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Abstract

Exploiting probabilistic finite mixtures, the dissertation examines Bayesian modelling and esti-
mation in the presence of colored stochastic disturbances. Focused on ARMAX model and two
types of its finite mixtures:

We discuss a feasible dynamic mixture modelling and reexamine classical LD pre-whitening
filters that impose no constraint on the MA noise part of an ARMAX model so that the roots of
the C-polynomial are allowed to be even at the stability boundary.

Two types ARMAX mixtures were then studied: One is so-called MARMAX model, a natural
mixture generalization of ARMAX model. The other one is ARMMAX model, a novel system
description tool introduced by the thesis. It is a special finite mixture with a common ARX part in
all its ARMAX components. The ARMMAX model structure depicts well the situations when there
is a fixed deterministic input-output relationship described by the common ARX part while the
characteristics of the stochastic disturbance part may vary. Based on the reexamined LD filter,
the proposed MARMAX-QB and ARMMAX-QB algorithms provide efficient estimations for these
mixtures with given C-parameters. Some properties of these two mixtures have also been studied.
Especially, we show that they could provide certain approximate ”algorithmic” parallelism, since
their estimations provide a quantitative measure of descriptive quality of ARMAX components
in parallel.

For on-line use, the ARMAX mixtures offer the flexibility in system description. The flexibility
gained is paid at a relatively low price with the required computation load close to several
recursive least-squares estimations.

For off-line use, the ARMAX mixtures offer the possibility to improve Bayesian estimation
and prediction of single ARMAX model by dealing with unknown C-parameters in a novel way.
While preserving Bayesian estimation setting up to the ARX part, the presented MMQ and
MAQ estimation algorithms are able to cope with the unknown C-parameters not only in high
dimensions (> 2) but also in the case with the roots of C-polynomial near/on the stability
boundary. The main idea behind is to apply the selected multi-directional search (MDS) in the
approximate ”algorithmic parallel environment” of the ARMAX mixtures to generate a sequence
of points that convergence to a critical point, ideally the ”true” C-parameters of the studied
ARMAX model. The algorithmic parallelism provided by the mixtures makes the parallel function
evaluations of the MDS accessible to a single-processor machine. With the C-parameters of the
used mixtures specified by the MDS procedure, the rest of estimation relies on the proposed
ARMMAX-QB or MARMAX-QB algorithms.

Promising properties of the underlying theory and algorithms are illustrated on simulated
and real data sets. Besides some sensitive testings, the comparisons between the MMQ and MAQ
estimations with another proposed PE-related estimation are also provided.
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Symbols and Notations

Conventions

If x denotes a quantity, generally

:L,*

Ny
Tt
List

(t)

J 1

the range of z

the number of elements in the set x*

the value of x at discrete time instant ¢
the i-th entry of z;

a sequence up to time t, z(t) = {x1, ..., x4}

x)dzr integral of function f(x) over the range of z, i.e.,

[ f(x)dz = [,. f(z)dx.

Notations

reserved letter for probability (density) function

conditioning symbol

conditional probability (density) function

horizon of discrete time instants, ¢ < oo

white noise at discrete time instant ¢

input variable at discrete time instant ¢

output variable at discrete time instant ¢

observed data at discrete time ¢, dy = (y, ut)

particularly, d(0) is the fixed prior input-output information
observed data sequence up to time ¢, d(t) = {d1, ..., d;}

regression vector, consisting of the past history of data d(¢ — 1) and
the current input wu;

transposition symbol

observed data vector Wy = [y, ;)

the value of the unmeasured pointer at discrete time instant ¢, the
pointer labels the active component of a mixture at each time instant
pointers sequence up to time t, p(t) = {p1, ..., Pt}

the range of p;, p* = {1,---,n,}, where n, is identical to the number
of mixture components
mixing probabilities of mixture a = [az, ..., ay,]

regression coefficients
overall unknown parameter set of a model, its precise meaning varies
with the local context
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Diy (k)

supp [ g(7)]

arg mazxy g(x)

A

Abbreviations

pf

pdf

a.s.

KL

SISO
MIMO
AR(X)
ARMA(X)

denote point estimates, such as ©, 6, &. In particular, g(t|t — 1) is one step
prediction of output

denote true description of a system, such as true pdf [/ f(.) or true parameter
value of parameter 9O

x is distributed accorded to f

Gaussian (normal) distribution of x with mean p and variance r
Gauss-inverse-Wishart probability density function of # and r, which owns
sufficient statistics V' and v, where V is called extended information matrix
and v is the degrees of freedom

Dirichlet probability density function of «, which is shaped by a positive
vector statistic

matrices determining L' DL or LDL' decomposition, L is a lower triangular
matrix with unit diagonal elements and D is a diagonal matrix with positive
diagonal elements

likelihood function, i.e., joint probability density function of observed data
sequence d(t), which is taken as a function of the parameter ©
Kullback-Leibler distance of a pair of densities

gamma, function

beta function

Kronecker delta

the support of nonnegative function g(x), i.e., the subset of * on which
g(xz) >0

the value of x that maximizes function g(z)

forgetting factor in stabilized forgetting, A € (0, 1]

flattening rate in iterative construction of prior probability density function,
Ae(0,1)

expectation operator

trace of a matrix A

inverse of a matrix A

determinant of a square matrix A

natural logarithm of z, i.e., In(z) = log,(z)

exponential of x

proportionality, i.e., equality up to a normalizing factor

define as

unit coordinate vector

probability function

probability density function

almost surely

Kullback-Leibler distance

single-input single-output

multi-input multi-output

AutoRegressive model with/without exogenous input
AutoRegressive moving average model with/without exogenous input
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MA moving average part of a ARMA(X) model
ARMAX (ng,np,ne) ARMAX model with input part, output part, MA part having orders
Ng, Ny and n., respectively

OE output error model

MARMA(X) a general finite mixture of ARMA(X)

ARMMA (X) a special finite mixture of ARMA(X), with all its ARMA(X) components
having a common AR(X) part

PE prediction error method

PEB PEB estimation of ARMAX, i.e., a coupling of the PE method with
Bayesian estimation

LS least-squares method

EM expectation and maximization algorithm

QB Quasi-Bayes estimation algorithm

MARMAX-QB QB estimation of MARMAX with known MA parts

ARMMAX-QB QB estimation of ARMMAX with known MA parts

NM Nelder-Mead simplex method

MDS multidirectional search method

MAQ MAQ estimation of ARMAX, i.e., a coupling of the ARMMAX-QB
estimation with the MDS search

MMQ MAQ estimation of ARMAX, i.e., a coupling of the MARMAX-QB

estimation with the MDS search.
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Chapter 1

Introduction

In the study of dynamic systems, a problem frequently encountered is that, in addition to
possibly being excited by known inputs, