariance of regression coefficients

The covariance matrix ”"Cth” and the point estimate of noise variance ”cove” are held in the form of its
L' DL decomposition introduced in (10), i.e. the lower triangular "I.” with its unit diagonal replaced by the
diagonal of the matrix "D”.

The field ”dfm” holds degrees of freedom v —2. It represents the effective number of data items processed.

3.5 Mixtures

A Mixtools mizture is formed by an array of components and degrees of freedom of components.

The degrees of freedom of components ”dfcs”, equal to k in (7), are proportional to point estimates of the
mixing probabilities defining the mixture weights (a). They also determine uncertainty of these estimates.
The attempt to fix these estimate sufficiently in mixture estimation led us to the recommended initial values
of 7dfes” to be close to 10 % of the data sample length.

The mixture is build by mizture constructor in the form:

Mix = mixconst(Facs, coms, dfcs) % forms 21 22
Mix = mixconst(Coms, dfcs) % forms 23 2/

The first possibility is explained in the next subsection. The second one is equivalent.

The list of components ”Coms” can have different forms. The components must have the same selection
of the modeled channels.

The constructor analyzes the components, specifies the mixture ”type” and writes a descriptive informa-
tion into the field ”states”.

3.5.1 ARX mixture — basic estimation form

The ARX mixture is based on an array of factors ”Facs”. Each factor is represented by its position in the
array — by an integer index. A component lists its factors as integers pointing to ”"Facs”. The array of
components is then a matrix where each row represents a component. It has the dimension ncom-by-nchn
where "ncom” is the number of components and "nchn” is the number of modeled channels.

In texts and examples, we use the term estimator for this special mixture form in order to stress its
dominant use.
Notes:

e a factor can be used by more than one component in this case we speak about the common factor
e the field of factors ”"Facs” may contain factors that are not included in any considered component

e the factors define the modeled and not-modeled channels of the mixture.

The non-modeled channels are used factor structures but they are not listed among the modeled
channels.

The ARX mixture is build by the constructor ”mixconst” with 3 arguments:

Mix = mixconst(Facs, coms, dfcs)

The ARX mixture estimator was designed with respect to easy estimation. It represents the only mean
how to specify and support common factors.

An example of a mixture estimator building follows. The mixture has two components. The components
contain the dynamic factors Facl and Fac2 for the 1st channel and a common static factor Fac4. The Facl
and Fac2 depend on 1st and 2nd modeled channels and on the not-modeled channel 4. The factor Fac3 is
not used in processing.

The diary of building the mixture:

Facs{1} = facarx(1,[1 1 22 4; 120 1 0D; % build 1st ARX factor

Facs{2} = facarx(1,[1 2 ;1 0O]; % build 2nd ARX factor
Facs{3} = facarx(2,[1 0; 1 1]); % build 3rd ARX factor (not used)
Facs{4} = facarx(2, [); % build 4th ARX factor
coms =[14; 2 4]; % build components
dfcs = [10 40]; % degrees of freedom of components
[Mix, maxtd] = mixconst(Facs, coms, dfcs); % build mizture
maxtd
maxtd =
2 — > mazximum time delay in the mizture

The mixture consists of the following fields:
Mix
Mix =
Facs: {[1x1 struct] [1x1 struct] [1xl struct] [1xl struct|}

coms: [2x2 double] — > description of components
dfcs: [10 40] — > degrees of freedom of components
type: 21 — > mizture type: ARX mixture

>

states: [1xl struct] — > states for estimation

3.5.2 ARX LS mixture

In the same way, ARX LS mixture is build. The only difference is that the factors used are ARX LS factors.
This form of mixture is used for simulation.

3.5.3 Matrix ARX mixture

The components are specified as a list of matrix ARX components.
We use this forms when we gain no advantages from use of the corresponding factorized form.
Example: 3 matrix ARX LS components ”Com1, Com2, Com3” and a ”dfcs” are supposed to be avail-
able. The mixture is build as:
dfcs = [10 40 20];
Mixc = mixconst({Coml Com2 Com3}, dfcs)

Mixc =
Coms: {[1xl struct] [1xl struct] [1x1 struct]}
dfcs: [10 40 20] — > degrees of freedom of components
type: 24 — > mizture type: matrix ARX mixture
states: [1x1 struct] — > states

3.5.4 Matrix ARX LS mixture

This form is similar to matrix ARX mixture but the components are specified as a list of matrix ARX LS
components.

3.5.5 Summary of coding

1 ARX factor

2 ARX LS factor

11 ARX component

12 ARX LS component,

13 matrix ARX component
14 matrix ARX LS component
21 ARX mixture

22 ARX LS mixture

23 matrix ARX mixture

24 matrix ARX LS mixture
+100 predictor types

3.6 Conversions

There are 2 functions for conversion into any specified form:

Com = com2com(Com, type) % convert component to the type specified
Mix = mix2mix(Mix, type) % convert mizture to the type specified

where ”type” is coded element type.

Use of "mix2mix” is documented on an example. Let us have a ARX mixture estimator ”Mix” . First,
marginalization by the function ”mix2mixm”, see Section 11, is performed. By this, mixture is converted to
mixture predictor:

pMix = mix2mixm(Mix) % build p-ARX LS mixture (predictor)
Facs: {[1x1 struct] [1xl struct] [1xl struct] [1x1 struct]}
coms: [2x2 double] — > description of components
dfcs: [0.3000 0.7000] — > degrees of freedom of components
type: 122 — > mizture type: ARX LS predictor
states: [1x1 struct] — > states for prediction

Then, the p-mixture ”pMix” is converted to p-ARX LS mixture:

pMix = mix2mix(pMix, 124) % p-matric ARX LS mixture
pMix =
Coms: {[1x1 struct] [1x1 struct]} — > mizture components
dfcs: [0.3000 0.7000] — > degrees of freedom of components
reserved: O — > for later use
type: 124 — > magture type: matric ARX LS prediction

states: [1x1 struct]

mixrepr.tex by MK, PN June 25, 2004

4 Software representation of advisory mixtures

Mixtools implements algorithms that transform user’s aims [Vl f(d(t)) and data d into the ideal mixtures
1 £(d(t)) that are presented to the user. Mixtures are learned from the data [?]. The estimated mixtures
are converted into predictors, namely, p-mixtures. They contain information necessary for constructing of
the current regression vector in addition to the information from estimation. Design converts predictors
(p-mixtures) and management aims (expressed by one component mixture) into advisory type mixture (a-
mixtures). In addition to the information describing estimation results, a-mixtures store description of user’s
aims and states related to the design. Thus, a-mixtures represent a slight extension of p-mixtures, so that
majority of notions related to p-mixtures is preserved.

Advise describes the ideal pdf of data, which is constructed such that, if followed, the system behaviour
be close to the user target (given by the user ideal pdf V] f(d), see Section 15).

The advising results are represented by a-mixture which is similar to p-mixture, but have additional states
(advisory states) used in design of advises. Mixture projection (marginalization, conditioning, regression
vector substitution, see Section 11) operations can be applied to a-mixture as well.

{codingsum}

{representa}

Design converts result of learning (e-mixture) into predictor (p-mixture) and then into advisory mixture
a-mizture. The last is used for advising and represents the ideal pdf (15). Basic information stored in
individual factors and components are identical with those of corresponding p-mixture, except of: i) field
dfes, which contains probabilistic weights of components « gained from advisory design and ii) advisory
states used in advises design. Thus the state of a-mixtures contains the following fields:

strc - common structure of data vectors used in design

ufc - vector qualifying components: dangerous component (0), not dangerous (positive number)
kc - user lifts of quadratic forms

UDc - cell vector of U'DU decompositions of the user KLD kernels

udca - U/ DU decomposition of the average KLD kernel made of UDc

kca - average lift of quadratic forms made of kc

outs - list of channels with innovations

uchn - list of channels with recognisable actions

pochn - list of channels with o-innovations

Beside that, a new factor state Mixc.Facs{-}.states.pEth is defined. This state is a pointer table enabling
expanding of Facs{-}.Eth to a common structure strc used by a-mixture.

The only way to get a-mixture is to construct it from the estimated mixture and user target by using
mixture constructor "inisyn”. The function ”inisyn” is called in the following way:

[aMix,aMixul

or

[aMix,aMixul

inisyn(Mix,Mixu,Chns) % converts Miz and Mizu to advisory type

inisyn(Mix,Mixu,pochn,uchn)

The arguments of the function are:

aMix constructed a-mixture

aMixu user target Mixu, converted to advisory type

Mix learnt ARX mixture

Mixu user target (one component ARX mixture)

Chns cell vector with channels descriptions (see Section 14)

pochn list of channels with o-innovations

uchn list of channels with recognisable actions (can be omitted for academic design).

Example of use ”inisyn” can be found Appendix C.

5

mixrepra.tex by TG June 25, 2004

Data management
{dataman}

Management of data samples is discussed.

5.1

Access to data sample

The Mixtools uses simple data management based on two global matrices:

e DATA data sample

e TIME - processing ”time”

The DATA matrix must be allocated before processing (mixture simulation and/or estimation) starts.

Data vectors should not be accessed directly, but via an interface function ”getdvect”. In such a way, nothing

needs to be changed when the file management changes (e.g. the processing is done outside MATLAB).
The function ”getdvect” returns data vector or regression vector according to the form how it is called:

psi = getdvect(str) % get regression vector
Psi = getdvect (Fac) % get data vector

Note 1: data vector is the regression vector preceded by the current data value on the modeled channel.
Note 2: the ?TIME” must be specified greater then the maximum time delay "maxtd” in the relevant
structure.
An example of use of the function:

global TIME DATA % data management global matrices
DATA = [1:6;11:16] % data sample
DATA =
1 2 3 4 5 6
11 12 13 14 15 16
ychn = 1; % modeled channel
str =[11 22;12 01] % structure of regression vector
str =
1 1 2 2
1 2 0 1
Fac = facarx(ychn, str); % build ARX factor
for TIME = 3:length(DATA) % time loop starts for TIME>maxtd
dvect = getdvect(Fac); % get data vector
disp(dvect); % display data vector
end
3 2 1 13 12
4 3 2 14 13
5 4 3 15 14
6 5 4 16 15
The second possibility is e.g.:
for TIME = 3:length(DATA) % time loop starts for TIME>maztd
dvect = getdvect(str); % get regression vector
disp(dvect); % display regression vector
end
2 1 13 12
3 2 14 13
4 3 15 14
5 4 16 15

5.2 Huge data sample processing
{huge}
When we process an extremaly huge data sample, we are forced to use buffered estimation because such data

sample can hardly be managed in the MATLAB workspace. This possibility is available with any estimation
function (implemented as MEX function) and ”mixinit”.
The data sample is supposed to be written on disk e.g. by:

file = fopen(’filename’,’wb’); % open a file
fwrite(file, DATA, ’double’); % write DATA
fclose(file); % close the file

mdat = size(DATA,1); % number of data Tows

Instead of the usual argument "ndat” (length of data sample), the cell list

Ndat = {’filename’,mdat} % argument “ndat” replacement

is used. Here, 'filename’ is the name of file where data are stored and “mdat” specifies the number of rows.
The global matrix DATA is then used as a buffer for the buffered estimation. The matrix DATA can have
any reasonable number of columns e.g.

DATA = zeros(mdat, eil4); % buffer allocation

data.tex by PN June 25, 2004

6 Data preprocessing

{preprocPN}
The data sample should be preprocessed for subsequent data analysis. It is done either as batch data

preprocessing or recursive data preprocessing.
Data preprocessing implies the necessity of backwards transformation of processing results correspond-

ingly.

6.1 Preprocessing requirements

The preprocessing requirements are encoded as a cell list - a cell vector consisting of pairs of cells. The cells
carry the information:

e the first one is a character string that identifies the preprocessing operation to be done;

e the second one is a matrix that contains the quantitative values (often again a cell list) needed for
performing this operation. This matrix is referred to as operation “parameters”.

The preprocessing operations are carried out in the order of operations defined by the preprocessing
requirements.

The processing requirements are modified during preprocessing - they usually contain ”states”. The
modified preprocessing cell list is referred to as run-time preprocessing requirements. This list is obtained by
initialization of preprocessing. In the batch data preprocessing, it is modified internally and a final state is
returned.

Both input data sample and preprocessed data sample are located in the global matrix "DATA”.

The identifier used for the preprocessing list is "pre”.

6.2 Preprocessing run

The batch preprocessing is done by:

pre = preproc(pre); % batch preprocessing
where the output cell list "pre” is the run-time preprocessing list (used for backwards transformation of
processing results).
The recursive preprocessing consists of two steps. The first one is preprocessing initialization done by:
pre = preinit(pre); % initialization of preprocessing

The initialization checks integrity of "pre”, adds defaults, creates states and returns run-time preprocessing
list.

One step of recursive preprocessing is done by the function ”prestep”. The step where the preprocessing
is done is controlled by the global TIME:

TIME = ... % set preprocessing “time”
pre = prestep(pre); % one preprocessing step

The the run-time preprocessing list can be modified at each processing step.

6.3 Preprocessing algorithms

Algorithms available and corresponding list of (preprocessing) requirements are discussed.
The channels that are accessed by an algorithm are introduced by the construct

{ ’c’, [channels]}

This construct can appear among requirements or among specifications. If it appears among requirements,
they are interpreted as default set of channels that is valid till a next specification. At the beginning of
processing, the default channels are all channels.

If the channels are defined in the specification, the set of channels is used only for the current operation.

The frequently used preprocessing fast algorithms are

option meaning parameters

limit limit signal [minimum, maximum]| or
{’limits’, [minimum; maximum]}

scale scale signal [add; mult] or

{’scaling’, [add; mult]}

Re - sampling

group re-sample by group data extent of data grouping
Isfi0 re-sample by constant fit over a window [window_size]
Isfit re-sample by least squares fited line [window _size]
Description:

limit
If the data value is outside limits, the value of the limit violated is substituted. Use of inf or —inf is
possible in the parameters. The possible forms of the requirement:

1) pre = {’limit’, [-1;+1] }

2) pre = {’limit’, {’c’, [1 31, ’limits’, [-1; 11 } }

3) pre = {{’c’, [1 31, ’limit’, [-1; 1] } }

4) pre = {’limit’, {’c’, [1 3], ’limits’, [-1 -2; 1 2] } }
5) pre = {’limit’, {’c’, 1, ’limits’, [-inf; 5] } };

The meaning is:

1) the same limit for all channels;

2) the same limit for the channels specified;

3) change of default channels, the limits as in 2);
4) different limits for the channels specified;

5) only upper limit for the 1st channel.

scale
The specification consists of a column vector of 2 elements. The 1st line is added to signal, the result
is multiplied by the 2nd row of the vector. The specification can be empty see below - then the data
are normalized through the sample moments. If more channels are defined, the specification contains
corresponding number of columns.

The possible forms of the requirement:

1) prel ={’c’, 2, ’scale’, []1 }
2) pre2 ={’c’, 2, ’scale’, [-mean(DATA(2,:)); 1/std(DATA(2,:))1}
3) pre = {’scale’, [1 }

4) pre = { ’scale’, {’c’, [1, 3] } }
5) pre = { ’scale’, {’c’, 1, ’scaling’, [10; 2] } }
6) pre = { ’scale’, {’scaling’, [0.1,0.2 0.3; 1.1 1.2 1.3] } }

The meaning is:

1, 2) the requirements are identical;

3) all channels are normalized;

4) channels 1,3 are normalized;

5) general form - 10 is added to the channel 1 data and then multiplied by 2;
6) for more channels, the scalling is matrix.

group
The operation is described in the Section 11.4.4. An example:

DATA = [1:10; 11:20]
DATA =
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
nsk = 2; % extent of data grouping
pre = { ’group’, nsk}; % preprocessing requirement
pre = preproc(pre); % preprocessing
DATA
DATA =
2 4 6 8 10
12 14 16 18 20
1 3 5 7 9

1sfit0
Data are re-sampled by a constant fitting. The original samples within the window of the specified
length are replaced by a single value equal to the average of the processed samples.

1sfit
Data are re-sampled by fitting least-squares straight line. The original samples within the window of
the specified length are replaced by a single value equal to the end point of the fitted line.

6.4 Filters

Preprocessing algorithms are described in [?].
The following selected filters are discussed here.

olymean, olymedian, olymeanf, olymedianf
serve as outlier removal filters. They preserve majority of data and substitute a new value (mean or
median based) the outlier is detected.

‘mean’ ’median’ ’meanf’ ’medianf’
are mean, median, and forgetting based filters itself. All data are influenced by these filters, no re-
sampling is done.

The algorithms use the arguments:
‘c? describes channels to be preprocessed by this algorithm (vector);

startup_period is scalar to adjust the initial period of algorithm, where the DATA matrix is not modified
at all, to allow clean startup of the algorithm;

window_size determines size of the window for olymean, olymedian, mean and median algorithms;

forgetting rate is proportion of information from current data item and filtered data, for olymeanf,
olymedianf, meanf and medianf algorithms;

level is threshold for the amplitude of outlier and the standard deviation of underlying signal noise;
mO is the initial value of mean/median for forgetting-based algorithms;
s0 is the initial value of standard deviation for forgetting-based algorithms.

Short description of algorithms:

option meaning

olymean mean outlier removal filter (window based)
olymedian median outlier removal filter (window based)
olymeanf ~ mean outlier removal filter (forgetting based)
olymedianf median outlier removal fiter (forgetting based)

mean simple mean filter (window based)
median simple median filter (window based)
meanf simple mean filter (forgetting based)

medianf simple median filter (forgetting based)

Input parameters ¢ and startup_period are used by all filters, default values are substituted if they are
not specified. Other parameters needed for respective algorithms are:

option input parameters

olymean window size, level, m0, sO

olymedian window_size level m0 s0

olymeanf forgetting_rate level m0 sO

olymedianf forgetting rate level m0 sO importance_threshold
mean window _size m0 s0

median window _size m0 s0

meanf forgetting_rate m0 sO

medianf forgetting_rate m0 sO importance_threshold

6.4.1 Remark to filter usage of

The temporal correlation is introduced into the data if filters mean, median, meanf, and medianf are used.
It may cause troubles in the closed control or advising loop.

The outlier removal algorithms influence only data detected as outliers, thus correlate only a very few data
items. It should not make any damage compared to the negative influence of outliers itself, thus benefiting
in the closed control loop enormously.

6.5 Examples

We illustrate usage of data preprocessing by examples.

6.5.1 Example 1

The most common task of preprocessing is demonstrated - removal of outliers and normalization.
Data sample is generated:

DATA = (randn(1, 300)+1)*2; % simulated data sample

Simulated outliers are made:
val = 10;
for n=50:50:ndat
DATA(1, n) = val;
val = val+l;

end

plot (DATA);

The data are plotted in Fig. 1, left side.

To remove the outlier, olymedianf is used. After it, data normalization is required using scale:
pre = {’olymedianf’,{’c’,1,’level’,5 ,’scale’,[1}; % preprocessing requirements
pre = preproc(pre); % batch preprocessing
plot (DATA) ; % plot data

The data are plotted in Fig. 1, right side.

6.5.2 Example 2

Removal of a high frequency noise is illustrated. The signal is sinus based with a high frequency noise:

DATA = sin(0:0.1:35); % deterministic signal
DATA = DATA + 0.5 *randn(size(DATA)); % high frequency noise is added
plot (DATA); % plot of signal

The data sample is plotted in Fig. 2, left side.

The noise is removed by the "medianf” filter:
pre = {’medianf’, {’c’, 1, }, ’forgetting rate’, exp(-1/10) } };
pre = preproc(pre); % batch preprocessing
plot (DATA) ; % plot data

The data sample is plotted in Fig. 2, left side.

Data sample, 1st channel Data sample, outliers cancelled, data normalized

15 T 15 T T
10 B 10 - B
5 5 - —
(o] (o]
-5 = 5 _
—10 - - —10 - -
(o] 100 200 300 o 100 200 300
Figure 1: Data sample, channel 1 {zpret1}
Noisy data sample Data sample, high frequency noise cancelled, 1st channel
2.5 T T T 2.5 T T T
2 — 2+ —
1.5 - =
1] -
0.5 - —
o - -
—_0.5 . -
—1 . -
—1.5 — —1.5 - —
—2 - _=2]
_2.5 i i ; o5 ; ; ;
100 200 300 400 o 100 200 300 400

Figure 2: High frequency noise removal

{zpre2}

preproc.tex, zpre2.m zpre3.m PN, June 25, 2004

7 Mixtools functions

Miaxtools functions can be roughly divided in the group of Mixztools user’s functions that are used by ordinary
users for mixture analysis. The rest of the Mixtools functions form a Miztools design base. It is listed in
Apendix.

The user’s functions can be used for batch and recursive processing. When applicable, the versions are
distinguished by presence or absence of the argument “ndat”.

The data sample must be located in the global matrix "DATA”, the processing time is controlled by the
global scalar " TIME”.

Majority of functions can be run in debugging mode. It is controlled by the global matrix DEBUG used
for debugging prints, plots etc. If it is set to zero, no information is displayed. A positive value leads to the
information display according to the function design.

7.1 Function arguments

The following arguments are used in learning and prediction.

Com component

Coms array of components

Fac factor

Mix mixture

MixO initial mixture

Sim mixture simulator

cchns channels in condition

coms array of components

dfcs vector of degrees of freedom of components
frg forgetting rate

ndat length of data
niter number of iterations

opt processing options

pMix mixture predictor

pchns predicted channels

pre preprocessing requirements
psio value of zero-delayed regressor
str structure of regression vector
ychn modeled channel

ychns modeled channels in component

The following arguments are used in design of advisory system.

aMix advised mixture of the type ARX LS + control states
aMixu desired mixture of the type ARX LS + control states
strc common control structure

ufc normalised vector qualifying components

kc lift of quadratic forms

UDc cell vector of u’du decompositions of KLLD kernels
udca u’du decomposition of average KLD kernel in UDc
kca average lift of quadratic forms ke

strc common control structure

uchn list of channels with recognisable actions

pochn list of channels with o-innovations

outs list of channels with innovations

npochn number of channels with o-innovations

chis strategy of control design

{functions}

7.2 Mixtools user’s functions

This subsection summarizes the Mixtools user’s functions in the form of the functions prototypes.

’ Constructors

Fac = facarx(ychn, str) build ARX factor

Fac = facarxls(ychn, str) build ARX LS factor

Com = comarxls(ychns, str) build matrix ARX LS component
Com = comarx(ychns, str) build matrix ARX component
Mix = mixconst(Facs, coms, dfcs) build ARX or ARX LS mixture
Mix = mixconst(Coms, dfcs) build mixture of any type

Initialization of estimation

Mix = ... initialization of mixture estimation®
mixinit(Mix0,frg,ndat,niter,opt,belief)

Mix = comdel(Mix, com) cancel specified component

Mix = commerge(Mix, Mix0O, com) merge mixture components

Mix = mixcut(Mix) cancel components that explain low amount of data

Mix0 = genmixe(ncom,ychns,str,ndat)generate initial mixture

%estimation options: ’q’, ’b’, ’f’, 'm’ 'n’+ number of iteration steps; belief expresses user’s belief into the regressor
specified

Estimation operations

Mix =

mixest (Mix0, frg, niter, opt) iterative mixture estimation®

Mix = mixestim(Mix0O, frg, ndat) quasi-Bayes mixture estimation

Mix = mixestim(MixO, frg) recursive quasi-Bayes mixture estimation
Mix0 = mixflat(Mix) mixture flattening

Mix = mixstats(Mix, ndat) compute estimation statistics

Mix = mixstats(Mix) compute statistics recursively

Mix0 = genmixe(ncom, ychns, str) generate initial mixture for estimation

bopt - options: 'q’, ’b’, ’f’,)m’ for quasi-Bayes, batch Bayes, forgetting branching and estimation with fixed covariances

Prediction operations

pMix = mix2mixm(Mix, pchns) build marginal predictor

pMix = mix2pro(Mix, pchns, cchns) build/re-build mixture projector

pMix = profix(pMix, psiO, pre) build mixture prediction from projector
pMix = .

mixpro(Mix0,pchns,cchns,psiO,pre) build mixture projection®
[pMix, weights] = ...
profixn(pMix, psiO, pre, nstep) prediction n-steps ahead °

¢defaults: pchns - [1,2], cchns - no, psi0 - substituted from DATA, no data scaling
bthe weights are data dependent even for static mixtures

Visualization ¢

“defaults: see Prediction operations. The functions allows definition of grid densities and ranges

mixplot (Mix,pchns,cchns,psiO,pre) mixture plot (shaded)
mixplotc(Mix,pchns,cchns,psiO,pre) mixture plot (contours, components)
[x,y,z] =...

mixgrid(Mix,pchns,cchns,psiO,pre) coordinates for mixture plot

[x,y,z] = datagrid(Mix) coordinates for data plot
datascan(chns) scan data for 2 dim clusters
mixmesh(Mix,pchns,cchns,psiO,pre) mixture mesh plot
mixscan(Mix, chns,pre) scan mixture for 2 dim. clusters
setaxis(list, ax) set global axis in subplots®
sigscan(chns) scan signal

“list is list of subplots, ax a scaling see axis function

Interactive visualization

mixshow(Mix) interactive plot of mixture
mixbrow(Mix) interactive display of mixture attributes
setdbg(’function’) interactive setting of ”dbstop”

Data preprocessing

pre = preproc(pre) preprocess data

pre = preinit(pre) initialize preprocessing

pre = prestep(pre) preprocessing step
Structure estimation

Mix = ...

mixstrid(Mix,Mix0,belief,nruns) estimate mixture structure

MAPstr = ... estimate structure of a factor

facstrid(Fac,Fac0O,belief ,nbest,nruns)

Mixture simulation

mixsimul (Sim, ndat) batch mixture simulation
mixsimul (Sim) recursive mixture simulation
Sim = statsim((ndat, ncom, cove) create static mixture with components on unit circle

Basic conversion functions

LD = 1tdl(V) decompose positive definite matrix to L'DL

Mix = mix2mix(Mix, form) convert mixture to a specified form®

Com = com2com(Com, form) convert component into a specified form

X = arx2arx(X) convert between ARX and ARX LS representations

@ form” is a coding summarized in ” Codes”

Design of advisory system

[aMix, aMixu] = ...

inisyn(Mix,Mixu,pochn,uchn) initialize advisory design for normal mixture

[aMix, aMixu] = ...

inisyn(Mix,Mixu,Chns) call with channel descriptions

aMix = ...

aloptim(aMix,aMixu,ufc,nstep,chis) make academic advisory design for normal mixture

ufc = ufcgen(Mixc, Mixc0) generate normalized vector qualifying unstable components
aMix = ...

soptim(aMix,aMixu,ufc,nstep,chis) perform simulaneous advisory desing for normal mixtureperform
+simultaneous advisory design for normal mixture

aMix = algen(aMix,aMixu,ufc) compute of probabilistic weights for advisory design
[Mixu, ychns] = target(Chns) create user’s target mixture
Mix = mixcopy(Mix1, Mix2) copy of ARX or ARX LS statistics

Channel descriptions

Chns = chnconst(chns) build channel descriptions
Chns = chnset(Chns,chns,fld, val) set channel descriptions field
val = chnget(Chns,chns,fld) get values of channel descriptions fields

General purpose functions

prodini standard Mixtools session beginning

prt (X) debugging prints

is = equal(X1,X2, eps) test of equivalence up to a small difference
str = genstr(order, nchn, td) generation of model structure of given order
is = streq(strl, str2) compare two structures

is = isstatic(Mix) test whether mixture is static

is = isdimeq(X1,X2) test of equality of dimensions

is = streq(strl,str2) test of equality of dimensions

mversion display current Mixtools version

funlistu.tex by PN June 25, 2004

fnc.tex by PN June 25, 2004

8 Tutorial on mixture simulation, initialization and estimation
Two case studies of mixture simulation, initialization and estimation are discussed.

8.1 Case study: static mixture

A mixture of four static components is considered.

8.1.1 Simulation

A length of the data sample, number of components and common noise variance of the components are
selected.

randn(’seed’, 135531); % seed of random number generator
ndat = 1000; % size of data sample

ncom = 4; % number of components

cove = [0.1 0.01; 0.01 0.1]; % common component noise variance

The static matrix ARX LS component for channels 1 and 2 is build. The covariance is held in the form of
L’DL decomposition.

ychns =1 2]; % modelled channels
str = [0;1]; % common static structure
Com = comarxls(ychns, str); % matric ARX LS component

Com.cove = ltdl(cove); % L’DL of noise covariance

{tutorial}

{tutors}

{tests}

Simulated mixture (pdf)

0.7

0.6

0.5

0.4

0.3

I;z“ I
S
%M&gﬁ&‘@\“

0.2

—
—_—
=

0.1

==
T

!

=

Jm

2nd channel

1st channel

Figure 3: Mesh plot of simulator {ztutors1}

Array of four components with means on unit circle is build.

Eths =[10-10; 010 -1]; % mean of components (column-wise)
for i=1:ncom, Com.Eth = Eths(:,1i);

Coms{i} = Com; % array of components
end

The component degrees of freedom are defined and the mixture simulator is build:

dfcs = 1:ncom; % degrees of freedom of components
Sim = mixconst(Coms, dfcs); % build mizture simulator

Before the simulation starts, the global matrix DATA must be pre-allocated. Then the data sample is
generated.

DATA = zeros(2, ndat); % pre-allocate data
mixsimul (Sim, ndat); % get simulated data sample

The simulator is displayed in Fig. 3 in the form of mesh plot. The mixture simulator is internally converted
to mixture predictor when displayed, see Section 11.

[x,y,z] = mixgrid(Sim); % get coordinates

meshc(x,y,2); % mesh plot
The plot of components and contours of the simulator pdf is presented on Fig. 4. The components (left) are
plotted for 75 % probability region.

mixplotc(Sim) ; % plot of mixture

The way of presentation of figures in this guide is based on Matlab subplots. The series of subplots starts.

sub = 230;
sub=sub+1; subplot(sub); % define subplot
contour(x,y,z,15); % contour plot

sub = sub+1; subplot(sub);
datascan([1;2],1);

The mixture simulator is displayed in Fig. 5, subplot 1 and the data clusters are in Fig. 5, subplot 2.

2nd channel

2nd channel

Mixture components Mixture contours

os

chamnel 2
o]
T

_o.sk

;
chamnel 2
o]

T

Figure 4:

Mixture simulator, time 2000

-2 -1 0 1
1st channel

Estimated mixture

-1 0 1
1st channel

o)
channel 1 channel 1

Simulator components and contour plot

Data scattergram Initialized mixture

2nd channel

-2 0 2 -1 0 1
1st channel
Direct estimation v-log-likelihood
-540
1.5 o)
-560 -)
1
E 05 —-580
S
5 0 —-600
2
& 05 ~620
-1
—640
-1.5
—660
-1 0 1 1 2 3

1st channel

Figure 5: Static mixture simulation, initialization and estimation

subplot

SO W N

contains

mixture simulator

data clusters

initialized mixture

estimated mixture

mixture estimated without initialization
v-log-likelihood of individual steps

{ztutors2}

{ztutors}

8.1.2 Initialization of mixture estimation

The initialization of mixture estimation is the first and crucial step in mixture processing. It consists of
search for the mixture structure that maximizes the posterior data likelihood on the learning data sample.
The first step is to build an initial mixture using prior knowledge available. The only prior knowledge
used here is that the mixture is a static one.
It is not easy to specify initial mixture correctly. The experience of the authors is encoded in the function
7 genmize” (discussed in the next subsection. Here, it is used with default values that depend on the data
sample. An initial static mixture with one component is build.

Mix0 = genmixe; % build initial mixture

The defaults selected by the function ”genmixe” expects normalized data sample. Here, the sample normal-
ization step is not discussed as the data have reasonable scaling.

The initialization needs a forgetting rate for internal mixture estimation. The value recommended is
obtained by calling the function ” defaults” that summarizes all Mixtools defaults.

The initialization does the function ”"mixinit”. It is an iterative procedure. We use 5 iterations here
which is usually enough.

niter = 5; % maximum number of iterations
frg = defaults(’frg’); % default forgetting rate
Mix = mixinit(MixO, frg,ndat,niter); % mizture initialization

mix11s(1) = Mix.states.mix1ll; % save value of v-log-likelihood

The resulting mixture is displayed in the Fig. 5, subplot 3. The v-log-likelihood is saved for later display.

8.1.3 Mixture estimation

It is recommended to make an iterative mixture estimation after initialization. A better mixture quality is
usually reached. The initialized mixture must be flattened before the estimation. The number of iteration is
set to 20. The resulting mixture is displayed on Fig. 5, subplot 4.

niter = 20; % number of iterations
Mix0 = mixflat(Mix); % mixture flattening
Mix = mixest(MixO, frg, ndat, niter);% iterative mixture estimation

mixlls(2) = Mix.states.mixll;

The initialization phase is recommended but not obligatory. The mixture estimation can be done without
initialization starting from an initial mixture designed using prior knowledge available. The prior knowledge
used here is:

e the mixture is static
e it has 4 component (via inspection of data scattergram)
The initial mixture for estimation is build:

Mix0 = genmixe(4); % build initial mizture

The iterative mixture estimation is made:

niter = 20; % number of iterations

frg = defaults(’frg’); % default forgetting rate

Mix = mixest(MixO, frg, ndat, niter); ¥ iterative mizture estimation
mix11ls(3) = Mix.states.mix1l; % record of v-log-likelihood

The resulting estimated mixture is displayed in Fig. 5, subplot 5. The values of the v-log-likelihood are in
Fig. 5, subplot 6.

8.1.4 Test function ”statsim” .
{statsim}

In this guide, we use " statsim” function that generates static mixture simulator and data sample.
Length of the data sample, number of components and common noise variance of the components are to
be specified. The components have means located on unit circle. The component weights linearly increases.

2 components 3 components 4 components

10 components

{9

Figure 6: Mixtures made by the function statsim {zstatsim}

In example, different simulators are generated and displayed in Fig. 6.

cove = 1td1(][0.1 0.01; 0.01 0.1]); % L’DL of component noise variance
ndat = 0; % without generating data sample
sub = 230;
for ncom = 2:7

Sim = statsim(ndat, ncom, cove);

sub = sub + 1; subplot(sub);
[x,7,2z] = mixgrid(Sim);
contour(x,y,z,15);

end

tutors.tex ztutors.m zstatsim.m by PN June 25, 2004

8.2 Dynamic mixture example

{tutord}
Case study with a dynamic mizture is discussed. The mixture consist of two components that have a common
factor.
8.2.1 Simulation

{testd}

Simulated data are generated by two components for modelled channels 1 and 2 (referred to here as ” output”
and ”input” channel). The components switch with the mixing probability ”alpha”.
The dynamic factors in the components have a common structure.

ychn = 1; % output channel
uchn = 2; % input channel

str = [1 11122; 12343 4]; % common structure
Fac = facarxls(ychn, str); % build ARX LS factor

Simulator, time 2000

2nd channel

8 9 10

Initialized mixture, time 2000

Figure 7: Case study:

subplot contains

100

50

Data clusters

-1 0 1
1st channel

Estimated mixture, time 1500

i

dynamic mixture

1 mixture simulator at time 2000
2 data. clusters

3 initialized mixture at time 2000
4 estimated mixture at time 1500

{ztutord}

The array of dynamic factors is build:

Fac.Eth = [1.41833 -1.5894 1.3161 -0.88642 0.2826 0.50666];
Fac.cove = 0.3946372; % wariance of output noise
Facs{1} = Fac;

Fac.Eth = [2.0968 -2.3196 1.9335 -0.8713 0.641 0.1041];
Fac.cove = 0.3725572; % variance of output noise
Facs{2} = Fac;

The input is modeled as a noise:

Fac = facarxls(uchn,[]; % model of input channel for simulation
Fac.cove = 0.16; % wvariance of input noise
Facs{3} = Fac;

Mixture simulator is build and data sample generated.

alpha = 0.3; % switching probability

dfcs0 = [alpha, (1-alpha)l; % degree of freedom of components
Sim = mixconst(Facs,[1 3; 2 3],dfcs0); % mizture simulator

ndat = 2000; % sample size

DATA = zeros(2, ndat); % pre-allocated DATA

mixsimul (Sim, ndat); % generate data sample

TIME = ndat; % fix processing time
datascan([2;1], 1); % scattergram of data

The simulator is displayed in Fig. 7, subplot 1. The data scattergram is displayed in Fig. 7, subplot 2. The
"TIME” must be specified as the mixture is a dynamic one. The matrix "DATA” must be pre-allocated
before the sample is generated.

8.2.2 Initialization of mixture estimation

The initialization of mizture estimation starts here from an initial mixture consisting of one component.
The prior knowledge used is that the mixture is dynamic one and the dynamic can be expressed by a richest
mixture below.

maxstr =[111111 22220;123456 3456 1];
The initial mixture consisting of single component is build.

Mix0 = genmixe(1,[ychn uchn], maxstr);

The function ” genmize” is called as

Mix0 = genmixe(ncom, ychns, str, ndat, ...) build initial mixture

The arguments together with defaults are:

argument meaning defaults

ncom number of components 1

ychns modeled channels 1 : size(DATA,1)
str component structure [0;1], ie. the static one
ndat size of data sample size (DATA,2)

The output mixture is of the matrix ARX LS type. The function have additional arguments that refer
to setting the initial components fields, see help on the function.
Number of iterations and default forgetting rate are specified and initialization made.

niter = 5; % number of iterations
frg = defaults(’frg’); % default forgetting rate
Mix = mixinit(MixO, frg, ndat, niter); % mixture initialization

{Ggenmizxe}

The result of initialization is:
Mix.states.mix1l

ans =
-454.3336
ncom = length(Mix.dfcs) % number of components
ncom =

2
Mix.dfcs/sum(Mix.dfcs) % component weights
ans =

0.3021 0.6979

M=mix2mix(Mix, 22);
M.Facs{1}.str

ans =
2 1 1 1 1 1 1 2 2
0 1 2 3 4 5 6 3 4

M.Facs{1}.Eth

ans =

-0.0898 1.3883 -1.5018 1.1969 -0.7791 -0.0647 0.0197 0.2928 0.5417

M.Facs{3}.str

ans =
1 1 1 1 2 2
1 2 3 4 3 4
M.Facs{3}.Eth
ans =

2.0966 -2.3211 1.9342 -0.8708 0.6357 0.0982

The estimated weights are almost equal to the simulated ones, compare estimated structure and system
parameters with the known simulation model.
The plot of the initialized mixture is displayed in Fig. 7, subplot 3.

The common factor is not discovered by ”mixinit” — it is limitation of the current version. The initialized
mixture is close to the simulated one.

8.2.3 Mixture estimation

The mixture quality is raised by the iterative mixture estimation done after initialization. The initialized
mixture must be flattened before the estimation. Ten iterations of quasi-Bayes estimation is chosen.

Mix0 = mixflat(Mix); % mixture flattening
niter = 10; % number of iterations
Mix = mixest(MixO, frg, ndat, niter);% iterative mizture estimation
Mix.states.mixll % posterior data likelihood
ans =

-431.0828
TIME = ndat; % fix processing time

plot of estimated mixture...

The estimated mixture at terminal TIME = 1500 is displayed in Fig. 7, subplot 4.

tutord.tex ztutord.m by PN June 25, 2004

9 Initialization of mixture estimation

The initialization searches for the mixture structure (i.e.number of mixture components, the structure of
mixture factors etc.) that maximize the posterior data likelihood on a learning data sample. The initialization
is made by the function ” mizinit”.

The relevant theory is in [?], simple examples of use in the Section 8. This section contains summary of
possibilities and recommendations on use of ” mixinit”.

{mixinit}

The function ”mixinit” is called as

Mix = mixinit(Mix0O, frg, ndat, niter, options, belief) initialization

The arguments are (defaults are discussed below):

Mix initialized estimated mixture

Mix0 initial mixture

frg forgetting rate

ndat length of data

niter number of iterations

options processing options

belief belief on a guess of richest structure

Meaning of the input arguments with defaults follow.

Mix0 is an initial (or flattened) mixture. It should be created using all prior information available (e.g.
static or dynamic mixture etc.). It is recommended to use the function ”genmixe” for the purpose -
see the section 8.2.1.

frg is a forgetting rate. It should be selected as the default forgetting rate. The only exception is in the
case of the estimation based on forgetting branching where a very low forgetting is recommended (e.g.
0.6).

niter is a number of iterations. A low number of iterations is sufficient, the default value is 5.

options specifies processing options. They are coded as characters optionally followed by numbers. The
options are discussed in the next subsection.

belief is an user’s guess about the richest structure considered. As default, no belief is used.

The belief is expressed channel-wise as a cell vector. Each cell can be empty or contain a matrix of
three row. The first and second rows specify regressor item (each column of the structure). The third
line specifies:

1 regressor item is present 3 regressor item is probably not preset

2 regressor item is probably present 4 regressor item is not present

An example follows. We have a dynamic mixture with 2 channels to be processed by ”mixinit”. In the
process of initialization, a new component is generated and relevant structure estimation is done using
the belief on individual channels.

The belief expressed as

beliefl =1 11 22 % belief for the 1st channel
123 01];
223 12];
belief2 = [2 ; 1; 2]; % belief for the 2nd channel
belief = {beliefl, belief2}; % overall belief

can be interpreted in the following way. The factors that model the 1st channel are believed to contain
surely the structure item [1; 1], probably (with different beliefs) the items [1 1;2 3], surely the structure
item [2; 0] and probably the item [2;1].

The recommended practice is to estimate the initialized mixture by an iterative mixture estimation. The
initialized mixture must be flattened before, e.g.

niter = 10; % number of iterations
Mix0 = mixflat(Mix); % mixture flattening
Mix = mixest(MixO, frg, ndat, niter);% iterative mixture estimation

9.1 Processing logic
One iteration of "mixinit” consists of the steps:

1. The mixture from previous step is flattened.

The initial mixture is estimated by a single pass of "mixestim”. During the estimation, a pair of two-
component static mixtures is fitted to prediction errors of the factors. The result is used for recognizing
whether each factor consists just of a single ”hill” or whether it covers several hills. The factors that
result in multiple hills are candidates for splitting.

All components containing a candidate for splitting are split. During the split, the structure of factors
is estimated.

The split mixture is flattened and estimated.

Splitting of components may lead to an excessive number of components so that an attempt is made
to reduce the number of components by merging and cancelling them.

The resulting mixture is split and estimated. The ”best mixture” (in the sense of maximum v-
likelihood) is maintained during all iterations.

When number of iterations is exhausted or no other factors can be selected for split, the initialization ends.
The last step is mixture structure estimation and a reduction of number of components.

9.2

Initialization options

The process of initialization can be modified by initialization options. The options are described below.
For each of them, the processing without the option is described and marked by bullet. The alternative
processing introduced by the options is described below. The comments and suggestions are presented in

italic.

The options are:

Mixture estimation inside ”mixinit” is done by non-iterative quasi-Bayes estimation
’q’: by iterative quasi-Bayes mixture estimation

’b’: by iterative batch quasi-Bayes mixture estimation

’f?; by iterative mixture estimation based on forgetting branching

’m’: by iterative mixture estimation with fixed covariances

Comment: the iterative estimation leads to a better mizture quality. The price paid for quality is a
higher requirement on computing time.

If the iterative estimation is selected, the default number of iterations in estimation is 10
’n’: the number that follows specify number of iterations in estimation

The structure estimation of the mixture factors is based on 10 searches differing in initial conditions
’h’: number that follows specify the number of searches, e.g. 'h100’ specifies that 100 searches differing
in initial guesses of the structure are done

Comment: this option can lead to better structure estimation and higher quality of the result but, the
processing time visibly increases.

There are two tuning knobs that can modify processing substantially - the default value is 2 iterations
’g”: number of initial iterations when all factors are split
’k’: number of iterations when components are not merged or erased

Comment: the first option is to be specified when the initialization results in excessively small number
of components. Note that each iteration increases the number of factors twice.

The option 'k’ is recommended if the merging process is an excessive one, e.g. when number of compo-
nents during initialization does not increase.

If no factor can be selected for split or the number of iterations is exhausted, the initialization ends.
The last step is mixture structure estimation and reduction of number of components

iter. 5 result iter. 1
1.4 1.4 1.4
1.2 1.2 1.2
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 /\ 0.2 /\ 0.2
0 0 0
-5 0 5 -5 0 -5 0
iter. 2 iter. 3 iter. 4
1.5 1.4 1.4
1.2 1.2
1 1 1
0.8 0.8
0.6 0.6
0.5 0.4 0.4
/\ 0.2 0.2
0 0 0
-5 0 5 -5 0 -5 0

Figure 8: Progress of mixture initialization

’c’: this housekeeping is skipped

This option is used when the user wants to make the structure estimation by different means.

e Other character among options are ignored, e.g. the option '0’ implies that defaults are used.

Summary of options

options for estimation

BB o0

iterative quasi-Bayes mixture estimation

iterative batch quasi-Bayes mixture estimation

iterative mixture estimation based on forgetting branching
iterative quasi-Bayes with fixed variances

number of iterations for iterative estimation, a number follows

option for structure estimation

number of runs for structure estimation (integer follows)

option that modify processing

¢

g
k

do not make the final housekeeping
number of initial steps when all factors are split (2)

umber of steps when components are not merged or erased (2)

9.3 Processing example

A simple example demonstrates some techniques in mixture initialization. Simulated data sample is gener-

ated. The data sample has 1 channel and the simulator has 3 components.

{zinit}

ndat = 1000; % length of data

DATA = zeros (1, ndat); % pre-allocated data sample

ncom = 3; % number of components

ychns = 1; % modelled channel

str = [0;1]; % static structure

Com = comarxls(ychns, str); % build matriz ARX LS component
Com.cove = 0.1; % point estimate of noise variance
Com.Eth = 0; Coms{1} = Com; % 1st component

Com.Eth = 2; Coms{2} = Com; % 2nd component

Com.Eth = 4; Coms{3} = Com; % 3rd component

dfcs = [0.2 0.3 0.5]; % wvector of degrees of freedom of the components
Sim = mixconst(Coms, dfcs); % mizture simulator

mixsimul (Sim, ndat); % get data sample

. plot of simulator ...

The mixture initialization is done with debugging options.

PLOTSUB = 230; % window where iterations are maintained
PLOTNO = 2; % starting subplot number
DEBUG = 1; % debugging flag

The matrices are global matrices defined in the function ” prodini”. The PLOTNO is set to 2 because there
is already one plot on screen - the simulator in Fig. 8, subplot 1. The PLOTSUB specifies the subplots —
here two lines each containing three subplots.

Initial mixture is build, forgetting rate and number of iterations is specified and the initialization is done.

Mix0 = genmixe; % build initial mizture
frg = defaults(’frg’); % default forgetting rate
niter = 5; % number of iterations
Mix = mixinit(MixO, frg, ndat, niter); Mix.states.mixll
ans =

-715.6095

In each iteration, the results are plotted in Fig. 8, subplots 2 - 5. The initialization result (the ”best”
mixture) is displayed in the subplot 6.
In continuation of the example, special processing options are shown in subsections.

9.3.1 Long processing

Initialization may require extremely long processing time. Thus, it is reasonable to exploit the possibility to
save initialization results after each iteration and to continue later on with initialization.

This is specified by a global matrix "BREAKPOINT” that specify the filename where the intermediate
results are saved:

global BREAKPOINT % define breakpoint option
BREAKPOINT = ’break’; % name of the file
Mix = mixinit(...); % initialization of mizture estimation

There are two ways how to continue:
mixinit(’break’); % finish an interrupted initialization

or select the number of additional iterations, say niter = 10, and

mixinit(’break’, niter); % make additional "niter” iterations

Five iterations of ”mixinit” are done for comparison.

niter = 5; % number of iterations
Mix = mixinit(MixO, frg, ndat, niter);

Mix.states.mixll % reference v-log-likelihood
ans =

-715.6095

Now, the initialization is done in three iterations using the breakpoint option. and the iterations four
and five are done in separately.

{longinit}

global BREAKPOINT % define breakpoint option

BREAKPOINT = ’break’; % name of the file
Mix = mixinit(Mix0, frg, ndat, 3); % & iterations
for iter = 4:5
Mixl = mixinit(’break’,1); % run next 1 iteration
end

Mixl.states.mix1l
ans =
-715.6095

9.3.2 Huge data sample processing

Buffered estimation, see paragraph 5.2, should be used when dealing with huge data sample.
The data sample is supposed to be written on disk e.g. by:

file = fopen(’filename’,’wb’); % open a file
fwrite(file, DATA, ’double’); % write DATA
fclose(file); % close the file

The cell vector

Ndat = {’filename’,mdat}
controls processing instead of the usual matrix "ndat”. The 'filename’ is the name where data are stored
and "mdat” specifies the number of rows of the global matrix DATA used as buffer for buffered estimation.
The use looks as follows:

file = fopen(’data’,’wb’); % open a file
furite(file, DATA, ’double’); % write DATA
fclose(file); % close the file
niter = 5; % mazimum number of iterations
filename = ’data’; % full filename
mdat =1; % number of sample rows
Ndat = {filename, mdat}; % this replaces usual "ndat”
DATA = zeros(mdat,50); % allocate short buffer
Mix = mixinit(Mix0, frg, Ndat, niter); % mizture initialization
Mix.states.mix1l
ans =

-715.6095

Note that the same data as in previous subsection were processed.

9.4 Test case studies

Several case studies illustrate the mixture initialization. The data samples are simulated, the simulator is
displayed as subplot 1 in the plots. The default initial mixture is used. The scripts of the studies is available
in Mixtools.

Each study is done for four data samples. Results are displayed in subplots 2-5. The subplot 6 shows
values of v-log-likelihood of each study.
9.4.1 Static mixture, 2 dimensions, 4 components
9.4.2 Static mixture, 2 dimensions, 10 components
9.4.3 Static mixture, 4 dimensions, 4 components

9.4.4 Dynamic mixture, 2 dimensions, 2 components

mixinit.tex zinit.m by PN June 25, 2004

{datadc}
{data10c}
{datadd}

{datadyn}

Simulator

-580
-590
-600
-610

-6204 -

-630
-640

-650

Figure 9: Mixture initialization - 4 static components zinisc

Simulator
1.5
1
0.5
Nl@
05 //i>
p
-1.5
-2
-1 0 1
1.5

-780

-800

-820

-840

-8601}

—-880

Figure 10: Mixture initialization - 10 static components zinitoc

{zinidc}

{zinit10c}

Simulator

—-660

—680'

—-700

—-720

—740

-760

Figure 11: Mixture initialization - 4 dimension, 4 static components zinisa

Simulator at 1000

-110 -100 —-90 -80

0.3
0.2
0.1

-0.1
-0.2
-0.3

1250

1200

1150

1100+

1050
1

>

=>

=

N>

15

20

25

Figure 12: Mixture initialization - dynamic mixture, 2 components znitdyn

{zini4d}

{zinidyn}

10 Aproximate parameter estimation of ARX mixtures

The approzimate parameter estimation of ARX mixtures (shortly mizture estimation) is the topic discussed
in this section, refer to [?], Sections ??, ?7?.

10.1 Implementation notes

In this section, implementation is over-viewed with references to the theory.
estimation methods implemented are:

e quasi-Bayes algorithm, (functions ”mixestim”and ”mixestgb”)

batch quasi-Bayes algorithm (”mixestbq”)

EM algorithm (”mixestem”)
e iterative estimation with fixed covariances ("mixestmt”)
recursive data processing is implemented for the quasi-Bayes estimation algorithm (”mixestim”).

iterative estimation is available for all algorithms. The prior-posterior branching is the basic technique, [?],
Sections 77, 77.

Branching by forgetting algorithm, [?], Sections 10.7 ("mixestbb”) is implemented for quasi-Bayes algo-
rithm.

generic estimation function "mixest” calls internally the iterative algorithms defined by an argument
"method”.

The summary of the estimation functions implemented:

mixestim recursive quasi-Bayes mixture estimation

mixestqb iterative quasi-Bayes mixture estimation

mixestbq batch quasi-Bayes mixture estimation

mixestbb mixture estimation based on forgetting branching, quasi-Bayes
mixestmt mixture estimation by fixed variance algorithm

mixest generic mixture estimation function

Notes:
1. EM algorithm is implemented (?mixestem”) but not discussed here due to long processing time;
2. The "stopping rules” are mostly not included in the functions yet and they will be gradually added.

3. The branching by geometric mean, [?], Sections ?? is implemented. Essentially, a new mixture Mix
is created as weighted geometric mean of several mixtures Mix1, Mix2,...with probabilistic weights
stored in vector "lambdas”. It is done by calling the function ”mixgmean”:

Mix=mixgmean(lambdas, Mixl, Mix2,...).

4. The forgetting with variable forgetting rate is used inside all iterative estimation functions.

10.2 Summary of mixture estimation functions

The basic estimation function is "mizestim”:

Mix = mixestim(MixO,frg,ndat,Mixa) quasi-Bayes mixture estimation with alternative forgetting
Mix = mixestim(MixO,frg,ndat) quasi-Bayes mixture estimation
Mix = mixestim(MixO,frg) recursive quasi-Bayes mixture estimation

The iterative estimation functions are:

{mixestim}

Mix = mixestqb(MixO,frg,ndat,niter) quasi-Bayes mixture estimation

Mix = mixestbq(Mix0,frg,ndat,niter) batch quasi-Bayes mixture estimation
Mix = mixestbb(Mix0,frg,ndat,niter) forgetting branching

Mix = mixestmt(MixO,frg,ndat,niter) estimation with fixed variances

Mix = mixest(MixO,frg,niter,options) iterative mixture estimation

The auziliary functions needed in mizture estimation are:

Mix = mixstats(Mix, ndat) compute estimation statistics
Mix = mixstats(Mix) compute statistics recursively
Mix0 = mixflat(Mix) mixture flattening

The functions input arguments with together with defaults are:

argument meaning defaults

Mix output estimated mixture

MixO initial mixture to be estimated must be specified

frg forgetting rate default forgetting rate

ndat size of data sample length of "DATA”

niter number of iterations 10

Mixa mixture used for stabilized forgetting no stabilized forgetting is used

10.3 Initial mixtures for estimation

The initial mixtures for estimation (and initialization) are made by a sequence of functions and by setting
of various structure fields. The recommendations should be followed.

It is a demanding task to build the initial mixture well. The recommended setting is encoded in the
functions ”genmixe” and ”genmixel”. The functions differ in expected level of output noise, ” genmixe” for
high level, ”genmixel” for low level:

Mix0 = genmixe(ncom, ychns, str, ndat, ...) build initial mixture for estimation

The arguments together with defaults are:

argument — meaning defaults

ncom number of components 1

ychns modelled channels 1 : size(DATA,1)
str component structure [0;1], ie. the static one
ndat size of data sample size (DATA,2)

The output mixture is of the matrix ARX LS type. The function have additional arguments that refers
to setting the initial components fields. The example of its use is in the sections 8.2.2.

10.4 Estimation statistics

The quality of the estimated mixture can be judged from the value of v-log-likelihood. This statistic offers
the possibility of comparison of different mixtures estimated with the same data sample.

In the quasi-Bayes mixture estimation, the statistics are computed recursivelly and are held in the mixture
states, see [?], Section ?7:

facllds trial factor predictions determining factor weights
comlls component predictions

mix1l posterior data likelihood (mixture prediction)
comwgs component weights

facwgs factor weights

The letters "1I” in the name means that logarithms of the statistics are computed. Details, how the
statistics are evaluated can be found in function ”mixupdt.m” (m-version of ”mixestim”).
The computed statistics are:

e actual values in recursive data processing

Simulator

mixlls

-1100

—1150
—-1200
—1250} o

—-1300

~-1350 -
b

Figure 13: Mixture estimation by ”mixestim” .estony

subplot

1
2-5
6

contains

mixture simulator

results of individual estimations
v-data-likelihood of the estimations

o summed values in batch data processing.

The statistics are computed in estimation. They can be computed by the function ”mixstats”, too.

Mix
Mix

= mixstats(Mix)

mixstats(Mix, ndat)

compute statistics iteratively
compute statistics in batch

10.5 Quasi-Bayes mixture estimation

The quasi-Bayes estimation is done by the function ”mixestim”. Both batch and recursive data processing
are available.
The function is called as:

Mix
Mix
Mix
Mix

= mixestim(Mix0,frg,ndat,Mixa) quasi-Bayes estimation with stabilized forgetting

mixestim(Mix0,frg,1,Mixa)
mixestim(MixO,frg,ndat)
mixestim(Mix0,frg)

recursive quasi-Bayes estimation with stabilized forgetting
quasi-Bayes mixture estimation
recursive quasi-Bayes mixture estimation

The "Mixa” is the mixture used for stabilized forgetting. It describes guaranteed prior information about
mixture that should not be forgotten. For the underlying theory, see [?], Section ?7.

Example of mixture estimation by ”"mixestim” follows. The dependency is discussed of the estimation
on different data samples.
Data sample is generated, the simulator is displayed in Fig. 13, subplot 1.

{zeston1}

{Gquasi-Bayes

ndat = 1000; % size of data sample

ncom = 4; % number of components
cove = 1td1([0.1 0.01; 0.01 0.1]); % component noise covariance
Sim = statsim(ndat, ncom, cove); % get data sample

. plot simulator ...

The initial mixture is build, the forgetting rate is specified as the default one. The prior knowledge employed
is that the mixture is static.

Mix0 = genmixe(ncom); % build initial mizture

frg = defaults(’frg’); % default forgetting rate

Four estimations are made using the simulator with different random trajectory. The results are plotted in
Fig. 13 subplots 2 - 5. The subplot 6 contains plot of v-log-likelihood of individual estimations.
for i=1:4

randn(’seed’,20%1i); % mew random sample

mixsimul (Sim, ndat); % get data sample

Mix = mixestim(MixO, frg, ndat); 7% mizture estimation

mixlls(i) = Mix.states.mixll; % record posterior data likelihood

. plot of estimated mixture ...
end
. plot of mixlls ...

This example shows that for simple cases, the mixture can be estimated even by one pass of mixestim, but
the results can differ.

10.6 Batch quasi-Bayes mixture estimation

The batch quasi-Bayes estimation is described in [?], Sections ??. Generally, it is used in the iterative form
with a very slow convergence. Its use is necessary when data sample is not homogeneous and the estimation
results depend too strongly on the processing ordering.

’Mix = mixestqb(MixO,frg,ndat,niter) batch quasi-Bayes estimation ‘

10.7 Quasi-Bayes mixture estimation based on forgetting branching

The forgetting branching is described in [?], Sections 10.7.

The algorithm starts from a mixture at a time ¢. The estimation branches. Two estimations run in
parallel: with the default forgetting rate and with a very low forgetting rate (recommended value is 0.6).
Increments of posterior data likelihood are measured for both mixtures estimated. When the difference of
log-likelihood values exceeds a level, the poorer mixture is abandoned. The better mixture is used as the
starting one for new branching.

Counts of ”success” are measured for both forgetting rates. When the counts of success sufficiently differs,
the rest of data sample is processed with the default forgetting rate without the branching.

The algorithm prevents premature convergence of the estimation statistics to wrong values.

This processing logic applies in the first iteration only. The rest of iterations is processed by quasi-Bayes
estimation.

The selection of alternative forgetting rate does not seem to be critical and the recommended value of
0.6 is acceptable.

The function is called as:

Mix = mixestbb(MixO,frg,ndat,niter) batch quasi-Bayes estimation

10.8 Mixture estimation with fixed covariances

The algorithm fixes covariances of modelled channels. It is used in initialization of mixture estimation
”mixinit”. The processing with fixed variances is used in the first iteration and the rest of iterations is done
by quasi-Bayes estimation.

{brafor}

The algorithm prevents convergence of the estimation statistics to wrong values in the most important
first iteration.
The function is called as:

Mix = mixestbb(Mix0,frg,ndat,niter) estimation with fixed variances

10.9 TIterative estimation and mixture flattening

A single processing of the data sample rarely provides estimation good results. The iterative algorithms
estimate mixture on it and take the result as a better guess than the prior one. Its distribution is flattened
in order to avoid over-confidence to bad results. Estimation and flattening form a step in the estimation
cycle that repeats "niter” times.

This algorithm is in [?], Sections ??, ?? called prior-posterior branching. We use the term
estimation” in this Guide.
The set of functions solves the iterative mixture estimation:

7 iterative

Mix = mixestqb(MixO,frg,ndat,niter) quasi-Bayes mixture estimation

Mix = mixestbq(Mix0,frg,ndat,niter) batch quasi-Bayes mixture estimation
Mix = mixestbb(Mix0,frg,ndat,niter) forgetting branching

Mix = mixestmt(MixO,frg,ndat,niter) estimation with fixed variances

Mix = mixest(Mix0O,frg,niter,options)iterative mixture estimation

The function "mixest” calls individual iterative funtions according to the argument ”options”:

options is a character string, the 1st character is decisive. The following options are available:

b

q’: iterative quasi-Bayes estimation (default);
b’ iterative batch quasi-Bayes estimation

'f7: iterative estimation based on quasi-Bayes algorithm

‘m’: iterative estimation with fixed variances and forgetting branching.

niter has the default value of 10 for each algorithm. The higher values are better but the selection depends
on amount of computing time available.

Intuitively, a more significant flattening should be made at the beginning of the iterative mixture estima-
tion than at its end. Analysis [?], Section ?? shows necessary properties of flattening that do not prevent
the optimal estimation. It serves for the design of flattening algorithm with linearly growing confidence into
likelihood. It is implemented as the function ” mizflatv’.

Examples of iterative mixture estimation follow. They are intended as illustrative ones, no conclusions
are derived.

The first example is continuation of the example from the subsection 10.5. The same processing with
the same data samples is the done but, the iterative quasi-Bayes estimation with 20 iteration replaces the
initial processing. The results are displayed in Fig. 14.

The comparison with the example in the subsection 10.5 shows that the first estimation is decisive for
estimation success.
Data sample is generated, the simulator is displayed in Fig. 15, subplot 1.

ndat = 1000; % sample size

ncom = 5; % number of components
cove = 1td1([0.1 0.01; 0.01 0.1]); % common noise variance
Mix = statsim(ndat, ncom, cove); % create static mixture

. plot simulator ...

Initial mixture is build, forgetting rate and number of iterations is selected. The prior knowledge used here
is that the mixture is a static one with 3 components.

Mix0 = genmixe(3); % initial mixture
frg = defaults(’frg’); % forgetting rate
niter = 10; % number of iterations

Individual estimations are done, the results are displayed in Fig. 15, subplots 2-5.

Simulator

mixlls
—-400
—600%- .
-800 ©
—-1000
~1200 5
o
-1400
1 2 3 4
Figure 14: Mixture estimation by iterative quasi-Bayes algorithm {zeston2}
subplot contains
1 mixture simulator
2-5 results of individual estimations
6 v-data-likelihood of the estimations (comparison)

zestonly.m

Simulator Quasi—Bayes Batch quasi—Bayes

1.5
1
0.5
0
-0.5
-1
-1.5
-2
-1 0 1 -1 0 1 -2 0 2
Fixed variances Data v-likelihood
1.5 -850
. o
; 15 »
1
0.5
0.5
0
0 -900
-0.5 -0.5
-1 _q v
15 -1.5 .
o
-2
-2 ~950
-1 0 1 -1 0 1 1 3 4
Figure 15: Mixture prediction with iterative estimation sestiter.m {zestiter}

subplot contains

mixture simulator

iterative estimation by quasi-Bayes algorithm
iterative estimation by batch quasi-Bayes algorithm
iterative estimation by forgetting branching
iterative estimation by fixed variances

comparison of data v-likelihood

S T W N =

Iterative quasi-Bayes estimation

method = ’q’; % quasi-Bayes estimation
Mix = mixest(MixO, frg, ndat, niter, method); % estimation
mix11ls(1) = Mix.states.mix1l;

. plot result of quasi-Bayes estimation...

Iterative batch quasi-Bayes estimation

method = ’b’; % batch quasi-Bayes

Mix = mixest(MixO, frg, ndat, niter, method); % estimation

Mix = mixstats(Mix, ndat); % compute posterior data likelihood
mixlls(2) = Mix.states.mixll; % posterior data likelihood

. plot result of batch quasi-Bayes algorithm ...

Iterative estimation by forgetting branching

method = ’f’; % forgetting branching
frg = 0.6; % high forgetting

Mix = mixest(MixO, frg, ndat, niter, method); % estimation
mix11ls(3) = Mix.states.mixll; % posterior data likelihood

. plot result of estimation by forgetting branching ...

Tterative estimation with fized variances
Only one step of the estimation is done. The rest of iterations is done with quasi-Bayes estimation.
The 1st steps is used for better initial condition for estimation. In this way, this estimation method is
used in ”mixinit”.

method = ’m’; % fized variances

frg = defaults(’frg’); % default forgetting

Mix = mixest(Mix0, frg, ndat, 1, method); % estimation
Mix0 = mixflat (Mix) ;

method = ’q’;

Mix = mixest(Mix0, frg, ndat, niter-1, method); % estimation
Mix = mixstats(Mix, ndat);

mixlls(4) = Mix.states.mixll; % posterior data likelihood

. plot result of estimation by fixed variances ...

The resulting v-data-likelihood is displayed in Fig. 15, subplot 6.

10.10 Processing of huge data samples

Recall that all estimation functions realized as MEXes have the possibility of buffered estimation, see Section
5.2. Tts use is illustrated on estimation with iterative quasi-Bayes estimation.
The data sample is written to disc e.g. by:

file = fopen(’data’,’wb’); % open a file
furite(file, DATA, ’double’); % write DATA
fclose(file); % close the file

Among usual parameters of the function ”mixestim”, the argument "ndat” is changed to
Ndat={’filename’, number of rows in the global buffer matrix DATA}:
Example follows. The data from previous case study will be processed. The ordinary processing gives:
Mix = mixest(MixO, frg, ndat, niter, method); % estimation
Mix.states.mix1l
ans =
-857.3862

The buffered processing follows.

file = fopen(’data’,’wb’); % open a file

furite(file, DATA, ’double’); % write DATA
fclose(file); % close the file
filename = ’data’; % full filename
mdat = 2; % number of sample rows
Ndat = {filename, mdat}; % this replaces usual "ndat”
DATA = zeros(mdat,50); % allocate short buffer
size (DATA)
ans =

2 50

Mix = mixest(MixO, frg, Ndat, niter, method); % buffered estimation
Mix.states.mixll

ans =

-857.3862

mixest.tex zestonly.m zestiter.m zestbuf.m by PN June 25, 2004

11 Mixture prediction

There are two basic operations related to prediction with normal mixture:

e muxture projection
means marginalization and conditioning, see [?]. The result of these operations is referred to as mizture

projector.

e mixzture prediction
arises from the mixture projection by substitution of a specific regression vector into it. The result is

referred to as mizture predictor.

11.1 Mixture projection

The projection converts mixture estimator into mixture projector. It provides description of Student pdf
(13) mostly approximated by normal pdf (8). The projection is conditional pdf on a set of modelled channels
referred to as predicted channels. 1t is conditioned by another set of modelled channels referred to as channels
in condition. The predictor can be re-built for a new selection of these channels.

The mixture projection is done by the function ”mix2pro”:

pMix = mix2pro(Mix, pchns, cchns) build mizture projector

The argument together with defaults are:

argument meaning defaults
Mix mixture estimator or projector must be specified
pchns predicted channels all channels
cchns channels in condition no channels in condition

11.2 Prediction with mixture projection
The mixture prediction with mixture projector is discussed.

Zero-delayed regression vector

The projector is converted into predictor by substituting a data vector at a specific time ¢. The vector
consists of data values up to the time ¢ — 1 and the current values of channels in condition as well
as the values of not-predicted channels with zero delay. The data vector is referred to as zero-delayed
regression vector.

The historical values are implicitly taken form the signal database — global matrix DATA. The zero-
delayed entries of the regression vector can be specified; if not fully specified, the values are extracted
from the signal database, too.

{prediction}

The zero-delayed regression vector has 2 rows, the first row contains values, the second one the corre-
sponding channels; the second row can be omitted if there is only one item in the vector.

Prediction scaling
Use of scaled data is recommended in learning with mixtures. In this case, the mixture prediction must
be re-scaled to the original data scaling. This is done by an additional argument ”pre” that contains
record about the data scaling, see section ”Data preprocessing”. The zero-delayed regression vector is
to be introduced in the original data scaling.

The mixture prediction is done by:

lhs = profix(pMix, psiO, pre) mixture prediction

The input arguments with defaults are:

argument meaning defaults

pMix mixture projector must be specified

psi0 zero-delayed regression vector —extracted from DATA

pre prediction scaling no prediction scaling is done

The output “lhs” arguments are specified as
pMix or [Eths, coves, alphas] or [pMix, weights] or [Eths, coves, alphas, weights].
The meaning of the arguments is:

pMix mixture prediction (static matrix ARX LS p-mixture)

Eths vector or cell vector of means of individual components

coves vector or cell vector of noise covariances

alphas weights of individual components corresponding to normalized dfcs
modified due to conditioning

weights data-dependent approximate component weights

The prediction can be done ahead for a number of processing steps !

lhs = profixn(Mix, psiO, pre, nsteps) prediction nsteps ahead

Meaning of the arguments and defaults are the same as above.

11.3 Prediction with mixture and related functions

Joined mixture projection and prediction done by one function is available:

lhs = mixpro(Mix, pchns, cchns, psiO, pre) mixture prediction

The meaning of input and output arguments is the same as in previous sections. The same input
arguments are used by visualization functions (mixplot, mixgrid etc.). Multistep version does not exist.

11.4 Prediction examples
11.4.1 Tutorial example

The mixture projection is documented on a simulated example. A static ARX LS mixture is built and
displayed in Fig. 16, subplot 1.

cove = 1td1(][0.1 0.01; 0.01 0.1]); % common component noise covariance
ncom = 4; % number of components
Mix = statsim(0, ncom, cove); % build ARX LS mixture
Mix.dfcs % wvector of degrees of freedom of components
ans =
0.1000 0.2000 0.3000 0.4000
plot ...

Tthis function will be covered by ”profix” when MEX version will be available

Static mixture psi0=0.5

1.5
1.5
1
0.5 1
0
0.5
» 0.5
1.5
-2 0
-2 -1 0 1 -2 -1 0 1 2
psi0=0 psi0=-10
1.5 1.5
1 1
0.5 0.5
0 0
-2 -1 0 1 2 -2 -1 0 1 2
Figure 16: Mixture prediction {zprotut}

subplot contains

1 mixture simulator

prediction: pchns=1, cchns=2, psi0=0.5
prediction: pchns=1, cchns=2, psi0=0
prediction: pchns=1, cchns=2, psi0=-10

=W N

zprotut.m

Then, the mixture projector is build:

pchns = 1; % predicted channel
cchns = 2; % channel in condition
pMix = mix2pro(Mix, pchns, cchns) % build mizture projector
pMix =
Facs: {1x8 cell} — > array of factors
coms: [4x2 double] — > description of components
dfcs: [0.1000 0.2000 0.3000 0.4000] — > degrees of freedom of components
type: 122 — > p-mazture type: projector
states: [1x1 struct] — > states, see below

The result is p-ARX LS mixture. The mixture states are
pMix.states

ans =
modelled: [1 2] — > list of modelled channels
notmodelled: [] — > not-modelled channels, none here
predicted: 1 — > predicted channels
incondition: 2 — > channels in condition

zerodelayed: [] — > zero-delayed not modelled channels
comaux: {{1x7 cell} {1x7 cell} {1x7 cell} {1x7 cell}}

The first 2 states refer to the channels of the mixture estimator. The ”comaux” is an auxiliary field that
enables fast prediction.
The mixture prediction is built and displayed in Fig. 16 subplot 2. The prediction is static p-matrix ARX
LS mixture. The degrees of freedom o components ”dfcs” are transformed due to conditioning. The resulting
p-mixture” pMix1” cannot be re-built or other zero-delayed regression values substituted in it.

psi0 = 0.5; % zero-delayed regression vector
pMixl = profix(pMix,psiO) % psi0 substitution
pMix1l = — > prediction

Coms: {[1x1 struct] [1xl struct] [1xl struct] [1xl struct|}
dfcs: [0.1667 0.3333 0.5000 3.0266e-005] — > degrees of freedom of components

reserved: ||
type: 124 — > p-mixzture type: prediction
states: [1x1 struct] — > auziliary states

The substitution of the regression vector into projector can be repeated and it is displayed on Fig. 16 subplot
3.

psi0 = 0; % zero-delayed regression vector

pMixl = profix(pMix,psiO); % regression substitution

The mixture projector is re-built into another projector and displayed on Fig. 16 subplot 4. The outputs
from ”mixpro” can be represented by the cell vector (vector in one-dimensional case) of means, covariance
and transformed degrees of freedom of components. Displaying of these values is mostly of interest:

psi0O = -10; % mnew prediction arguments
[Eths, coves, alphas] = mixpro(pMix, pchns, cchns, psiO); % prediction
alphas % converted Mix.dfcs

alphas =

0.0000 0.0000 1.0000 0.0000

11.4.2 Prediction with scaled data

In mixture estimation, use of scaled data is recommended. If used, the mixture prediction must be re-scaled
to original data scaling. The zero-delayed regression vector is introduced in the original data scale.
In the example, the simulated data sample is generated and displayed in Fig. 17, subplot 1.

Data clusters

Estimated mixture

pdf |chn2=2.5

pdf |chn2=2.5

- 5 0.5
0.4
0.3
0
0.2
0.1
-5 0
-2 0 2 4 -2 0 2 4 -5
Scaled data clusters Scaled estimated mixture
5 0.5
0.4
0.3
0
0.2
0.1
-5 0
-2 0 2 4 -2 0 2 4 -5

Figure 17: Mixture prediction with scaled data

subplot
1,4
2,5
3,6

contains

data clusters

estimated mixture

mixture prediction, psi0=2.5

zproscal.m

{zproscal}

ndat = 2000; % length of data

ncom = 3; % number of components
cove = 1td1([0.1 0.01; 0.01 0.1]); % noise covariance

Mix = statsim(ndat, ncom, cove); % get data sample
preproc({’scale’, [0.5 0.5; 2 3]}); % transform data

. plot data clusters ...
The data transformation means to add 0.5 to both channels and multiply the channel 1 by 2 and the channel
2 by 3.
An initial mixture is build and mixture is estimated. The estimated mixture is diplayed in Fig. 18, subplot
2.

Mix0 = genmixe(ncom); % initial mizture for estimation
frg = defaults(’frg’); % forgetting rate

niter = 10; % number of iterations

Mix = mixest(MixO,frg,ndat,niter); % estimate mixture

. mixture plot ...

The predictor is build and the zero-delayed regression vector specified, the prediction computed and the
prediction is displayed in Fig. 17, subplot 3.

pchns = 1; % predicted channel

cchns = 2; % channel in condition

pMix = mix2pro(Mix,pchns,cchns); % mixture projector

psi0 = 2.5; % zero-delayed regression vector
pM = profix(pMix, psiO); % mixture prediction

. plot of predictor ...
The data are scaled and data displayed in Fig. 17, subplot 4.

pre = preproc({’scale’,[]}); % scale data
. plot of data ...

The mixture ”Mix(0” is estimated and displayed in Fig. 17, subplot 5.

Mix = mixest(MixO, 1, ndat, niter); Y% estimate mizture
. plot of mixture ...

Mixture prediction is done. The value of regression vector is specified in the initial data scaling. The pre-
diction is displayed in Fig. 17, subplot 6.

pMix = mix2pro(Mix, pchns, cchns); % mixture projection
psi0 = 2.5; % mnot scaled psi0
pM = profix(pMix, psiO, pre); % mixture prediction

. plot of predictor

The result is very close to the original prediction, a difference is caused by using diferent estimators. Note
that the zero-delayed regression vector is introduced in the original data scaling.

11.4.3 Data-dependent approximate prediction

In the case of prediction with static mixtures without conditioning, a modification of the general algorithm
is available that makes the predicted component weights data dependent, [?]. They are generated by ”profix”
as the 2nd or 4th output argument.

Nothing can be gained in prediction if the data sample follows exactly the mixture model, namely if the
current component is selected randomly each processing time. This occurs with simulated data but never in
practice.

In the example, the data sample is generated by a model with Markov jumps among components. The
?CUMTAB?” is global matrix describing the transitions among components. The mixture simulation is plot-
ted in Fig. 18, subplot 1.

Simulator Estimated mixture

Figure 18: Mixture prediction by data dependent estimator
subplot contains
1 mixture simulator
2 estimated mixture
3 histogram of prediction error
ndat = 3000; % length of data
ncom = 4; % number of components
cove = 1td1([0.1 0.01; 0.01 0.1]); % noise covariance
Sim = statsim(0, ncom, cove); % build simulator
global CUMTAB ACTIVE
CUMTAB = [0.97 0.01 0.01 0.01 % Markov transition table
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97 |;
DATA = zeros(2, ndat); % pre-allocate data
mixsimul (Sim, ndat); % get data sample

. plot simulator ...

Mixture estimation without initialization follows, the estimated mixture is plotted in Fig.

Mix0 = genmixe(ncom); % initial mizture for estimation
niter = 10; % maximum number of iterations
frg =1; % mo forgetting

method = ’q’; % method of estimation

Mix = mixest(MixO, frg, ndat, niter, method); 7% iterative estimation
. plot estimated mixture ...

Marginal distribution of 1st channel (mixture projector) is obtained.

pchns = 1; % predicted channel
pMix = mix2pro(Mix,pchns); % mixture projector
Trajectory of prediction is computed.

for TIME = 1:ndat % getting prediction trajectory
[Eths,coves,alphas,weights] = profix(pMix); % prediction
yp(TIME) = Eths * weights’; % data dependent prediction
yO(TIME) = Eths * alphas’; % constant prediction

end

Prediction error

{zprodep}

zprodep.m

18, subplot 2.

Results are evaluated. The standard deviation of prediction error is much lower than the standard deviation
of data, the difference shows amount of data variance explained by the mixture model. The gain is reached
due to data dependent weights used in prediction. Histogram of prediction error is displayed in the Fig. 18,

Simulator Estimated mixture Prediction error

2.5 -] 2.5 F — as
= | =2+ - 40 — —
1.5 - N 35 - —
1 N 30 |- —
oO.5 —
25 - —
o —
=20 — —
—o.5 - —
Lk i 15 —
1.5 _ 10 —
=L 4 L i =L |
—=2.5 — o.s b -
—= o =2 —a —= o =2 <
Figure 19: Prediction of groups of data {zpropair}
subplot contains
1 mixture simulator
2 estimated mixture
3 histogram of prediction error

subplot 3. The "normal prediction y0” is really constant.

dd = DATA(pchns,:); % data row

ee = dd-yp; % prediction error

s2d = std(dd’) % standard deviation of data
s2d =

0.6144

s2e = std(ee’)

s2e =

0.4316

i = find(y0~=y0(1)) % constant prediction

i =

[]

. histogram of prediction error ...

If the same work is done without the Markov jumps between components, the results are:

.6822
std(ee’) % standard deviation of prediction error

o

n

N

[©)
[«

.8682

11.4.4 Prediction with grouped data
{pairs}
The algorithm explained here is discussed in [?], Section ??. It enables to make approximate prediction

”naturarly” data dependent even in the case of static mixtures. The algorithm is referred to as prediction
of groups of data.

Mixture modeling of grouped data forms essence of the trick we are talking about. For simplicity, pair-
wise grouping is discussed here. The estimated mixture is then

fldy, dea|d(t —2)) = 3 con acf(dey dia|d(t — 2),¢) = 30 con acf(dia|d(t — 2), ¢) f(de|d(t — 1), ¢)

and corresponding prediction becomes

Fldild(t = 1)) oc Y

cec*

acf(di—1|d(t —2),¢)

fdi]d(t = 1), c)
—_———

data-dependent component weight H usual component ‘

The joint distribution f(ds, ds—1]d(t — 2)) is simply estimated by the standard tools operating on the
reorganized data sample: each even data sample is moved to an added channel. This is solved by data
preprocessing:

nsk = 2; % extent of data grouping
DATA = [1:10; 11:20] % original data
DATA =

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
preproc({’group’, nsk}); % preprocess data
DATA
DATA =

2 4 6 8 10

12 14 16 18 20

1 3 5 7 9

11 13 15 17 19

Note that nsk>2 can be used.

The prediction based on this method is demonstrated by simple case of simulated static mixture whose
components changed as a Markov chain, see Section 17.

The mixture simulator is built:

ndat = 1500; % length of data

ncom = 2; % number of components

cove = 1td1(][0.5 0.05; 0.05 0.5]); % point estimate of noise covariance
Sim = statsim(0, ncom, cove); % build simulator

The of Markov transition probabilities defining jumps amomng components is introduced:
global CUMTAB

CUMTAB = [0.97 0.03; 0.03 0.97]; % Markov transition probabilities

The data sample is pre-allocated and filled by simulated data. The simulator is displayed in Fig. 19, subplot
1.
DATA = zeros(2, 2+*ndat);
mixsimul (Sim, 2#*ndat);
plot simulator ...

% pre-allocate data
% get simulated data sample

The data are split into data for learning and for testing of prediction quality:

Data = DATA(:,ndat+1:2*ndat) ; A
DATA = DATA(:,1:ndat); %

data for prediction
data for learning

The data are grouped:

nsk = 2; % extent of data grouping
preproc({’group’, nsk}); % preprocess data
[nchn, ndat] = size(DATA) % dimensions
nchn =
4
ndat =
750

Initial mixture estimator is built. The mixture is estimated and the result displayed in Fig. 19, subplot 2.

Mix0 = genmixe(2); % nitial mizture for estimation

niter = 10; % mazimum number of iterations
frg =1; % mo forgetting
method = ’q’; % iterative estimation method

Mix = mixest(Mix0O, frg, ndat, niter, method); % iterative estimation
. plot mixture ...

Data for prediction are reorganized and the prediction trajectory is made.

DATA = Data;

preproc({’group’, nsk}); % reorganize data

pchns = 1; % predicted channel

cchns = [3 4]; % channels in condition
pMix = mix2pro(Mix,pchns,cchns); % predictor

for TIME = 1:ndat % getting prediction trajectory

[Eths, coves, alphas] = profix(pMix); % prediction
yp(TIME) = Eths * alphas’;
pMix = mix2pro(Mix,pchns,cchns); % predictor
end

The results are:
dd DATA(pchns, :) ; ee = dd-yp;
std(dd’)

n

N

Q.
]

1.0775
s2e = std(ee’)

0.9102
plot histogram of prediction error ...
The histogram of prediction error is in Fig 19, subplot 3. Because the mixture is a static one, the prediction
(marginal on the channel 1) is constant. The approximate prediction makes the prediction data dependent.
When used, the standard deviation of the prediction error ”s2e” is less than std of data.

zpropair.m

11.4.5 Prediction n-steps aread

The function ”profixn” makes the prediction n-steps ahead. Example follows.
Data are generated with Markov jumps of components and displayed in Fig. 20, subplot 1.

ndat = 2000; % length of data

ncom = 4; % number of components

cove = 1td1(][0.1 0.01; 0.01 0.1]); % mnoise covariance

Sim = statsim(0, ncom, cove); % build simulator

global CUMTAB ACTIVE

CUMTAB = [0.97 0.01 0.01 0.01 % Markov transition probabilites

0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97 k
DATA = zeros(2, ndat); % pre-allocate data
mixsimul (Sim, ndat); % get data sample
. plot of simulator ...

An initial mixture is build, estimated and displayed in Fig. 20, subplot 2.

Mix0 = genmixe(ncom); % initial mizture for estimation
niter = 10; % mazimum number of iterations
frg =1; % mo forgetting

method = ’q’; % method of estimation

Mix = mixest(MixO, frg, ndat, niter, method); % iterative estimation
. plot of estimated mixture ...

nstepahead
P

Simulator Estimated mixture Prediction error

o.64
1.5 1.5 — O e | T e s e e x;f?
=}
1 - 1 7 o.e - OO .
=
oO.5 |- — o588 (= -
O.5 |- (=)}
=)
o b | o.s56 |- C S —
o - =
o.54 - < .
—o.5 | — =
_o.s| P - ,
Ak i =
N o.5 - = —
Cas _ =
o.as |- (=Y -
—1.5)
—=r 1 o.aes .Q —
<
. i
—2 5 = = o.a4a
—= —1 o bl —= —1 o 1 o 10 =20
Nnstep
Figure 20: Prediction for several steps ahead {zprofixn}
subplot contains
1 mixture simulator
2 estimated mixture
3 standard deviation of prediction error by number of steps ahead (marked by "*’)

corresponding standard defiation of data (marked by ’'x’);

Computation of the prediction error by number of steps ahead is done and results are displayed in Fig. 20.
Note the dependency of the prediction error on the number of steps.

pchns = 1; % predicted channel

pMix mix2pro(Mix,pchns) ; % mazture projector

for nstep = 1:20
maxtime = ndat - nstep; % upper bound for time
for TIME = 1:maxtime % getting prediction trajectory
[Eths, coves, alphas, weights| = profixn(pMix, [, [], nstep);
yp(TIME) = Eths * weights’;

end
dd = DATA(pchns, nstep+l:length(DATA));
ee = dd-yp;
s2d(nstep) = std(dd’);
s2e(nstep) = std(ee’);
yp = [;
end

. plot of s2e, s2d ...

zprofixn.m

11.5 Reduction of data space

The marginalization by "mix2pro” preserves in the p-mixture all factors for original channels so that the
re-building operation can be done.

The function "mix2mixm” makes the marginalization but it builds a new p-mixture without unused
factors. It reduces the data space before prediction and consequently reduces computing time.

An example follows. Let us build an matrix ARX LS mixture estimator:

ychns = 1:7; % modelled channels

str =[1234567 8 0; 1111111 0 1]; % component structure

Com = comarxls(ychns, str); % build matriz ARX LS component

Mix = mixconst({Com, Com}, [11 22]); % build matriz ARX LS mixture with dfcs=[11 29

The predicted (marginal) channels are:

pchns = [5,6]; % marginal channels

The marginalization is done:

pMix = mix2mixm(Mix, pchns); % marginalization in data space
pMix.states
ans =
modelled: [5 6] — > list of modelled channels
notmodelled: [1 2 3 4 7 §] — > list of not-modelled channels
predicted: [5 6] — > predicted channels
incondition: [] — > channels in condition, here no
zerodelayed: 6 — > zero-delayed not modelled channels

comaux: {{1x7 cell} {1x7 cell}}
Here, all modelled channels are predicted.

mixpro.tex zprotut.m zpropair.m zprodep.m zproscal.m zprofixn.m zpromarg.m by PN June 25, 2004

12 Visualization

{vizual}
By mizture visualization we mean 1D, 2D and 3D plots of mixture projections and(or) its components. This
is done with the functions:

mixplot mixture plot
mixplotc contour mixture plot and components
mixmesh mesh plot of mixture

Coordinates for plotting are generated by:

mixgrid coordinates for plot
datagrid get coordinates of data

Scanning mixture predictions and signal:

mixscan scanning mixture
datascan scan data
sigscan scan signal

Mixture predictions are displayed so that the mixture visualization is closely related to mixture prediction.
The visualization functions uses the same arguments as the function ”mixpro” (that is called internally, see
Section 11). Other arguments refer to coordinates, grid densities and ranges. The arguments are listed:

Mix mixture, any mixture form
pchns predicted channels, default is 1st and 2nd channel
cchns channels in condition, default is no channels

psio zero-delayed data vector, by default taken from DATA

X, y, z plot coordinates

n grid density or vector of densities
default is 100 for 1 dimension and 50 for 2 dimensions
r is range of x,y coordinates or vector of 4 elements

the default is a convenient range from components ranges

Important: for dynamic mizture projection, the user must specify TIME and supply the global matriz DATA.
The same is valid for the case of conditional projection of a static mizture. But, in the later case the
zero-delayed data vector can be specified by psi0.

The full synopses of the functions are summarized.

mixplot (Mix,pchns,cchns,psiO, n, r)
mixplotc(Mix,pchns,cchns,psiO, n, r)
mixmesh (Mix,pchns,cchns,psiO, n, r)
[x,y,2z] = mixgrid(Mix,pchns,cchns,psiO,n,r)
[x,y,2] datagrid(chns, nx, ny, rx, ry)

The functions for scanning are:

mixscan(Mix,chns,pre)
datascan(chns)
sigscan(chns)

The ”chns” argument is a list of channels in the function ”sigscan” or a two rows of pairs of channels in the
”mixscan” and ”datascan”.

Auxiliary functions for plotting static mixtures with two channels and its components (or plot coordinates)
are summarized. These functions do not make any prediction.

statmesh(Mix) interactive mesh plot

statplot(Mix, ’options’) plot of mixture components

[x,y,z] = statgrid(Mix, n, r) coordinates for plot

[x,y,z] = ... alternative generating of coordinates
statgrid(Eths, coves, alphas, n, r)

Note: the ”options” argument is sent to ”plot” function. The arguments ”"Eth”, ”coves” and ”alphas” are
the mixture characteristics (means, covariances and weights of its components) that can be generated by
”mixpro”.

Two interactive functions are provided. The user specifies the arguments above in an interactive window:

mixshow(Mix) interactive mesh plot
mixbrow(Mix) interactive mesh plot

The use of visualization functions is documented on examples. The static mixture of four dimensions and
four components is build and data sample is generated. An array of matrix ARX LS components is build:

ncom = 4; % number of components
ndat = 500; % length of data
DATA = zeros(4, ndat); % data sample
ychns = [1 2 3 4]; % modelled channels in component
str = [0; 1]; % static factor structure
Com = comarxls(ychns, str); % build matriz ARX LS component
cove = 0.2xeye(4); % mnoise variance
Eth = zeros(4,1); % regression coefficients
for com = 1:ncom % generate array of components
Com.Eth = Eth + 2*rand(4,1);
Com.cove = cove + 0.2*xrand(4,4);
Coms{com} = Com;
Eth = Eth + ones(4,1);
end

A mixture is build and data sample generated:

Mix = mixconst(Coms,[4 3 2 1]); % mizture simulator
mixsimul (Mix, ndat); % get data sample

Data clusters and mixture clusters are scanned, the results are in the Fig. 21 and 22.

datascan; % data clusters
mixscan(Mix) ; % mixzture clusters

A prediction will be displayed in the Fig. 22 subplot 1. In the subplot 2, the prediction is done inside
"mixgrid” function. Both plots are equal.

pchns = [1 4]; % predicted channels
cchns = [2 3]; % channels in condition
TIME = 500; % TIME specified

psio =[1.4 2.6; 2 3|; % zero-delayed data vector

pMix mixpro (Mix,pchns,cchns,psiO); % mizture prediction

data 1x2

N W A OO

data 1x3

5
4
3
2
1
0
—1
-5 0 5 10
data 2x4
6
5 T2
Wi
4 SRt
3 -".' ST e
2 %
PRI
1 =
0 -

-5 0 5 10

Figure 22: Mixture clusters

data 1x4

marg. 1x4

{zvisuall}

{zvisual2}

Figure 23: Mixture prediction contours

[x,y,z] = mixgrid(Mix,pchns,cchns,psiO); % plot coordinates
contour(x,y,z,15);

[x,y,z] = mixgrid(pMix); % plot coordinates
subplot (122);
contour(x,y,z,15);

visual.tex, zvisual.m by PN June 25, 2004

13 Model validation

The learning and prediction methods offer a good background for model validation. This section summarizes
the procedures that are the most successful in processing of real data samples.

13.1 Test data sample

Simulated data sample is used with four channels and four components. Changes of components are modeled
as a Markov chain, see Section 17.3. This leads to the data sample that is ”problematic” from the point of
view of model validation.

The array of components for simulation is generated.

nchn = 4; % number of data channels
ncom = 4; % number of components
ndat = 4000; % length of data sample
DATA = zeros(nchn, ndat); % pre-allocated data sample
str = [0; 1]; % static component structure
ychns = 1:4; % modeled channels
Com = comarxls(ychns, str); % build matriz ARX LS component
cove = 0.2*eye(nchn); % diagonal of noise covariance
Eth = zeros(nchn,1); % regression coefficients
for com = 1:ncom % generate array of components
Com.Eth = Eth + 2*rand(4,1);
Com.cove = 1ltdl(cove + 0.2*rand(4,4));
Coms{com} = Com;

Eth = Eth + ones(4,1);
end

The component weights are selected (not normalized here), mixture simulator is build and Markov tran-
sition probability of jumps between components is selected.

{zvisual3}

{validate}

{dataddm}

Mixture simulator Active components

a5 : 4

351

1.5 H
1 Ly L i

0.5 +

channel 2
active component
N
) w
——

;

N

o 1 2 3 4 o 1000 2000 3000 4000
channel 1 simulation time
Figure 24: Mesh plot of simulator {zdataddm}
Sim = mixconst(Coms,[4 3 2 1]); % mizture simulator

global CUMTAB ACTIVE

CUMTAB = [0.94 0.02 0.02 0.02 % Markov transition probability
0.02 0.94 0.02 0.02
0.02 0.02 0.94 0.02
0.02 0.02 0.02 0.94];

The recursive simulation allows to record which component is active in each simulation time.

actives = zeros(l,ndat); % trajectory of active component
for TIME=1:ndat % simulation cycle
mixsimul (Sim) ; % one simulation step
actives(TIME) = ACTIVE; % get trajectory
end

The mixture simulator is displayed in Fig. 24 subplot 1. The plot of active components in time is in Fig.
24 subplot 2.

Note: for comparison, we use another data sample obtained by the same procedure but without Markov
jumps between components.

zdataddm.m

13.2 Model validation via simulation)
{Gvalidate}

The initial model is build. The prior knowledge is that the mixture is a static one. The initialization follows
a standard pattern:

load data4dm % load data sample
plot mixture simulator ...
Mix0 = genmixe; % build initial mizture
frg = defaults(’frg’); % default forgetting rate
niter = 10; % number of iterations
opt = ’q’; % option: quasi-Bayes estimation

Mix = mixinit(Mix0,frg,ndat,niter,opt);% mizture initialization

The resulting mixture is flattened and estimated using iterative quasi Bayes estimation:

niter = 10; % number of iterations
Mix0 = mixflat(Mix); % mixture flattening
Mix = mixest(MixO,frg,ndat,niter); % iterative quasi Bayess estimation

plot estimated mixture

The mixture simulator is displayed in Fig. 25 subplot 1, the estimated mixture in the subplot 2.

[Simulator | @ | [Estimated mix. Q

0 1 2 3 4 0 1 2 3 4
8 Data sample
6
4
2
0
) -2
-2 0 2 4 6 -2 0 2 4 6

Figure 25: Mixture validation via simulation {zversim}

subplot contains

1 mixture simulator

2 estimated mixture

3 data clusters

4 simulated data clusters

—1 87"

=)

data vIl_|

—1874a

—188=2

— 1884
o

b o oo o0 o oo o

Accepted vIl_|

o.s
forgetting

1833 =
=)

Rejected wvil

—1833.4a

P 1s33.5

—1833.6

—1833.7

—1833.8

—1833.9

—1834

o.s5
forgetting

52
18341
1 o

o.s
forgetting

Figure 26: Model validation via stabilized forgetting {zverfrg}
subplot contains
1 rejected model
2 accepted model
3 accepted model, cut

The estimated mixture can be used for simulation. The simulated and real data are visually compared. This
method is a very rough method of model validation. It is suitable for static mixture only.

plot (DATA(1,:),DATA(2,:),’.”);

mixsimul (Mix,ndat) ;

plot (DATA(1,:),DATA(2,:),’.);

The plots are in Fig. 25, subplot 2 and 3. The correspondence is obvious.

13.3 Stabilized forgetting

The validated model is taken as alternative model reflecting ”sure” information in estimation with stabilised
forgetting. By comparing posterior data likelihoods of models resulting from estimation with different
forgetting rates, the contribution of the additional data processing to the sure model can be judged.

The model is taken as validated if the smallest frogetting rates are the best. In the case, the additional
processing brings nothing to the estimated model.

We use the estimated mixture from the previous section. The forgetting rates are selected and estimation
is made with the stabilizing forgetting mixture.

ndat = 500;
Mix0 = mixflat(Mix); % mixture flattening
frgs = [0.01 0.1:0.1:0.9 0.995 0.99999 1];% selection of forgetting rates

for i=1:length(frgs)
Mix = mixestim(MixO, frgs(i), ndat, Mix); % mizture estimation
mixlls(i) = Mix.states.mixll; % posterior data likelihood is recorded

end

plot(frgs, mixlls); % plot of posterior data likelihood

The results is in Fig. 26, subplot 1. The conclusion can be made that the estimated mixture is not a good
model.

To show the opposite result, we use the data sample without the Markov jumps among component. The
processing proceed as in the previous sections.
The result is in Fig. 26 subplot 2 and 3 (separatelly plotted initial part). In this case, the estimated mixture
is a good model.

channel 2

channel 2

[Estimated mixture | O

channel 1

Simulated data }7

channel 1

channel 2

channel 2

81 - Original data
6
4
2
0
) L
-2 0 2 4 6
channel 1
- Prediction
5 /
P
4
3 ,A
2 /
I
-
0
0 1 2 3 4 5

channel 1

Figure 27: Mixture validation via simulation

subplot contains

1 estimated mixture

2 data. clusters

3 simulated data clusters
4 prediction x data

{zverpre}

13.4 Prediction based tests - static mixtures

The mixture prediction is an important mixture characteristics. However, the static mixture marginal
projections are static ones. For the case, the method of prediction of groups of data is available. It is
discussed in Section 11.4.4. When groups are estimated, the conditional projection depends on data.
The data sample is grouped:

nsk = 2; % number of data groupped

preproc({’group’, nsk}); % reorganize data

Now we have data with eight channels. Initial mixture is build and initialization and estimation done. The
estimated mixture is displayed in Fig. 27 subplot 1.

Mix0 = genmixe; % build initial mixture

frg = defaults(’frg’); % default forgetting rate

niter = 5; % number of iterations

opt = ’q’; % processing option: quasi-Bayes estimation
Mix = mixinit(MixO, frg, ndat, niter, opt); % mizture initialization

niter = 30;

Mix0 = mixflat(Mix);

Mix = mixest(MixO, frg, ndat, niter);

. plot of estimated mixture

We display data and simulated data clusters in Fig. 27 subplot 2 and 3.
plot (DATA(1,:) ,DATA(2,:),’.7);
mixsimul (Mix,ndat) ; % get simulated sample
plot (DATA(1,:),DATA(2,:),’.%);

Now, the prediction is evaluated over whole data sample. The mixture projection is done for the channels 1
and 2 conditioned by the "new” channels 5 to 8.

pchns = [1 2]; % predicted channel

cchns = 5:8; % channels in condition

pMix = mix2pro(Mix, pchns, cchns); % predictor

yp = zeros(2, ndat);

for TIME = 1:ndat % getting prediction trajectory

[Eths, coves, dfcs| = profix(pMix); % prediction
Eths = [Eths{:}];
yp(:,TIME) = Eths * dfcs’;
end
The quality of prediction is evaluated:
data = DATA(pchns,:);
ep = data-yp;
std(data’)
ans =
1.4417 1.5464
std(ep’)
ans =
0.8069 0.8670
The standard deviation of data sample is greater then the standard deviation of prediction error. Without
data grouping, both deviation are equal.
Data versus prediction appears in the Fig. 27 subplot 4:
plot (DATA(1,:),DATA(2,:),’.7);
plot(yp(1,:),yp(2,:),7.%);

13.5 Prediction based tests - dynamic mixtures

We use data sample and estimated mixture from Section 8.2. The prediction test follows.

Data versus prediction
a0

sof

aof

201

prodic

20

_aob

—eof

Figure 28: Data x prediction

pchns = 1; % predicted channel

cchns = [J; % channels in condition
pMix = mix2pro(Mix, pchns); % predictor

yp = zeros(1l, ndat);

for TIME = 5:ndat % getting prediction trajectory

[Eths, coves, dfcs| = profix(pMix); Y% prediction
yp(TIME) = Eths * dfcs’;

end
data = DATA(pchns,:);
ep = data-yp;
std(data’)
ans =
11.2965
std(ep?)
ans =
2.5220

plot (DATA(1,:),yp,’.");

The std. of prediction is again much smaller then std. of data. The plot of data versus prediction is in
Fig. 28.

validate.tex, zdatadd.m zdataddm.m zverdyn.m zverfrg.m zverpre.m zversim.m by PN June 25, 2004

14 Channels descriptions

An information about individual data channels is needed in design and use of advisory system. This infor-
mation is encoded in a cell vector whose cells contain structures describing the individual channels. The
cell vector is referred to as channel descriptions, the structure describing individual channel is referred to as
channel description. The relevant cryptonyms are Chns and Chn.

For a selection of channels, the channels description is build by function ”chnconst”:

chns = 1:4; % list of channels
Chns = chnconst(chns) % build channels description
Chns =

[1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]

A (default) channel description is the structure:

{zverdyn}

{channels}

Chn{3}=

chn: 3 — > channel number (1,2,...)
name: ’channel 3’ — > name of the channel
oitem: [] — > wisibility by operator (0] 1)
raction: [] — > available for control (0| 1)
prty: [] — > presentation priority (< 0,1 >)
type: 1 — > I-continuous, O-discrete (0] 1)
drange: [] — > desired range ([min, mazf)
prange: [] — > physical range ([min, maz])
irange: [] — > increment range ([min, max/)
scale: [] — > scaling: vector of 2 elements

Notes:
e the fields that are empty, must be specified by the user and they are checked for their completeness.
e the drange is desired range for advisory system design;

e the prange is physical range that is used for comparison with desired scaling; both ranges are set as
vector of minimum and maximum values;

e the "scale” field contains additive and multiplicative constants applied to DATA, see ”Data prepro-
cessing”.

The following rules apply:

the channels description can substitute arguments of a selected functions where appropriate, e.g.
[aMix,aMixu|=inisyn(Mix,Mixu,pochn,uchn); % initialization
can be substituted by:

[aMix,aMixu]=inisyn(Mix,Mixu,Chns) ;

the Mixtools processing functions gets information only from arguments but, the superstructure functions
(as GUI) can use it as a global definition. The current channels description reside in then the global
cell vector CHANNELS;

the current channels description is automatically edited by selected processing functions, e.g. the prepro-
cessing preproc edits the value of "scale” if the global CHANNELS cell vector exists in workspace;

14.1 Access to description fields
It is easy to get/set the channels description fields using basic Matlab means. The functions ”chnset” and
”chnget” are available for designers:

Chns = setchn(Chns, chns, field, values) values = getchn(Chns, chns, field)

where the arguments are

Chns channel descriptions

chns list of channels to be accessed or empty for all channels
field the field to be set (character string)

values values of the fields

Simple and self-explanatory examples follow. A channel descriptions object is build, its values set and
get:

Chns = chnconst([1 4 17 3]); % build channels description
Chns = chnset(Chns, [4 3], ’oitem’, 0); % set fields
Chns = chnset(Chns, [1 17], ’oitem’, 1); % set fields

oitems = chnget(Chns, [|, ’oitem’)
oitems
1 0 1 0

oitems = chnget(Chns, 17, ’oitem’)
oitems
1

Note: the fields must not be empty when accessed by ”chnget”.
The names are accessed as cell vector, e.g.

names = chnget(Chns, [], ’name’)
names =
’channel 1° ’channel 4° ’channel 17’ ’channel 3’
name = chnget(Chns, 17, ’name’)
name =
’channel 17’

Ranges are get in the form of two rows, the first one contain minimum, the second one maximum, e.g.

Chns = chnset(Chns, [1 17], ’drange’, [-1.1 -1.2; 1.1 1.2]);
chnget (Chns, 17, ’drange’)
ans =
-1.2000
1.2000
chnget(Chns, [1 17], ’drange’)
ans =
-1.1000 -1.2000
1.1000 1.2000

channels.tex zchnset.m zchnget.m by PN June 25, 2004

15 Design and advising

15.1 Academic design

Academic design consists of four stages. First, during the preparatory stage, user have to define target mizture
Mixu in a form of one component usually static mixture where the parameters represent the desired values
for corresponding channels and noise covariances defining the range how strict these values should be kept.
The user’s qualification of components should be given in the form of vector ”ufc”, having the length equal
to the number of components. Vector elements assign the priorities of mixture components.

The second, initialisation stage, prepares main structures of advisory design; converts identified mixture
Mix, gained from the learning phase, as well as user target Mixu to the advisory type mixtures. If the user was
not able to set the preferences to a components reasonably, function “ufcgen” can be used here to generate
vector “ufc” which qualifies unstable components with zero weight. Preliminary analysis of the components
can be done by a function ”stedopt”, which calculates steady state losses of individual components.

The third, optimisation stage, performs search of the optimal components that have minimal KL distance
from the user defined target Mixu. The last stage computes the probabilistic weights of the components
found during optimisation stage. Only this stage directly uses data and can be called an on-line phase.

Preparatory stage

This stage is realised by function ”target”, which is called:

[Mixu,ychns] = target(Chns)

The arguments of the function are:

{Bdsiding}

{academic}

Mixu constructed user target (one component ARX mixture)
ychns list of modelled channels in component
Chns cell vector with channels descriptions (see Section 14).

Using the given channels descriptions, function ”target” creates one component ARX mixture that
expresses management aims. Besides, it regroup list of modelled channels in component to the following
form [channels with o-innovations, channels with surplus p+, channels with recognisable actions].
Channels order inside of each group is set respectively to ascending priority given by the user. Notice,
that before using ”target”, the channels descriptions should be scaled (function ”ScaleDescriptions”)
in accordance with used preprocessing see Section 6 and Section 14.

Initialisation
This stage is realised by function ”inisyn”, which can be called in two ways:
[aMix,aMixu] = inisyn(Mix,Mixu,Chns) % converts Mix and Mizu to advisory type
or

[aMix,aMixu] = inisyn(Mix,Mixu,pochn,uchn)

The arguments of the function are:

aMix constructed a-mixture

aMixu wuser target Mixu, converted to advisory type

Mix learnt ARX mixture

Mixu user target (one component ARX mixture)

Chns cell vector with channels descriptions (see Section 14)

pochn list of channels with o-innovations

uchn list of channels with recognisable actions (can be omitted for academic design).

The tasks covered by initialisation stage are implemented by employing function ”synmixi”.

The function ”synmixi” converts ARX mixture Mix to advisory type mixtures (a-mixture). The func-
tion ”synmixi” is called as follows:

aMix = synmixi(Mix,uchn,strc) % converts Mix to a-mizture
aMix = synmixi(Mix,uchn) % stre=[]
aMix = synmixi(Mix) % stre=[], uchn=[]

The arguments of the function are:

aMix constructed a-mixture

Mix learnt ARX mixture

uchn list of channels with recognisable actions (can be omitted)
strc ~ common structure of a-mixture (can be omitted)

Function “synmixi” finds common full structure stre of all components (and factors) in the mixture. If
strc is known in advance, it can be used as an input parameter. For academic design, list of channels
with recognisable actions uchn is not relevant, so it need not be used or can be set uchn=[].

The ”synmixi” also creates a-mixture states used in advises design, so-called advisory states, that
consist of the following fields:

e strc - common structure of data vectors

e ufc - vector qualifying components: dangerous component (0), not dangerous (positive number)

e kc - lift of quadratic forms

e UDc - cell vector of U’ DU decompositions of the KLD kernels

e udca - U’ DU decomposition of the average KLD kernel made of UDc

e kca - average lift of quadratic forms made of kc

e outs - list of channels with innovations

e uchn - list of channels with recognisable actions

e pochn - list of channels with o-innovations

Beside that, a new factor state Mixc.Facs{-}.states.pEth is defined. This state is a pointer table
enabling expanding of Facs{-}.Eth to a common structure strc used by a-mixture.

Another basic function from the initialisation stage is "stedopt”. It performs preliminary analysis of
components of the mixtures aMix and aMixu. It consists of calculation of KL distances (5) of each
component of the mixture aMix to a user defined target aMixu. These distances are represented by a
lift “ke¢” and a kernel “UDc” calculated as a infinite horizon quadratic losses. These vales are saved
in corresponding states of a mixture aMixu and can be used at the subsequent optimisation stage.
Function “stedopt” is called in the following way:

aMixu = stedopt(aMix,aMixu) .

During the analysis, unstable components are also detected. The function ”ufcgen” generates nor-
malised vector "ufc” qualifying components with zero entries for unstable components:

ufc= ufcgen(aMix,aMixu).

Optimisation

The function ”aloptim” performs optimization. It judges behavior of components by evaluating lifts
and kernels of KL distance (5) of respective components to a user given target aMixu. Thus, it pre-
pares necessary information for generating optimal pf on recommended pointers to components. The
function ”aloptim” is called in the following way:

aMix = aloptim(aMix,aMixu,ufc,nstep,chis)
aMix = aloptim(aMix,aMixu,ufc,nstep) % chis=1 is assumed
aMix = aloptim(aMix,aMixu,ufc) % chis=1, nstep=200 is set

The arguments of the function are:

aMix learnt ARX mixture, converted to advisory type
aMixu user target, converted to advisory type
nstep parameters determining horizon for the evaluation of the KL distance
ufc user defined vector qualifying components
chis an indicator of receding horizon (chis=1) or
iterations-spread-in-time (chis=-1) IST strategy

Argument “nstep” can be either scalar or two element vector, i.e. “nstep=[horizon,period]”. Function
7aloptim” calculates KL distance so that partial quadratic losses of particular components are properly
mixed together. The way of mixing can be tuned and depends on the parameters ”horizon” and
“period”. Parameter “period” determines a number of iterations in which the lifts and kernels are
evaluated separately for each component, while “horizon” is a number of these periods. If "nstep” is
scalar, the default value of "period” is set to 1.

Examples: assignments nstep = [1000,1] and nstep = 1000 are equivalent and indicate that mixing
take place in each iteration, while nstep = [1,1000] means that the kernels and lifts are calculated
independently (likewise in “stedopt”).

The kernel and lifts of the KLLD can be influenced by corresponding values in user defined mixture
aMixu, i.e aMix.states.kc and aMix.states.UDc. By default these values are set to zeros. If values
representing independent losses of components need to be used, the function “stedopt” should be
called before “aloptim”.

To solve the optimisation task, three auxiliary functions are developed: "ricexp”, "ricshift” and
"ricpen”. First function computes the expectation part of the of quadratic loss update for the given
component and factor; second function performs parameter independent step of optimisation and third
function computes contribution of penalisation of o-innovations to kernel and lift of quadratic form.

Probabilistic weights computation

Function “algen” computes probabilistic weights for academic advisory design, i.e. recommended data
dependent pf of pointers to components, and overwrites existing aMix.dfcs by the recommended values.
The function ”algen” is called in the following way:

aMix = algen(aMix,ufc).

The arguments of the function are:

aMix constructed a-mixture
aMixu user target, converted to advisory type
ufc user defined vector qualifying components

Global variables TIME and DATA are used inside the function.

academic, MK PN, JB June 25, 2004

15.2 Industrial design

Although the industrial design was developed as well, its practical use is rather limited and detailed de-
scription is omitted here. For the reference purposes, the basic steps of industrial design can be found in
simultaneous design which is more general type of design, see Section 15.3.

industrial, MK PN, JB TG June 25, 2004

15.3 Simultaneous design

Similarly to the academic design, simultaneous design consists of four stages. During the preparatory stage,
user have to define target mizture Mixu usually in a form of one component static mixture. Mixture param-
eters set the desired values for corresponding channels as well as noise covariances defining the range how
strict these values should be kept. The user’s qualification of components should be given in a form of a
vector "ufc”, having the length equal to the number of components. Vector elements assign the priorities of
mixture components.

The second, initialisation stage, prepares main structures of advisory design; converts mixture Mix,
gained from the learning phase, as well as user target Mixu to the mixtures of advisory type. Preliminary
analysis of the components can be done by a function “stedopt”. If user was not able to set the preferences
to a components reasonably, function “ufcgen” can be used here to generate vector “ufc” which will qualify
unstable components with zero weight.

The third, optimisation stage, performs search of the optimal components that have minimal KL distance
from the user defined target and substitutes all factors which model recognisable actions by calculated optimal
ones in a mixture aMix.

The last stage computes the probabilistic weights of the components found during optimisation stage.
Only this stage directly uses data and is called on-line phase. Unlike academic design, the on-line stage in
simultaneous design also contains computation of the most probable optimal recognisable actions which can
be applied directly to the system. The recommended recognisable actions are calculated using the prediction.

Preparatory stage

This stage is realised by function ”target”, which is called:
[Mixu,ychns] = target(Chns)

The arguments of the function are:

Mixu constructed user target (one component ARX mixture)
ychns list of modelled channels in component
Chns cell vector with channels descriptions (see Section 14).

Using the given channels descriptions, function ”target” creates one component ARX mixture that
expresses management aims. Besides, it regroup list of modelled channels in component to the following
form [channels with o-innovations, channels with surplus p+, channels with recognisable actions].
Channels order inside of each group is set respectively to ascending priority given by the user. Notice,
that before using ”target”, the channels descriptions should be scaled (function ”ScaleDescriptions”)
in accordance with used preprocessing see Section 6 and Section 14.

{industrial}

{simultaneous

Initialisation

This stage is realised by function ”inisyn”, which can be called in two ways:

[aMix,aMixu] = inisyn(Mix,Mixu,Chns) % converts Mix and Mixu to advisory type

or

[aMix,aMixu] = inisyn(Mix,Mixu,pochn,uchn)

The arguments of the function are:

aMix constructed a-mixture

aMixu user target Mixu, converted to advisory type

Mix learnt ARX mixture

Mixu user target (one component ARX mixture)

Chns cell vector with channels descriptions (see Section 14)
pochn list of channels with o-innovations

uchn list of channels with recognisable actions.

The tasks covered by initialisation stage are implemented by employing function ”synmixi”.

The function ”synmixi” converts ARX mixture Mix to advisory type mixtures (a-mixture). The func-
tion "synmixi” is called as follows:

aMix = synmixi(Mix,uchn,strc) % converts Mix to a-mizture
aMix = synmixi(Mix,uchn) % stre=[]

The arguments of the function are:

aMix constructed a-mixture

Mix learnt ARX mixture

uchn list of channels with recognisable actions

strc common full structure of a-mixture (can be omitted)

Function “synmixi” finds common full structure strc of all components (and factors) in the mixture.
If strc is known in advance, it can be used as an input parameter.

The ”synmixi” also creates a-mixture states used in advises design, so-called advisory states, that
consist of the following fields:

e strc - common structure of data vectors

e ufc - vector qualifying components: dangerous component (0), not dangerous (positive number)

e kc - lift of quadratic forms

e UDc - cell vector of U/ DU decompositions of the KLD kernels

e udca - U’ DU decomposition of the average KLD kernel made of UDc

e kca - average lift of quadratic forms made of kc

e outs - list of channels with innovations

e uchn - list of channels with recognisable actions

e pochn - list of channels with o-innovations
Beside that, a factor state Mixc.Facs{-}.states.pEth is set. This state is a pointer table enabling
expanding of Facs.Eth to a full structure strc.

Another basic function, which can be used here, is ”"stedopt”. It performs preliminary analysis of
components of aMix and aMixu. It consists in calculation of KL distances (5) of each component of
aMix to a user defined target aMixu. These distances are represented by a lift “kc¢” and a kernel “UDc”
calculated as a infinite horizon quadratic losses. These values are saved in the corresponding states
of a mixture aMixu. During the analysis, unstable components are detected. The function ”stedopt”
generates normalized vector qualifying components with zero entries for unstable components and saves
the vector to the states of mixture aMix.states.ufc. This function “stedopt” is called in the following

way:

aMixu = stedopt(aMix,aMixu).

During the analysis, unstable components are also detected. The function ”ufcgen” generates normal-
ized vector "ufc” qualifying components with zero entries for unstable components:

ufc= ufcgen(aMix,aMixu) .

Optimisation

The function ”soptim” performs optimization and judges behavior of components. It evaluates lifts
and kernels of KLLD distance (5) of respective components to a user given target aMixu and thus pre-
pares necessary information for generating optimal pf on recommended pointers to components. The
function ”soptim” is called in the following way:

aMix = soptim(aMix,aMixu,ufc,nstep,chis) % performs optimisation

aMix = soptim(aMix,aMixu,ufc,nstep) % chis=1 is assumed

aMix = soptim(aMix,aMixu,ufc) % chis=1, nstep=200 is set)
The arguments of the function are:

aMix learnt ARX mixture, converted to advisory type

aMixu user target, converted to advisory type

nstep horizon for the evaluation of the KL distance

ufc user defined vector qualifying components

chis an indicator of receding horizon (chis=1) or
iterations-spread-in-time (chis=-1) IST strategy

Argument “nstep” can be either scalar or two element vector, i.e. “nstep=[horizon, period]”. Function
”soptim” calculates KL distance so that partial quadratic losses of particular components are properly
mixed together. The way of mixing can be tuned and depends on the parameters ”horizon” and
“period”. Parameter “period” determines a number of iterations in which the lifts and kernels are
evaluated separately for each component, while “horizon” is a number of these periods. If "nstep” is
scalar, the default value of "period” is set to 1.

Examples: assignments nstep = [1000,1] and nstep = 1000 are equivalent and indicate that mixing
take place in each iteration, while nstep = [1,1000] means that the kernels and lifts are calculated
independently (likewise in “stedopts”).

The kernel and lifts of the KLD can be influenced by corresponding values in user defined mixture
aMixu i.e aMix.states.kc and aMix.states.UDc. By default these values are set to values representing
independent losses of components in function “stedopts”. If they are to be used “stedopts” is to be
called before “soptim”.

To solve the optimisation task, four auxiliary functions are developed: "ricexp”, "ricshift”, ”ricpen”
and ”ricpenu”. First function computes the expectation part of the of quadratic loss update for the
given component and factor; second function performs parameter independent step of optimisation;
third function computes contribution of penalisation of o-innovations to kernel and lift of quadratic
form; the last function computes contribution of penalisation of recognisable actions.

Computation of the probabilistic weights

Function “algen” computes probabilistic weights, i.e. recommended data dependent pf of pointers to
components, and overwrites existing aMix.dfcs by the recommended values. The function ”algen” is
called in the following way:

aMix = algen(aMix,ufc).
The arguments of the function are:

aMix constructed a-mixture
aMixu user target, converted to advisory type
ufc user defined vector qualifying components

Global variables TIME and DATA are used inside the function.

Computation of the recommended recognisable actions

The most probable recognisable action can be obtained by calculating prediction. The component of
aMix having the highest computed probabilistic weight, is the closest component to the user defined
target Mixu.

To obtain the most probable recognisable action, the prediction should be computed. This can be done
on-line as follows:

pMix = mix2pro(aMix); % build predictor pMix

for TIME=start_time+1:end_time; % time loop
pMix = mixcopy(aMix,pMix) ; % copy advice to predictor
aMix = algen(aMix,ufc); % generating an advice
[Eth,coves,alpha] = profix(pMix); % build prediction
for com = 1:size(Eth,2) % loop over components

pred(:,TIME) = pred(:,TIME)+Eth{com}*aMix.dfcs(com); % prediction

end;

end;

Global variables TIME and DATA are used inside the functions.

simultan, MK PN, JB TG June 25, 2004

15.4 Design validation
{validation}
The validation of design can be done in different ways. At present two of them are used:

Closed-loop simulation

Two different mixtures learned on the same data are employed, say Mix1l and Mix2. Mixture Mix1
is then used to design advisory mixture aMix1 and subsequent advising, while second mixture Mix2
is used for system simulation in the closed loop. The behaviour of the resulting closed-loop helps the
user judge about the quality of advising.

Criterion using

For the design validation the value of the following criterion can be used:

1
T

3

[Qy(yi - Yz‘)z]) (16)

T
=1

where values QY,Y; are given by system requirements. Function ”criter” calculating the value of the
criterion is called in the following way:

crit = criter(Mixu,endtime,starttime).
The arguments of the function are:

crit the value of criterion

Mixu constructed user target (one component ARX mixture)

endtime end time determining the time interval for criterion computation
starttime start time determining the time interval for criterion computation.

An example of using both validation tests is presented in Appendix C.

validate.tex, by TG June 25, 2004

15.5 Signaling

The signalling serves to stimulate the operator to take some actions when the o-system behaviour is signif-
icantly different from the desired one. The design of signalling strategy can be viewed as a special kind of
academic design.

To make the advisory system perform the signalling strategy, the user should define pf of signalling
actions "ufs” and set thresholds for its values. Thresholds are necessary for mapping the signalling actions.

Off-line initialisation stage

The function ”asignal” performs computation and comparison of steady state lifts and kernels of KL
distance (5) of original identified mixture Mixor (converted to advisory type) and designed advisory
mixture aMix to a user given target aMixu. The function ”asignal” is called in the following way:

[aMixor,aMix]=asignal (aMixor,aMix,aMixu,ufc,ufs,nstep) ;
The arguments of the function are:

aMixor original learnt ARX mixture, converted to advisory type

aMix advisory ARX mixture obtained from the design

aMixu user target, converted to advisory type

ufc user defined vector qualifying components

ufs user defined vector of pf of signalling actions

nstep parameters determining horizon for the evaluation of the KL distance

Argument “nstep” has the same meaning as in academic or simultaneous design, see Sections 15.1

Evaluation of signalling probabilities

Function “asiggen” computes signalling probabilities, i.e. data dependent pf of signalling actions. The
function ”asiggen” is called in the following way:

fs = asiggen(aMixor,aMix,ufs).

The arguments of the function are:

fs signalling probabilities

aMixor original learnt ARX mixture in advisory form
aMix constructed a-mixture

ufs user defined vector qualifying components

Global variables TIME and DATA are used inside the function.

signaling, TG June 25, 2004

16 Tutorial on design and advising

In this section, the examples of design and advising are discussed. The examples are referred in the following
sections, too. a-Mixtures are derived objects whose construction is performed indirectly. Construction of
a-mixture requires the following steps:

1. Select the basic advising scenario that requires:

(a) channels with predicted data to be considered,

o-innovations, i.e. data observable by operator to be defined,

(c

)
(b) needed type of design (academic, industrial, simultaneous) to be chosen,
)
(d)

recognizable actions, i.e. data that can be chosen by operator to be considered.
2. Express management aims as target one-component mixture Mixu.

3. Convert learnt mixture Mix and user defined target Mixu into a-mixtures, i.e. a common structure of
regression vectors for individual components should be created as well as space for specific a-states.

{signaling}

{tutoriala}

4. Perform preliminary analysis of components, assuming their permanent activity. It distinguishes dan-
gerous and non-dangerous components and allows to specify prior (static) preference among compo-
nents.

5. Perform advisory design generating the ideal mixture.
6. Validate result of design and re-iterate, if needed.

The above steps are performed in off-line mode. Only the last step can be re-computed in on-line mode
if we deal with adaptive advisory system that permanently learns mixture Mix.

In on-line mode design, results are presented by introducing adequate projections of the ideal mixture
to the operator. Selection of proper projections and indication of a need for action can be optimized in this
mode using presentation and signaling design.

tutorial, TG June 25, 2004

16.1 Academic design and advising

Academic design modifies component weights in learnt mixture Mix so that the resulting ideal a-mixture
is as close as possible to the user specified target Mixu reflecting management aims. At present, Mixu has
just single component. In usual static specification, offsets of particular factors corresponding to respective
channels represent desired value of the channel and variance specifies the desired width of its variations. The
following example shows how the academic advises can be designed.

A simple nonlinear system has been chosen to demonstrate the behavior of the academic design. The
system is governed by the following equations.

306
Yr = mytﬂ + e1;t
ug = ki1 + ey (17)
ke = ki1 +esy,

where observed three-dimensional data record d; consist of three scalar signals vy, us, k¢ and the normal white
noise e; = [e1,4, €2:¢, €3¢]" has zero mean, mutually independent entries with variances [1 .001 1000].
These relationships were linearized around 8 different values of in the ”reasonable” interval of k € [0, 105].
The corresponding mixture of 8-component is generated by the file “modell.m”:

k = [3, 12, 24, 37.5, 52.5, 67.5, 82.5, 97.5, 105] % k-grid

n = length(k)-1; % number of components
strl = [1 30; 11 1]; % 1th channel structure

str2 = [1 3 0; 1 1 1] % 2nd channel structure

str3 = [0; 1]; % 3rd channel static structure
coms = [|; % list of components
Facs=[|; % list of factors

Model generation:
for i=1:n

Facl = facarxls(1l,strl); % model of the 1st channel

Facl.cove = 1; % factor variance

pom2 = (k(i+1)+k(i))/2; % centers of the intervals

poml = 300 + pom2;

Facl.Eth = [306/poml -306/(poml*poml)... % Ist channel regression coefficients

306/ (pom1*pom1)*pom2];

Fac2 = facarxls(2,str2); % model of the 2nd channel

Fac2.Eth = [-pom2 -100/(20+pom2) 100/ (20+pom2)*pom2]; % regression coefficient
Fac2.cove = 10e-6; % mnoise variance

Fac3 = facarxls(3,str3); % model of the 3rd channel (k)

Fac3.Eth = (k(i+1)+k(i))/2; % k-offsets

Fac3.cove = (k(i+1)-k(i))/3; % k-variances

{tutora}

{sys}

Facs{3*i-2}=Facl; Facs{3*i-1}=Fac2; Facs{3*i}=Fac3; % array of factors

coms = [coms; 3*i-2,3%i-1, 3*i|; % new component
end
dfcs = ones(1,n)./n; % component weights
Sim = mixconst(Facs,coms,dfcs); % mixture simulator
Mix = mix2mix(Sim,21); % conversion to ARX mizture

save modell

User wants to have y; and u; close to zero while keeping k near the value 75.
The construct of the user defined mixture representing his requirements is shown in file “penall.m”:

comsO = [1 2 3[; % components
str0 = [0; 1]; % static structure
FacO0l1l = facarxls(1l,str0); % build factors

Fac02 = facarxls(2,str0);
Fac03 = facarxls(3,str0);

FacOl.cove = 1; % quadratic penalty on y is 1/cove=1
Fac02.cove = 6; % quadratic penalty on u is 1/cove=1/6
Fac03.Eth = 75; % set-point of k

Fac03.cove = 20; % quadratic penalty on k-75 is 1/cove=1/20
Facs={Fac01 Fac02 Fac03}; % array of factors

dfcsO = 1; % a component weight

[Mixu, maxtdO]= mixconst(FacO,coms0,dfcs0);

Obviously, the variable k; influences the behavior both of y; and u;. The design that aims to make y;,
uy small and k; close to 75 has to find a suitable compromise. It lies between high values of k;, making y;
small but u; large and small values making u; smaller but g, larger.

The result is a vector of probabilities of all components the higher probability indicates the component
close to a desired one. Mixture aMix with these probabilities is used to predict desired value of k.

File acdes.m perform all steps of academic design. Files acdesxy.m for diferent x and y are specified
for particular criterion (Mixu) or ufc. Resulting k is shown in picture Fig. 29,

tutora.tex by JB, MK, TG, PN June 25, 2004

16.2 Industrial design and advising

As far this type of design is of limited practical use, the tutorial on it has not been prepared.

tutoritex by PN June 25, 2004

16.3 Simultaneous design and advising

Unlike academic design, simultaneous design not only modifies component weights in the learnt mixture Mix
so that the resulting ideal aMix is close as possible to the user specified target Mixu reflecting management
aims, but also computes the optimal factors for generating recognisable actions.

At present, Mixu has just single component. In usual static specification, offsets of particular factors
corresponding to respective channels represent desired value of the channel and variance specifies the desired
width of its variations. The following example shows how the simultaneous advises can be designed.

A simple nonlinear system has been chosen to demonstrate the behavior of the academic design. The
system is governed by the following equations.

306 +
= @ —Ys_ eq.
Yt 300+ktyt 1 1;t
Uy = kY1 +eay (18)

ke = ki1 +esq,

{tutori}

{tutorsim}

20

0 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

2 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

Figure 29: Resulting k£ and y for the requirements in Mix01

where observed three-dimensional data record d; consist of three scalar signals ¢, us, k; and the normal white
noise e; = [e1,, €2;t, €3:¢]” has zero mean, mutually independent entries with variances [1 .001 1000].
These relationships were linearized around 8 different values of in the "reasonable” interval of k € [0, 105].

k=[0,6,18,30,45,60,75,90,105];
The corresponding mixture of 8-component is generated:

k = [0, 6, 18, 30, 45, 60, 75, 90, 105] 9% k-grid
n = length(k)-1; % number of components
strl = [130; 11 1]; % 1th channel structure
str2 = [1 3 0; 11 1] % 2nd channel structure
str3 = [0; 1]; % 3rd channel static structure
coms = [|; % list of components
Facs=[|; % list of factors
for i=1:n
poml = (k(i+1)+k(i))/2; % centers of the intervals
pom2 = 306/(300+poml) ; %
pom3 = 1/(1-pom22)/5; %
pom4 = 306/ (300+pom1)?; %
Facl = facarxls(l,stri); % model of the 1st channel (y)
Facl.cove = 1; % factor variance
Facl.Eth = [pom2 -pom3*pom4 ... % Ist channel regression coefficients

poml*pom3*pom4]

{kritib1}

Fac2 = facarxls(2,str2);

Fac2

Fac2.cove = 10e-3;

Fac3 = facarxls(3,str3);
Fac3.Eth = poml;
Fac3.cove = (k(i+1)-k(i))/3;

end

Facs{3*i-1} = Fac2;

Facs{3*i} = Fac3;

coms = [coms; 3%i-2, 3*i-1, 3*i];
ones(1,n)./n;

dfcs =

Sim
Mix

Let us suppose that the user needs to have y; and u; close to zero while k be near the value 75.

Facs{3*i-2} = Facil;

mixconst (Facs,coms,dfcs);
mix2mix(Sim,21);

.Eth = [-poml -pom3 poml*pom3];%

%

/A

b

/A

model of the 2nd channel (u)
regression coefficient
noise variance

model of the 3rd channel (k)

k-offsets
k-variances

array of factors

new component

component weights
mixture constructor
conwversion to ARX type mizture

example of constructing user tagret is shown for the mixture ”Mixu”:

comsO = [1 2 3[;

str0 = [0; 1];

FacO1 = facarxls(1l,str0);
Fac02 = facarxls(2,str0);
Fac03 = facarxls(3,str0);

FacOl.cove = 1;
Fac02.cove = 6;
Fac03.Eth = 75;
Fac03.cove = 20;
Facs={Fac01 Fac02 Fac03};
dfcsO = 1;

[Mixu, maxtdO]= mixconst(FacO,coms0,dfcs0);

)
)

A

components
static structure
build factors

quadratic penalty on y is 1/cove=1
quadratic penalty on u is 1/cove=1/6
set-point of k

quadratic penalty on k-75 is 1/cove=1/20
array of factors

a component weight

Constructed mixtures expressing user’s requirement are realized in file “penall.m”

Unlike academic design, simultaneous design also provides the most probable recognisable action. For
the given example, k; plays recognisable action role and the user is advised what value of the action should
be chosen to operate as close as possible to the specified target.

The main steps of the simultaneous advisory design for the given example are:

modell

penall

ncom=size(Mix.coms,1) ;

pochn=[1 2 3];

% load system model
% load user specified target

% number of components
% list of channels with o-innovations

niter=200; % number of time iterations

uchn=[3]; % channel with recognisable actions
nstep=200; % horizon for evaluation of KLD
ufc=ones(1,ncom); % wuser defined priorities of components
[aMix,aMixu| = inisyn(Mix,Mixu,pochn,uchn);% initialisation

Mixc = soptim(aMix,aMixu,nstep,ufc); % optimisation

knew = 16;y = 0;y-old = 0;
for TIME=Mix.states.maxtd+1l:niter

end

y = (306/(300+k_new)) *y+randn;
u = -k newty_old;

% initial values

% main loop on time
% new system output
% new system input

DATA(:,TIME) = [y, -k-newxy_old, knew|’; % new data entry

yold = y;
aMix = algen(aMix,ufc);

% save value of the output

% compute probabilistic weights and

% recommended recognisable actions

The

5 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

100

o

-100

200 q

300 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

40

0 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

Figure 30: Resulting k& and y for the requirements in Mix01 {kritib}

The element of the vector ”aMix.dfcs”, having the highest value, points to the closest component to the
user defined target ”Mixu”. Thus, the obtained advisory mixture ”aMix” can be used to predict value of k;,
which then be taken as the recommended recognisable action:

[Eth,coves,alpha| = mixpro(aMix,pochn, [1,[1); % build prediction on aMix
pom = Ethl*aMix.dfcs(1);

for i=2:ncom % loop over components
pom = pom+Eth{i}*aMix.dfcs(i);

end;

k_new = pom(3); % mew recognisable action

In the example (17), the variable k; influences the behavior both of ¢ and u:. The design, that aims
to make y; and u; sufficiently small while k; close to 75, has to find a suitable compromise between these
requirements. It lies between high values of k;, making y; small but u; large and small values making u,
smaller but y; larger. The obtained k; is shown in picture Fig. 30.

tutorsi.tex by JB, MK, TG, PN June 25, 2004

17 ARX mixture simulation

{simulation}
Mixture simulation serves for development of algorithms, debugging and case studies. Any type of mixture
predictor can be used for the simulation. The mixture is internally converted into the form of ARX LS
mixture.

Sim = mixsimul(Sim,ndat) batch simulation
Sim = mixsimul(Sim) recursive stmulation

The simulation fills modelled channels the global matrix ” DATA” by simulated data. The matrix must
be allocated (pre-allocated) before the simulation starts.

The global matrix "DATA” is processed by MEX functions. In this case, the matrix must not be defined
by reference:

DATA = zeros(nchn, ndat); % correct definition

data = zeros(nchn, ndat);

DATA = data; % incorrect definition by reference
DATA = 1xdata; % correct definition

The obligatory pre-allocation makes it possible to fill ”DATA” channels by different simulators and/or
use specific channels e.g. for control value.
The examples of mixture simulation are in the Section 8.
There are several simulation options that can be selected by setting the fields of "states” of the mixture
simulator.
The field contains the cell vector ”Facs” that contains settings related to individual simulation factors.
The following options can be set for a factor "fac”:
Sim.states.Facs{fac}.etype = ... specify type of process noise
Sim.states.Facs{fac}.useCth specify use of covariance of regression coefficients

17.1 Distribution of process noise

The uniform noise with the type equal to 2 of the factor fac is specified by e.g:

Sim.states.Facs{fac}.etype = 2; % specify type of process noise

The noise type is coded as follows:

Gaussian
uniform
lognormal
Cauchy

=W N

The process noise if normalized to zero mean and standard deviation one (with exception of the Cauchy
distribution that have no mean and standard deviation).

17.2 Covariance of regression coefficients in simulation

The uncertainty of regression coefficients expressed by their covariance ” Cth” can be respected in simulation.
Experts are assumed to exploit this option. It is enabled by setting the field "useCth” to 1, e.g.

Sim.states.Facs{fac}.useCth = 1; % use of covariance of regression coefficients

Setting this field to 0 means that the covariance matrix is not used in simulation.

The use of covariance of regression coefficients increases noise variance due to the uncertainty of regression
coefficients projected to the direction of the current regression vector. The increase can be rather high.

The simulator constructor sets ”useCth” always to zero.

17.3 Markov switching among components

The real processes modelled by mixtures do not change active component at each time instant. In order to
check how various algorithms cope with this situation, simulator was prepared changing active component
according to a Markov chain. The Markov transition probabilities table must be specified and located in the
global matrix " CUMTAB’. An example folows.
Data are pre-allocated and mixture simulator with two components is defined:

ndat = 5000; % length of data

DATA = zeros(2,ndat); % data sample

{markov_jumps

Histogram of segments without component change

Figure 31: Histogram of segments without component change {zsimmark}
Com = comarxls([1 2], [0;1]); % static matric ARX LS component
Com.cove = 1td1([0.1 0.01; 0.01 0.1]); % point estimate of noise covariance
Com.Eth = [-1; 0]; Coms{1} = Com; % 1st component
Com.Eth = [1; 0]; Coms{2} = Com; % 2nd component
dfcs0 =1 2]; % simulator vector of degrees of freedom of components
Sim = mixconst(Coms, dfcs0); % build simulator

The transition probability table is defined in global matrix CUMTAB. The sum of the rows are equal to 1.
The CUMTAB is modified at the first simulation step.

global CUMTAB % Markov change of components

CUMTAB = [0.95 0.05; 0.05 0.95]; % component transition table

The global variable ” ACTIVE” is assigned to the current component in recursive simulation. It is used for
recording trajectory of component changes in the recursive simulation that follows:

global ACTIVE % active component
for TIME = 1:ndat

mixsimul (Sim) ; % recursive simulation

actives (TIME) = ACTIVE; % trajectory of use of component
end

The number of steps of stay in the components is

sum(actives==1) /ndat % No. of active component 1
ans =

0.3808
sum(actives==2)/ndat % No. of active component 2
ans =

0.6192

The values roughly correspond to the stationary probabilities with which components are active.
The histogram of segments without component change is in Fig. 31.

mixsim.tex, zsimmark.m by PN June 25, 2004

18 Estimation of structure of mixture factors

{structure}

The function ”facstrid” is designed for estimation of structure of mixture factors. It searches for the factor
structure that has the highest posterior probability in a space of competitive factor structures [?].

The user specifies the space of competitors in the form of the richest (maximum possible) factor structure.

The structures of factors are estimated inside the ”mixinit” function so that no explicit estimation of
factors is necessary after the mixture initialization. Nevertheless, the structure estimation is used for detailed
analysis, experiments or correction of ”mixinit” results.
The function ”facstrid” is called as:

[MAPstr,lhs] = facstrid(Fac,FacO,belief,nbest,nrep) factor structure estimation

The function arguments are:
MAPstr is the estimated factor structure

lhs contains likelihood and structure of the most successful regression vectors structure, see the example
below

Fac is the treated factor
FacO is the corresponding initial factor

belief specifies user’s belief on a guess of richest structure of the richest factor. The belief is a vector
of the same length as the guess of the richest structure. Its elements specify that the corresponding
items (the pairs of channel and delay) of the guess of the richest structureare in the estimated model
structure:
1 surely present 2 probably present
3 probably not present 4 surely not present

nbest specifies the number of "best” structures maintained during repetitive estimations

nrep specifies number of repetitive search with random starts. Two runs are done automatically - start
from empty and full regression vector structure. If results of the runs differ, a warning is displayed
("not fully informative data’).

Example of structure estimation follows. We use simulated data from the Section 8.2 (dynamic mixture, 2
channels, 2 components).
The initial mixture consist of a single component. The richest factor structure is specified as:

maxstr = [ones(1,6), 1l+ones(1,7), O
1:6, 0:6, 1];
The richest mixture is build:
Fac = facarxls(ychn, maxstr); % initial dynamic factor
Fac.cove = 0.01; % point estimate of noise covariance
Fac.Cth = eye(length(Fac.Cth)); % covariance of regression coefficients
Facs{1} = arx2arx(Fac);
Fac = facarxls(uchn, maxstr); % initial noise factor
Fac.cove = 0.01; % setting factor fields

Fac.Cth = eye(length(Fac.Cth));
Facs{2} = arx2arx(Fac);

MixO = mixconst(Facs, [1 2], 1); % initial mizture
frg = defaults(’frg’); % default forgetting rate
Mix = mixestim(Mix0, frg, ndat); % mizture estimation

The first factor structure estimation is done:
MAPstr = facstrid(Mix.Facs{1}, ... % factor structure estimation
Mix0.Facs{1})

MAPstr =
1 1 1 1 2
1 2 3 4 3
The ”true” factor structure is (see 8.2):
1 1 1 1 2 2
1 2 3 4 3 4

that is close to the estimated one.
The function ”facstrid” offers the possibility of experimentation. For the first factor, we make 100 estimation
runs and record 10 "best” (in the MAP sense) regression vectors structures found.

nrep = 100; % number of optimization runs
nbest = 10; % number of regression vector structures
Fac = Mix.Facs{1}; % 1st factor
FacO = Mix0.Facs{1}; % initial 1st factor
[MAPstr, lhs] = facstrid(Fac, FacO, [, nbest, nrep)
MAPstr =
1 1 1 1 2
1 2 3 4 3
lhs =
[1x10 double] [14x10 double]

The ”1h” output argument contains the best structures found and corresponding value of likelihood. It
is converted to probabilities:

vlh = lhs{1}; % walue of log. likelihood

ilh = lhs{2}; % the best MAP estimates of the structure

vlh = vlh-max(vlh);

vlh = exp(vlh);

vlh = vlh/sum(vlh);

The best regression vector structures are displayed (details of display are hidden):

11 1 1 1 1 2 2 2 2 2 2 2 0 structure
1 2 3 4 5 6 0 1 2 3 4 5 6 1 probability

1111 0 0 O OO 1 O O OO 0.589
1111 0 0 01 0 1 O O O O 0.131
1111 0 0 O O O 1 O O 1 0O 0.0632
11 11 0 0 O O O 1 1 O O O 0.0579
i 111 0 0 0 01 1 0 O O O 0.038
i 111 0 01 0 0O 1 O O O O 0.0359
1111 0 0 0 O O 1 O 1 O O 0.0346
i1 11 0 0 O0 O O 1 0 O O 1 0.0198
1111 01 0 0 0 1 0 0O O0 O 0.017
i1 11 0 0 01 0 1 0 0 1 0 0.0139

From the values displayed, it can be judged that the space of competing regression vector structures is
relatively flat close to the MAP one. The "true” regression vector structure is the 5th one.

PN. mixstr.tex, zfacstr.m by PN June 25, 2004

19 Selected techniques
{cookbook}
19.1 Mixtools global matrices

19.2 Kullback - Leibler distance

The Kullback-Leibler distance is a prominent measure used in a range of Mixtools tasks.

{Gglobals}

19.2.1 Kullback - Leibler distance in parameter space

The Kulback-Leibler distance of a pair pdf is evaluated by ”kldist”. The pair must be of the same dimensions.
The "kldist” evaluates the distance of

1. two factors

k1ld = k1dist(0, Facl, Fac2) % distance of two factors

2. factor in a pair of mixtures

k1ld = kldist(fac, Mix1l, Mix2) % distance of factors "fac” in Mixl and Miz2
The "fac” is factor number.

3. pair-wise distance of components of a mixture

k1d = kldist(Mix) % components of a mizture

The distance is a non-symmetric matrix with zeros on diagonal. If the components differ in structure,
the distance is infinite.

4. mixtures

[d1, d2, d3, d4] = kldist(Mix1l, Mix2) % pair of miztures
The individual output elements are:
d1l overall distance
d2 distances of factors
d3 distances of components
d4 distances of the component weights

19.2.2 Kullback - Leibler distance in data space

The Kullback - Leibler distance of components in data space is calculated by ”kldiscom”:

[kldcom, ij] = kldiscom(Mix, ndat)
The "kldcom” is vector of distances - linearly organized lower triangle of distances. The array ”ij”
contains component numbers related to an element of ”kldcom”.

19.3 Setting ”dbstop” in dialog

Support of setting of "dbstop” in dialog is to offer to the user a selection of lines in a function where it is
effective to set ”"dbstop” marks. When the funtion is called, MATLAB enters the debugging mode and stops
on the mark selected.

Each function can be prepared for setting ”dbstop” in dialog. For the purpose, comment(s) of the form

%>any text

are placed inside the function body.
The interactive setting is done by the function ”setdbg”:

setdbg(’name’) ; % set dbstop in function ‘name’

The function ”"setdbg” opens the function, finds the relevant comments, and displays them. One is
selected in dialog by the user. The ”dbstop” is set at the place where the comment appears. No action is
done when only Enter is pressed, 0 means to clear all ”dbstop”.

If the function does not contain any relevant comment, the ”dbstop” is set to the first function line.

Remember that most of functions are MEX-files and the M-versions must be copied into the working
directory.

Example: the form of the interactive setting is displayed

setdbg(’mixinit’);

—-1- beginning of each mixinit iteration

-2- mixsplit operation

-0- reset all debug stops

Enter for no action
select >

cookbook.tex by PN June 25, 2004

20 Mixtools design base

20.1 Design base functions

’ Estimation related operations

Mix = mixestgb(Mix,frg,ndat,niter) iterative quasi-Bayes mixture estimation

Mix = mixestbq(Mix,frg,ndat,niter) iterative batch quasi-Bayes mixture estimation

Mix = mixestbb(Mix,frg,ndat,niter,nstep) iterative estimation by forgetting branching
Mix = mixestmt(Mix0,frg,ndat,niter)quasi-Bayes iterative estimation with fixed variances
Mix = mixestem(MixO, ndat, niter) mixture estimation by EM-algorithm

Mix = mixfrg(Mix ,frg) mixture forgetting

[Mix0,handle] = ...

mixflatv(Mix,niter,ndat,frg) mixture flattening with variable rate

[Mix0,handle] = mixflatv(Mix,handle) ¢

“the first call in initialization, the second one in iterations

Auxiliary estimation operations

Mix = mixgmean(weights, Mix1l, Mix2,...)geometric means of mixtures

dvec = getdvect(Fac) get data or regression vector

Mix = facupdt(Mix, facs, weights) update factors of a mixture

1lls = facdpred(Mix) compute trial factor predictions

[s,s0] = mixdfms(Mix) sum degrees of freedom of the mixture

Mix0 = mix2mix0(Mix) create initial mixture mimic to a mixture

11ls = loglik(LD,dfm,LDO, dfmO0) compute increment of log-likelihood for an ARX factor
Sim = sim2pdf(Sim, ndat) convert simulator to estimator

Prediction related operations

Facs = fac2marg(Facs, pchns)) convert factor into data-marginal factor
Com = com2pro(Facs, pchns, cchns) convert ARX LS component to predictor
[typ, ychns,...] = comunpk(...) get information about component

’ Preprocessing

’Pre = preauxl(method, time, Pre) auxiliary function for data pre-processing

’ Design of advisory system

Com = arx2ful(Com, str) weights needed for advisory system design
Com = canarxls(ychns, str) build matrix ARX LS component
pMix = facchng(pMix, com, Fac) auxiliary changes of mixture factors
Mix = pro2str(Mix, str) additional pointers to external structure
= ricexp(....) auxiliary function for computing of expectation
= ricpen(....) auxiliary function for computing of penalisation
= ricpenu(....) computing of penalisation in simultal design
... = ricshift(....) shift of matrices and vectors
aMix = synmixi(Mix, uchn, strc) transforms mixture estimate Mix to the control form aMix

Kullback-Leibler distance

dist = kldist(fac, Mix, Mix0) distance of a factor in parameter space

dist = kldist(0, Mix, Mix0) distance of all factors

dist = kldist(Mix, Mix0) distance of all components

[d1,d2,d3,d4] = kldist(Mix1, Mix2) distance of mixtures ¢

dist = kldiscom(Mix, ndat) distance of components in data space

dist = kldcom(Mix, MixO0) KL distance of components from initial ones
kld = kldisdir(s, s0) Kulback-Leibler distance of Dirichlet pdfs
kld = kldistc(Mix) KL distance of components in normal mixture

@ distances: d1 - overall distance, d2 - distances of factors, d3 - distance of components, d4 - distance of component
weights

Conversion functions

Conversion of an array of ARX components to the mizture and back

Sim = arxc2mix(Coms, dfcs) convert ARX components to simulator

Coms = mix2arxc(Mix) convert normal mixture into array of ARX components
Facs = arxc2fac(Com) convert ARX component to ARX LS factors

Com = fac2arxc(Facs) convert ARX LS factors to ARX component

Conversions of L’DL decompositions

v = 1d2v(LD) convert L’DL decomposition to original matrix
LD = 1d21d(L, D) replace diagonal unit of L by D

[L,D]= 1d21d(LD) extract D from diagonal LD and replace it by D
LD1 = ldchng(LD, str, LD1, stril)change part of L’DL decomposition

Conversion of L’DL to LS representations and back

[Eth,Cth,cove,dfm] = fac2ls(Fac) convert ARX factor to least square representation
LD = 1s21d(Eth,Cth,cove,dfm) convert Eth, Cth, cove, dfm into LD
[Eth,Cth,cove]=1d21s(LD,dfm,nychn)convert L’DL into Eth, Cth, cove

Subselection from an L’DL decomposition

LD = 1d214(LD,strl,str2) reduce L’DL decomposition to get marginal parametric pdf ®
Permutation of entries in L’DL decomposition — auziliary function
LD = ldperm(LD, i) permute L’DL decomposition: i-th row to 1st row

%strl is source and str2 target LD structure, str2 has to be contained in strl

Operations over triangular matrices

UD = 1d42ud(LD) convert decomposition L'DL to U'DU*

UD = utdu(X) upper triangular decomposition U'DU of a symmetric matrix
UD = 1d2ud(LD) convert decomposition I’DL to U'DU

LD = ud214(UD) convert decomposition U’DU to I’DL

LDi = 1dinv(LD) invert L’DL decomposition

ut = udinv(ut) invert upper triangular matrix

LD = 1ldupdt(LD , dvect, weight) update L’'DL decomposition by weighted data vector
UD = udupdt(UD , dvect, weight) update U'DU decomposition by weighted data vector
[Eth, cove] = udform(Eth, cove) restore matrix factorized ARX component

%the decomposition U’'DU, U is upper triangular with unit diagonal, V = U’'DU. "UD” is the upper triangular matrix
with ”D” on diagonal

Factorized matric ARX and matriz LS components

Can = arxc2can(Com) convert ARX LS to matrix factorized ARX component
Com = can2arxc(Can, n) ¢ convert ”Can” into matrix ARX LS component
Can = can2marg(Can) permute matrix factorized ARX component

%’ 1” is number of marginal channels

statmesh(Mix) interactive mesh plot of static mixture or data
statplot (Mix) plot components of static mixture components
[x,y,2z] = statgrid(Mix) coordinates grid for 3-D display

complot (Mix, com) plot of component of a mixture

iterplot (Mix0, Mix, iter) plot initial and resulting mixture of an iteration step
setfig(number) set figures windows

fixerr (Mix) interactive set TIME for plots

’ Dump /restore of a MATLAB array ‘

mixdump(Mix, filename,...) dump MATLAB object to disk
Mix = restore(filename,...) restore dumped MATLAB object

’ General purpose functions ‘

val = defaults(’item’) get values from database of defaults

e = noise(etyp) generate a random number with a "etyp” distribution®
val = gaussl(dvect,Eth,cove) value of one-dimensional Gaussian pdf

val = gaussn(dvect,Eth,cove) value of Gaussian pdf

setfig(n) set figures windows

val = getflds(cell_vect, ’field’) get fields from a cell-vector of structures

val = betaln(p,q) logarithm of Euler’s beta function

fac = facsort(Facs) sort factors of a component

%generators have mean 0 and covariance 1 (with exception of Cauchy); the etyp is: 1 - Gaussian, 2 - uniform, 3 -
lognormal, 4 - Cauchy

funlistb.tex by PN June 25, 2004

20.2 Alphabetic list of Mixtools functions
Alphabetic list of functions

ACTIVE active component
CUMTAB transition table of components
Can component in matrix factorized ARX LS form

Cans array of components in matrix factorized ARX LS form

Com matrix ARX or ARX LS component

Coms array of matrix ARX or ARX LS components

Cth covariance of regression coefficients

D diagonal part of L'DL decomposition of extended information matrix
DATA data sample

DEBUG global debugging flag

Eth point estimate of regression coefficients

Fac factor

Facs array of factors

L triangular part of L'DL decomposition

LD L’DL decomposition of the extended information matrix
MAPstr MAP estimate of the factor structure

Mix mixture estimate

Ndat specification for buffered processing

Psi data vector

Sim mixture simulator

TIME processing time

UDc cell vector of u’du decompositions of KLD kernels
aMixc advised mixture of the type ARX LS + control states
aMixu desired mixture of the type ARX LS + control states
alphas normalized vector of degrees of freedom of components
belief belief on a guess of richest structure

cchns channels in condition

chbelief belief on factors of a channel

chis strategy of control design

chn channel (data row)

com component

comlls component predictions

coms array of components

comwgs component weights

cove point estimate of noise covariance

dfcs vector of degrees of freedom of components

dfcs0 initial degrees of freedom of components

dfm degrees of freedom of a factor

fac position of a factor in an array of factors

faclls virtual factor predictions

facs list of factors

facwgs factor weights

frg forgetting rate

frgd default forgetting rate

irep iteration

kc lift of quadratic forms

kca average lift of quadratic forms kc

kld Kullback-Leibler distance

11 log of posterior likelihood on data: v-log-likelihood
maxFac richest factor

maxMix richest mixture

maxerr maximum possible error

maxstr guess of the richest structure

maxtd maximum time delay of factors in a mixture
mix1l posterior data likelihood (mixture prediction)
nPsi length of data vector

nbest number of "best” MAP structures stored

nchn number of modeled channels

ncom number of components

ndat length of data

nfac number of active factors

niter number of iterations

npochn number of channels with o-innovations

npsi length of regression vector

nrep number of random starts

nruns number of runs in iterative mixture estimation

nsk extent of data grouping

nychn number of modeled channels

options computational options

outs list of channels with innovations

pMix mixture predictor

pMixfix mixture prediction

pchns predicted channels

pdf probability density function

pochn list of channels with o-innovations

pre preprocessing requirements

psi regressor vector

psio value of zero-delayed regressor

rate mixture flattening rate

relerr relative error

seed seed of random generator

sig standard deviation of output noise

std standard deviation

str structure of regression vector

strc common control structure

uchn list of channels with recognisable actions

udca u’du decomposition of average KLLD kernel in UDc

ufc normalised vector qualifying components

ychn modeled channel

ychns modeled channels in component

20.3 List of recommended identifiers

Cryptonyms

Data management

TIME processing time

DATA data sample

ndat length of data

psi create regression vector

Psi data vector

npsi length of regression vector

nPsi length of data vector

str structure of regression vector

Factors

{cryptony}

Fac factor

Facs array of factors
fac position of a factor in an array of factors
ychn modeled channel
str structure of regression vector
dfm degrees of freedom of a factor

standard ARX factors
LD L’DL decomposition of the extended information matrix
L triangular part of L’DL decomposition
D diagonal part of I’DL decomposition of extended information matrix
v information matrix

ARX factors in least squares representation
Eth point estimate of regression coefficients
Cth covariance of regression coefficients
cove point, estimate of noise covariance

Components
com component
coms array of components
dfcs vector of degrees of freedom of components
dfcs0 initial degrees of freedom of components
alphas normalized vector of degrees of freedom of components
Com matrix ARX or ARX LS component
Coms array of matrix ARX or ARX LS components
Can component in matrix factorized ARX LS form
Cans array of components in matrix factorized ARX LS form
ychns modeled channels in component
nychn number of modeled channels
Mixtures

Mix mixture estimate
Sim mixture simulator
pMix mixture predictor
pMixfix mixture prediction
facs list of factors
nfac number of active factors®
ncom number of components
nchn number of modeled channels

®dimensions are computed as :
[ncom, nchn] = size(Mix.coms); nFacs = length(Mix.Facs); nfac = length(Mix.states.facs);

Mixture estimation

frg
frgd
rate
maxtd
nruns
relerr
maxerr

faclls
comlls
mixll

comwgs
facwgs

forgetting rate
default forgetting rate
mixture flattening rate
maximum time delay of factors in a mixture
number of runs in iterative mixture estimation
relative error
maximum possible error
states in mizture estimation ¢

trial factor predictions log(f(di41|fac,t + 1))

component predictions log(f(d;|com))
mixture prediction log(f(d;|miz))
component weights

factor weights

“refer to mixupdt.m for meaning of the statistics

Mixture projection

pchns predicted channels
cchns channels in condition
psiO value of zero-delayed regressor
Advisory system design

aMixc advised mixture of the type ARX LS + control states
aMixu desired mixture of the type ARX LS 4+ control states
strc common control structure
kc lift of quadratic forms
UDc cell vector of u’du decompositions of KLLD kernels
udca u’du decomposition of average KLLD kernel in UDc
kca average lift of quadratic forms ke
uchn list of channels with recognisable actions
pochn list of channels with o-innovations
outs list of channels with innovations
npochn number of channels with o-innovations
udca u’du decomposition of average KLD kernel in UDc
ufc normalised vector qualifying components

Structure estimation
maxstr guess of the richest structure
maxFac richest factor
maxMix richest mixture
belief belief on a guess of richest structure
chbelief belief on factors of a channel
nrep number of random starts
MAPstr MAP estimate of the factor structure

General cryptonyms

DEBUG
chn
std
pdf
kld

11
niter
opt
options
seed
uchn
sig
CUMTAB
ACTIVE

global debugging flag

channel (data row)

standard deviation

probability density function
Kullback-Leibler distance

log of posterior likelihood on data: v-log-likelihood
number of iterations

option

computational options

seed of random generator

list of channels with recognisable actions
standard deviation of output noise
transition table of components

active component

20.4 Alphabetic list of recommended identifiers

ACTIVE
CUMTAB
Can
Cans
Com
Coms
Cth

D

DATA
DEBUG
Eth
Fac
Facs

L

LD
MAPstr
Mix
Ndat
Psi
Sim
TIME
UDc

')
aMixc
aMixu
alphas
belief
cchns
chbelief
chn
com
comlls
coms
comwgs
cove
dfcs

Alphabetic list of cryptonyms

active component

transition table of components

component in matrix factorized ARX LS form

array of components in matrix factorized ARX LS form
matrix ARX or ARX LS component

array of matrix ARX or ARX LS components
covariance of regression coefficients

cryptony.tex by PN June 25, 2004

diagonal part of L’DL decomposition of extended information matrix

data sample

global debugging flag

point estimate of regression coefficients

factor

array of factors

triangular part of L’'DL decomposition

L’DL decomposition of the extended information matrix
MAP estimate of the factor structure

mixture estimate

specification for buffered processing

data vector

mixture simulator

processing time

cell vector of uw’du decompositions of KLD kernels
information matrix

advised mixture of the type ARX LS + control states
desired mixture of the type ARX LS + control states
normalized vector of degrees of freedom of components
belief on a guess of richest structure

channels in condition

belief on factors of a channel

channel (data row)

component

component predictions

array of components

component weights

point estimate of noise covariance

vector of degrees of freedom of components

{cryptona}

dfcs0
dfm
fac
faclls
facs
facwgs
frg
frgd
irep
kc

kca
kld

11
maxFac
maxMix
maxerr
maxstr
maxtd
mix1l
nPsi
nbest
nchn
ncom
ndat
nfac
niter
npochn
npsi
nrep
nruns
nsk
nychn
options
outs
pMix
pMixfix
pchns
pdf
pochn
pre
psi
psi0
rate
relerr
seed
sig
std
str
strc
uchn
udca
ufc
ychn
ychns

initial degrees of freedom of components
degrees of freedom of a factor

position of a factor in an array of factors
virtual factor predictions

list of factors

factor weights

forgetting rate

default forgetting rate

iteration

lift of quadratic forms

average lift of quadratic forms kc
Kullback-Leibler distance

log of posterior likelihood on data: v-log-likelihood
richest factor

richest mixture

maximum possible error

guess of the richest structure

maximum time delay of factors in a mixture
posterior data likelihood (mixture prediction)
length of data vector

number of "best” MAP structures stored
number of modeled channels

number of components

length of data

number of active factors

number of iterations

number of channels with o-innovations
length of regression vector

number of random starts

number of runs in iterative mixture estimation
extent of data grouping
number of modeled channels
computational options

list of channels with innovations
mixture predictor

mixture prediction

predicted channels

probability density function

list of channels with o-innovations
preprocessing requirements

regressor vector

value of zero-delayed regressor

mixture flattening rate

relative error

seed of random generator

standard deviation of output noise
standard deviation

structure of regression vector

common control structure

list of channels with recognisable actions
u’du decomposition of average KLD kernel in UDc
normalised vector qualifying components
modeled channel

modeled channels in component

21 Mixtools MEX and API functions

21.1 Mixtools MEX functions

The Mixtools toolbox contains more than hundred M-functions. Mostly, they are converted into MEX-
functions. The MEX-functions can be called from any other MEX-function and from any stand-alone
application program.

The MEX-functions are held in a library ”prodact.lib” Each MEX-function is stored in it using the pre-
processor directive -DLIBRARY. The header file ”mexlib.h” contains functions prototypes and descriptive
information.

The structure of MEX-functions is docummented by an example of a (fictive) function ”mexfun”:

// Sample function mexfun.c
#include <math.h>
#tinclude "mex.h" // MATLAB definitions

#include "mexlib.h" // Mixtools definitions

#ifndef LIBRARY

void mexFunction(...) // translated to "mexfun.dll" under MATLAB
{
void mexfun(...); // call MEX-function in library
}
#else // compiled if LIBRARY is defined
void mexfun(...) // maintained in library as "mexfun"
{
// MEX - file interface
}
mxArray * mexfunl(...) // stored in prodact.lib
{ // prototypes are transferred to mexlib.h
}
#endif // end processing of library code

Conversion of M-functions to MEX-functions and their debugging is a routine work based on MATLAB
APT (see [?]). An alternative way is use of MATLAB Compiler, product of MathWorks. This possibility has
several disadvantage and has not been selected for ProDaCTools project.

21.1.1 Getting data vector

The following global variables are defined in ”mexlib.h”:

double *DATA; // pointer to data sample

int M_DATA; // number of data rows (channels)

int N_DATA; // length of data sample

double *TIME; // pointer to current time

double PSI[1]; // auxiliary array used to store data vector

To get the pointers and dimensions, ”bldlmex.c” is included in any function that makes recursive pro-
cessing. To get value of data vector use the function:

void getrgr(int ychn, double *str, int len);
The meaning of the arguments is obvious, the data vector is build in the global array "PSI”.

written by PN June 25, 2004

22 Mixtools Application Program Interface

Stand-alone application programs can

e load previously dumped MATLAB arrays
e call Mixtools functions

e dump results of computation for processing under MATLAB.

22.0.2 Communication with MATLAB

The communication between the stand-alone application program and MATLAB is done by binary files.
They contain unloaded MATLAB double arrays as well as some descriptive information. The MATLAB
"jofun” functions ("fopen”, ”fread”, ”fwrite”) are use to write/read the MATLAB arrays. Those functions

offer a broad selection of formats of the dump files that cover many relevant platforms. The example of
dump and restore under MATLAB:

filename = ’mixdumped’;
machineFormat = ’native’;
precision = ’double’;

mixdump(Mix, filename, machineFormat, precision);

Mix mixrest(filename, machineFormat, precision);

rename (Mix,Mix0) ;

Mix

See help on "fopen” function for meaning of the arguments. The selection shown is the functions default.
The function “rename” is called to assign names to the structure fields - names of fields are not dumped.
The ”"Mix0” must be structure build under MATLAB.

The same functions are available in MAPI (dump.c):

mxArray *mixload (const char *filename) ;
void mixsave (const mxArray *mix, const char *filename) ;

22.0.3 Programming

The MATLAB MEX-functions are written using functions of MATLAB API (Application Program Interface)
[?].
The API functions are substituted by independent API encoded in ProDAcTools. The definitions are
held in "mex.h”.

The library of MEX and API functions is ”api.lib”.

Not all MATLAB API functions are implemented. The list of functions is held in "mex.h”, The MATLAB
APT equivalents implemented (see [?] for meaning and prototypes):

mxCalloc mxGetPr
mxCreateCell mxGetScalar
mxCreateCellMatrix mxGetString
mxCreateDoubleMatrix mxIsCell
mxCreateStruct mxIsChar
mxCreateStructMatrix mxIsComplex
mxCreateString mxIsDouble
mxDuplicateArray mxIsEmpty
mxGetCell mxIsNumeric
mxGetFieldPr mxIsStruct
mxGetM mxSetCell
mxGetN mxSetM
mxGetNumberOfFields mxSetN
mxGetNumberOfElements mxSetPr

mxGetPi(X)

22.0.4 Memory management

The standard memory management - "malloc” (connected with ”mxAlloc”, ?mxCalloc”) is possible but not
recommended. MEX-functions are written by different persons and quality of memory freeing can hardly be
traced.

Instead, a huge global array is used for allocations:

// in mex.h

#define WORKSPACE_LENGTH (1000000)// heap allocation

char workspace [WORKSPACE_LENGTH] ;

int wsp = 0; // pointer to free workspace

The function that makes allocations in the workspace is

charx aloc(int n); // allocates n Bytes on double word boundary

The freeing of memory is simple - at the beginning of a function, the "wsp” is recorded and after all
allocations it is returned to the initial value (permanent definition of course remain). No other of freeing of
memory is required in the function body.

22.0.5 Getting data vector

The mechanism of getting data vector is similar as the one used for MEXes. The global variables used are:

mxArray*XDATA; // pointer to data as mxArray *
mxArray*XTIME; // pointer to time as mxArray *

The variables should be initialized by user’s code. The code ”bldlmex.c” differs from MEXes.

22.0.6 In-place processing

Unlike in MEXes, API functions can be used for in-place processing (changing input arrays). The following
example shows in-place processing of a mixture:

#ifndef MATLAB_MEX_FILE // this construct makes possible
if (no)

Mix = in[0]; // to use "in-place" processing
else

Mix = mxDuplicateArray(in[0]); // standard MEX processing

#else // outside MATLAB (example)
mxDuplicateArray(in[0]); // standard MEX processing

Mix
#endif
22.0.7 Example of stand-alone program

MATLAB processing and equivalent stand-alone program are discussed. We have the MATLAB script
function:

ychns = [1 2]; % output channels

str = [0;1]; % common static structure

Com = comarxls(ychns, str); % initial ARX LS component
Com.Eth = [3;0]; Coms{1} = Com; % 1st component

Com.Eth = [-3;0]; Coms{2} = Com; % 2nd component

dfcs = [100, 150]; % initial dfcs

Mix0 = mixconst(Coms, dfcs); % build initial mixture

Mix0 = mix2mix(MixO, 21); % convert it into convenient form
frg = 0.99999; % default forgetting rate

ndat 1000; % size of data sample

niter= 30;

Mix

mixestqb(Mix0,frg,ndat,niter) ;

The equivalent stand-alone program:

#include
#include
#include
#include

<math.h>
"mex.h"
"mexlib.h"
<stdio.h>

void main(void)
{ mxArray *ychns, *str, *ndat, *frg, *niter,

% number of iterations

% quasi-Bayes repeated estimation

*Com, *Coms, *Eth, *dfcs, *MixO;
double *p;
mxArray *out[1];
const mxArray *in[4];
XDATA = mixload("data"); //
XTIME = mxCreateDoubleMatrix(1,1,0) //

#include "bldlmex.c" //

// ychns = [1 2]; %

// str = [0;1]; yA
ychns = mxCreateDoubleMatrix(1,2,0)

p = mxGetPr(ychns) ;

plol =1; pl1]l = 2;

str = mxCreateDoubleMatrix(2,1,0)
P = mxGetPr(str);

plol = 0; pl1] = 1;

// Com = comarxls(ychns, str); yA
in[0] = ychns; in[1] = str;
comarxls(1l,out,2,in);

Com = out[0];

// Com.Eth = [3;0]; Coms{1} = Com; %
Eth = mxCreateDoubleMatrix(1,2,0)

P = mxGetPr(Eth);
plol = 3; pl1l] = 0;

copyfield(Com, LS_Eth, Eth);

Coms

mxCreateCellMatrix (1, 2);

mxSetCell(Coms,0,Com) ;

// Com.Eth = [-3;0]; Coms{2} = Com;
plol = -3;
Com = mxDuplicateArray(Com);

copyfield(Com, LS_Eth, Eth);
mxSetCell(Coms,1,Com) ;

// dfcs

dfcs

1Y
plo]

// Mix0

[100, 150];
mxCreateDoubleMatrix(1,2,0);

= mxGetPr(dfcs);

100; pl1] 150;

mixconst (Coms, dfcs);

in[0] = Coms; in[1] = dfcs;

b

h

%

load data
create TIME variable
required for data processing

output channels
common static structure

initial ARX LS component

1st component

2nd component

initial dfcs

build initial mixture

mixconst(1l,out,2,in);
Mix0 = out[0];

// Mix0 = mix2mix(Mix0, 21); % convert into convenient form
in[0] = MixO; in[1] = mxCreateScalarDouble((double)21);
mix2mix(1, out, 2, in);

Mix0 = out[0];
// frg = 0.99999; % default forgetting rate
// ndat = 1000; % size of data sample
// niter= 30; % number of iterations
frg = mxCreateScalarDouble(0.99999);
ndat = mxCreateScalarDouble(1000.0);

niter = mxCreateScalarDouble(30);

// Mix = mixestqb(MixO,frg,ndat,niter); % quasi-Bayes repeated estimation
in[0] = Mix0; in[1] = frg; in[2] = ndat; in[3] = niter;
mixestqb(l, out, 4, in);

// results are saved in "mixture"
mixsave(out[0], "mixture");

api.tex by PN June 25, 2004

23 Termbase

Mixtools Guide, case studies and any related texts must use unique technical terms. It is impossible without
a computer aided support.

This support is based on a database of technical terms and functions that work with it. The database is
held in an (ascii) file ”termbase” in the Mixtools ”termbase” directory.

The ”termbase” contains information about all Mixtools functions and about the recommended identifiers
referred to as cryptonyms here.

The ”termbase” consists of "records”. The records are distinguished by "keywords” that are names of
Mixtools functions and cryptonyms.

Each record begins with the keyword (from 1 to 8 columns) and a "keyword description” begins from
10th column.

An example of two termbase records:

mix2mix convert mixture to a specified form
Eth point estimate of regression coefficients

Note: with the records, lines that begin with the character ’ ’ or the character '#’ may freely be placed.
Those lines are treated as termbase comments.

The ”"termbase” file is converted to a ”termbase.mat” that contains information needed for direct access
to individual records. It is done by the function ”tbbldl”:

tbbldl % convert termbase into internal form
This function must be called whenever the ”termbase” file changes.

23.1 Use of termbase in ascii texts

The keyword descriptions can be copied into any ascii text by specifying the keyword only.
This solves the function "tbedit”. It converts the input file and displayes it on screen. the input file is
not changed and the output file that contains the edited text:

tbedit (’input file’); % edit ascii text

The input file can contain the termbase keyword proceeded by the character *\’. This is substituted by

the keyword description in the output file.
Example follows.

infile = ’infile’;

% create text file

in = fopen(infile, ’wt’);

linel = ’function "mixestim" makes \mixestim . The argents are:’;
line2 = ’Mix (\Mix), frg (\frg) and ndat (\ndat)’;

fprintf (in, ’%s\n’, linel);
fprintf (in, ’%s\n’, line2);
fclose(in);

tbedit (infile); % edit the text file

function "mixestim" makes quasi-Bayes mixture estimation . The argents are:

Mix (mixture estimate), frg (forgetting rate) and ndat (length of data)

23.2 Use of termbase in Latex texts

The "termbase” is converted to ”termbase.tex” by the function

tb2tex % build termbase.tex

The ”termbase.tex” contains Latex "newcommands” for all termbase records. Example of the "newcom-

mand” corresponding to the keyword ”Eth”:

\newcommand{\Eth}[0]{point estimate of regression coefficients}

The "newcommands” correspond to the termbase keywords with two exceptions listed below.

1. the keywords that contain a digit (impossible in Latex) are changed - the digit is converted into upper

case letter:

keyword | newcommand
2 T
0 I
1 J

For example, the "newcommand” corresponding to the keywords ” mix2mix” is:

\newcommand{\mixTmix}[0]{convert mixture to a specified form}

2. Several keywords interfere with existing Latex commands and are changed:

keyword | newcommand
psi psix
Psi Psix
LD LDt
L Lt
D Dt
1l lIx

tbase.tex by PN June 25, 2004

A Example of channel descriptions

{desc}

The example contains example of channel descriptions.
% ChanDesKOR channels description of KOR data
YA
% Design : T.V. Guy
% Updated : September, 2002
% Project : ProDaCTools, IST-1999-12058
% References

prodini

echo off
% file name

filename = ’ChnDes’; % filename where channel descriptions be saved

YA

channels description

chns = 1:10; % number of channel
Chns = chnconst(chns); % build channels de
Chns = chnset(Chns, []1, ’oitem’, 0); %
Chns = chnset(Chns, [], ’raction’, 0); %

Totolololotototototolototolete set channels with o-innovations %/h%hikhhlkllslelslelsletsts

field = ’oitem’;
chns = [8 10]; % channel numbe
Chns = chnset(Chns,chns,field,1);

Bototololefotototolotoolotele s€t channels with recognisable actions %%%%khkkhkhk

field = ’raction’;
chns = [1 2 4 5]; % channel numbers
Chns = chnset(Chns,chns,field,1);

KIS I T I IS ST % set names of the channels Lhhhhhddh bttt hodiloditeds

field = ’name’;

chn = 1;

name = ’InStripTension’;

Chns = chnset(Chns,chn,field,num2cell(name,2)); Y% set channel
chn = 2;

name = ’OutStripTension’;

Chns = chnset(Chns,chn,field,num2cell(name,2)); Y% set channel

chn = 3;
name = ’StripSpeedRatio’;

Chns = chnset(Chns,chn,field,num2cell(name,2)); Y% set channel
chn = 4;

name = ’InStripSpeed’;

Chns = chnset(Chns,chn,field,num2cell(name,2)); Y% set channel

chn = 5;
name = ’OutStripSpeed’;
Chns = chnset(Chns,chn,field,num2cell(name,2)); Y% set channel

s
scription

rs

description

description

description

description

description

chn =

name
Chns

chn
name
Chns

chn =

name
Chns

chn
name
Chns

chn =

name
Chns

field = ’prange’;

chn = 1;

value = [0;50]; %

Chns = chnset(Chns,chn,field,value); Y% set channel
chn = 2;

value = [0;50]; %

Chns = chnset(Chns,chn,field,value); Y% set channel
chn = 3;

value = [0.5;0.7]; %

Chns = chnset(Chns,chn,field,value); Y% set channel
chn = 4;

value =[0.1;0.3]; %

Chns = chnset(Chns,chn,field,value); % set channel
chn = 5;

value = [0.2;0.5]; %

Chns = chnset(Chns,chn,field,value); % set channel
chn = 6;

value = [30;180]; %

Chns = chnset(Chns,chn,field,value); % set channel
chn = 7;

value = [30;180]; %

Chns = chnset(Chns,chn,field,value); Y% set channel
chn = 8;

value = [0;200]; %

Chns = chnset(Chns,chn,field,value); % set channel
chn = 9;

value = [-50;50]; %

6;
= ’InCoilerCurrent’;
= chnset (Chns,chn,field,num2cell (name,?2));

=7;
= ’OutCoilerCurrent’;
= chnset (Chns,chn,field,num2cell (name,2));

8;
’MillDriveCurrent’;
chnset (Chns,chn,field,num2cell (name,?2));

=9;
= ’InThicknessDeviation’;
= chnset (Chns,chn,field,num2cell (name,2));

10;
= ’OutThicknessDeviation’;
= chnset(Chns,chn,field,num2cell (name,2));

%

YA

YA

)

%

set channel description

set channel description
set channel description
set

channel description

set channel description

Tototololofolotototototototofototofotolole S€t physical range <min;max> %%lstetetsleletslsletolslotolotetolotetolole

description

description

description

description

description

description

description

description

Chns = chnset(Chns,chn,field,value); % set channel description

chn = 10;
value = [-5;5]; %
Chns = chnset(Chns,chn,field,value); % set channel description

Tototo foo fotototo o foto o tototototototots set desired range <min;max> %tthtslessletslslolstotstotststolslolotos
field = ’drange’;

chn = 8;
value = [30;180]; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 10;
value = [-2;2]; %
Chns = chnset(Chns,chn,field,value); 7% set channel description

Tl T Tl oo ToTo oo oo to oo too oo set priorities <O;1> Uhhtototolstshstolshstotoletlelotlotetote
field = ’prty’;

chn = 1;
value = 1; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 2;
value =1; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 3;
value = 0.5; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 4;
value = 1; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 5;
value = 1; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 6;
value = 0.5; %
Chns = chnset(Chns,chn,field,value); 7% set channel description

chn = 7;
value = 0.5; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 8;
value = 0.9; %
Chns = chnset(Chns,chn,field,value); % set channel description

chn = 9;
value = 0.5; %

Chns = chnset(Chns,chn,field,value); % set channel description

chn = 10;

value = 1; yA
Chns = chnset(Chns,chn,field,value); % set channel description

% saving the channel description in the file filename
eval([’save ’,filename,’ Chns’])

chandes, TG June 25, 2004

B Example of identification

The example of initialization, estimation and prediction of KOR data.

% Design : I.Nagy

% Updated : August, 2002

% Project : ProDaCTools, IST-1999-12058
% Calls

% References

prodini
echo off
DEBUG=2;
global BREAKPOINT;

% file with raw data
file_dat = ’data’;

% file with channel descriptions
file_des = ’ChnDes’;

eval([’load ’, file_des]) % load the data file with channel descriptions

% basic file name for the current experiment
filN = ’exp000’; % basic name of the experiment

% basic filename for Tex documentation (can be used for parameter setting)
babble = ’e000’;

% options controlling the tasks performed

iest = 1; % run with estimation? (O-no, 1-yes)

iplo = 0; % plot clusters? (O-no, l-yes)

ival = 0; % validation test? (O-no, 1-yes)

itex = 0; % conver results to LaTeX form? (O-no, 1l-yes)
istack =0; % use stacking? (O-no, 1-yes)

nsk = 2; % number of data for stacking

ibrk = 0; % run after breakpoint? (O-no, 1l-yes)

nbrk = 1; % number of steps of init after breaking

BREAKPOINT = [filN,’brk’]; % breakpoint name

% channels
chns = getflds(Chns, ’chn’); % list of channels from channel description
nchn length(Chns); % total number of channels
nchn = 1:10; % list of channels that will be proceeded

% data

{ident}

nd = 5000; % length of the data be used
ndat = 4000; % length of data be used for estimation
nval = 1000; % length of data be used for validation (after ndat)

% filtration
nfi = 3; % number of data for averaging
if istack
pre = {’olymedian’, {’level’, 1}, ’scale’, [], ’1lsfit0’, nfi, ’group’, nsk};
% options for pre-filtration

else
nsk = 1;
pre = {’olymedian’, {’level’, 1}, ’scale’, [1, ’1sfit0’, nfi};
% options for pre-filtration
end;
% initialization + estimation options
ord = 1; % model order
ncom = 1; % numb. of components (0 = automatic init)
frg =1; % forgetting for the first part
niter = 5; % number of iterations for initialization
nide = 15; % number of iterations for identification
opt =’ 7; % options for init
Cth = 1le3; % initial Cth
cove = le-2; % initial cove
pisch = .1; % pischvortz constant for prior df(m,cs)
dfcs = pisch*ndat/(ncom+1); % initial dfcs
dfm = dfcs/length(chns)/nsk; % initial dfm

% validation (prediction) options

pchn = 1:10; % channels be used for validation

pchns = 1:length(chns)*nsk; 7 predicted channels

cchns = []; % channels in condition

npred = 15; % steps of prediction (1 - default)

eval (’babble’); % currently changed parametr

% changes due to preprocessing

nchn = length(nchn)*nsk; % ..in the number of channels

ychns = 1:nchn;

ndat = fix(ndat/(nfi*nsk)); % ..in the number of data used for identification
nval = fix(nval/(nfi*nsk)); % ..in the number of data used for validation

% Hkskkskokskokkokkokokokkkkk DATA LOAD skokskokokok ok sk ok sk ok ok 5k ok 3k ok % ok sk ok 5k
eval([’load ’,name]);

DATA = Dat(chns, 1:nd); % Dat - common name of strored data
clear Dat;

% kkkkkkkokkkkkkxkkx PREPROCESSING skokskokskskokkok ok ok skok ok
pre = preproc(pre); % preprocessing
Data=DATA; % store original data for prediction

% Fkkkkkokkkkkkkk INITIAL COMPONENT sk skoksksk skokokkk ok ok k% k
if iest
if ncom<=0,
ini=1; ncom=1;
else ini=0;end
str = genstr(ord, nchn);

dfcs = dfcs*ones(1,ncom);
MixO genmixe(ncom, ychns, str, ndat, Cth, cove, dfm, dfcs);% construct initial mixture MixO

o kskskokkkkokokokkkokk TDENTIFICATION s kokokokok dkokokok s dokokok ok ok

% batch processing
file = fopen([filN,’.dat’], ’wb’);
fwrite(file, DATA(:,1:ndat), ’double’); % data for batch processing
fclose(file); Ndat = {[filN,’.dat’], nchn};

DATA = zeros(nchn, 1000); % length of the batch

if ini
if “ibrk, MixIn = mixinit(MixO, frg, Ndat, niter, opt);
else MixIn = mixinit (BREAKPOINT, nbrk); end
MixF1l = mixflat(MixIn);

else
MixF1l = Mix0;

end;

Mix = mixest(MixFl, frg, Ndat, nide);

else

eval([’load ’,filN,’ Mix’]); end

% wkskkkokokokokokkokkkkk PREDTCTTION sk kskokokokokok sk sk sk sk s sk ok ok ok ok ok ok K

DATA = Data; % all data without batch proc.
pMix = mix2pro(Mix, pchns, cchns); 7% conditional mixture

time = (ndat+npred-1):(ndat+nval-1); 7% time instants of predictions
yp=01;

for tt=ndat:(ndat+nval-npred)
if fix(TIME/100)*100==TIME, fprintf(’.’); end
ttp = tt+(0:npred-1);
for TIME=ttp
[Et,co,df ,wt] = profix(pMix); % factor prediction
th = GetTh(Et);
if 1 ypt = th*df’; else ypt = th*wt’; end

DATA(pchns,TIME) = ypt; % replace unavailable data by prediction
end
yp=lyp yptl;
DATA=Data; % put original data back to DATA matrix

end;
clear Data; fprintf(’\n’);

% kokokokokokskokokkokokokokk VALTDATION skokokokokokokok ok ok ok ok sk ok sk sk ok ok ok okok ok

dd = DATA(pchn,time); % predicted data

yp = yp(pchn,:);

ep = dd-yp; % prediction errors

dfcs = Mix.dfcs/sum(Mix.dfcs) 7% dfcs of Mix

if ival==
[histEp, binsEp] = hist(ep,20); % histogram of ep
hist_bin_Ep = [histEp; binsEp]
testAlt = altval(Mix) % mixll + alt. forgetting
testStab = stabmix(Mix) % stability test (O stable)
testNois = facnois(Mix); % factor noises

testNois_dfcs = [testNois ones(length(dfcs),1)*NaN dfcs’]
[testCep, sumCep] = wtest(dd,yp) % correlations od delayed ep

disp(’<-:-:=::=:-:->7)
end
mixl1l = Mix.states.mixll % v-likelihood of Mix
testSE = sterr(dd,yp) % var(ep)/std(data)

o sksokokkkkkokkkkk STORING RESULTS sk sk kokokok sk skskokok sk skokskokok ok
save filN filN; eval([’save ’,filN]);

ident, TG June 25, 2004

C Example of design

{desi}

The example of simultaneous design for the KOR data is presented.

YA
)
)
YA
YA
A
A
A
)
)
A

)

A

Example of simultaneous design
Channels descriptions Chns are defined in ChanDesKOR.m

Mix
Sim

Mixu :

Design
Updated
Project
Calls

References

prodini
echo off

identified mixture loaded from the file ’file_ide’
: mixture used for simulation in the closed loop;
loaded from the file ’file_sim’
target mixture created using channels descriptions Chns by target.m

: T. V. Guy
October, 2002
: ProDaCTools, IST-1999-12058
inisyn, ufcgen, aloptim, mix2pro, algen, mixcopy, profix

general options

ChanDesKOR % creates channel description of KOR data
file_dat = ’MM_PallN’; % file with data

file_ide = ’kor2_21°; % file with identified mixture

file_sim = ’kor2_22°; % file with mixture for simulation

niter = 1000; % number of time iterations

nstep = [100;1]; % horizon for evaluation of KLD

Yokokkkokkkokkokokokokokokkk DATA LOAD skokskokskok sk okokok ok ok ok sk sk k3 ok ok ok ok ok ok ok koK K K

load(file_sim,’Mix’); % load mixture used for simulation

Sim = Mix;

% Sim - mixture used for system simulation

load(file_ide,’Mix,pre’); % load identified mixture Mix and

% used preprocessing options pre

load(file_dat,’Dat’); % load data

DATA = Dat;

% global DATA

Yotk kkok ok okokok ok ok ok kkokokokokskokokokokkokokk PREPARATORY STAGE skokokokskokokskok ok skok ok s oksk sk ok o ok ok ok o sk sk ok ok e ok sk ok ok ok ok
Chns = scaleDescription(Chns, pre); % scaling according to preprocessing options
[Mixu,Chns,ychns] = target(Chns); % build target mixture Mixu

chns

% (in accord. with channel description Chns)

length(Chns) ; % number of channels

ncom = size(Mix.coms,1); % number of components in identified mixture

Y skokokokokk ok ok okokkokok ok kkk sk kkokokokokokk TNTTTALTSATTION sk sk skok ok ok ok sk sk k sk sk sk ok ok ok ok ok ok ok ok 3k ok k ok ok ok ok ok ok ok ok ok ok ok

[aMix, aMixu] = inisyn(Mix, Mixu, Chns); % initialisation for advisory design

ufc = ufcgen(aMix, aMixu); % automatic generation of user preferences
% according to stability test

% Kook kK kKRR KRk Kok Kok okkokkokkk OPTIMISATION skakskskskok ok ok sk ok sk ok sk ok sk ook ok ok sk o sk ook ook ook ok ok ok o ok ook ook
aMix = soptim(aMix, aMixu, ufc, nstep); 7% perform simultaneous design (optimisation)
pMix = mix2pro(aMix); % build predictor pMix

pred = zeros(chns, niter); % prediction

% get indexes of channels with recognisable actions
[uchn,indx] = intersect(getflds(Chns,’chn’),aMix.states.uchn);

start_time = max(Sim.states.maxtd, Mix.states.maxtd); % start time for the simulation

for TIME = start_time+l:niter % time loop

mixsimul (Sim) ; % simulation of new DATA item

aMix = algen(aMix,ufc); % generating an advice

pMix = mixcopy(aMix, pMix); % copy advice to predictor

[Eth, coves, alpha] = profix(pMix); % build prediction

[Ethl, covesl,alphal] = profix(pMix, [],pre);% build non-scaled prediction

predl = zeros(chns,1); % array to save non-scaled prediction

al = aMix.dfcs; % probabilistic weights

for com = 1:size(Eth,2) % computation of the prediction
pred(:,TIME) = pred(:,TIME)+Eth{com}*al(com); % scaled
predl = predi+Ethi{com}*al(com) ; % non-scaled

end;

DATA(indx,TIME) = pred(indx,TIME); % save the predicted recognisable actions

% to use them in the new simulation step
crit(TIME) = criter (Mixu,TIME,TIME-10);% criterion computation
end

design, TG June 25, 2004

Index

degrees of freedom of components, 4 dynamic mixtures, 6
a-mixture, 12, 13 entities inherit names, 3
academic advises, 3 Estimation, 7
Academic design, 2, 76 estimation methods, 38
actions available to p-system, 3 estimator, 10

adaptive advisory system, 76 extended information matrix, 8
Advise, 12

Advises, 3 factor, 4

advisory states, 12, 13, 69, 72 factor constructors, 8
approximate parameter estimation, 38 factor offset, 4, 6

array of components, 10 factor output, 2, 4
array of factors, 10 factor statistics, 4

ARX components, 9 factor structure, 4, 8
ARX factor, 5, 8 factor type, 4

ARX LS components, 9 Factors, 8

ARX LS factor, 5, 8 factors, 7

ARX LS mixture, 11 flattened, 26

ARX mixture — basic estimation form, 10 forgetting rate, 26, 41
assigning priorities, 3 function names, 2

functions to be converted to MEX-files, 1
backwards transformation, 15

basic software entities, 6 generic estimation function, 38
batch and recursive processing, 20 genmixe, 26, 29, 31

batch data preprocessing, 15 global matrices, 1, 34

belief on a guess of richest structure, 83 Global variables, 1

Branching by forgetting, 38

buffered estimation, 14, 45 horizon, 4

huge data sample, 14
cell list, 3, 15

channel, 4 ideal pdf, 2

channel description, 66 Identifiers, 1, 2

channel descriptions, 66 industrial design, 2

channels in condition, 46 initial factor, 8

coding agreements, 1 initialisation, 68, 71

common factor, 10, 30 initialization of mixture estimation, 26, 29
common theoretical notation, 1 initialization of preprocessing, 15
component, 7 initialization options, 32

component weights, 4, 51 iterative estimation, 38, 42

Components, 9
components, 4
constructors, 8
conversions, 8

CUMTAB, 81

KLD, 6
Kulback-Leibler distance (KLD), 2

lifted quadratic forms, 6
list, 1, 3

dangerous components, 6 list of factors, 4

DATA, 1, 13, 80 LS, 4
data sample, 4

default factor, 8

Default values, 1

degrees of freedom of components, 7, 10
degrees of freedom of factor, 4

design, 2

dynamic factors, 6

dynamic mixture, 27

Markov transition probabilities table, 81
matrix, 1

Matrix ARX components, 9

Matrix ARX LS component, 9

Matrix ARX mixture, 11

matrix type, 7

mixflatv, 42

mixinit, 30

Mixtools, 20

Mixtools design base, 20
Mixtools user’s functions, 20
mixture, 4, 7, 10

mixture constructor, 10, 13
mixture estimation, 38
mixture initialization, 33
mixture prediction, 46
mixture predictor, 46
mixture projection, 46
mixture projector, 46
mixture type, 4

mixture visualization, 57
modeled channel, 4, 8
modeled channels, 9

normalized, 16

normalized data sample, 26
not fully informative data, 83
not-modeled channels, 9
number of channels, 4

o-innovations, 75
off-line mode, 76
on-line mode, 76
operation, 15
operations, 8
optimisation, 68, 71

p-components, 7

p-factors, 7

p-mixtures, 7

parameterized components, 2
parameterized factor, 2
parameterized mixture, 2
pre-allocated, 24, 80
predicted channels, 46
Prediction, 7

prediction of groups of data, 53, 65

Prediction scaling, 47
predictor, 46

preparatory stage, 68, 71
preprocessing initialization, 15
preprocessing requirements, 15
prior knowledge, 29
prior-posterior branching, 42
prodini, 34

projection, 7, 8, 12

projector, 46

recognizable actions, 75

recursive data preprocessing, 15

recursive data processing, 38
regression vector, 4
richest, 29

run-time preprocessing requirements, 15

scaling, 6

signaling, 3

simultaneous design, 2, 77
state vector, 6

states, 2, 4, 6

static factors, 6, 8

static mixtures, 6

statsim, 26, 27

structure, 1, 6

structure of regression vector, 6
Structures and cell lists, 2
subplots, 24

target mixture, 68, 71
The coding agreements, 1
TIME, 1, 13

type, 3, 6

type=0, 3

user ideal pdf, 2
user specified target, 76, 77

vector, 1

Zero-delayed regression vector, 46
zero-delayed regression vector, 46

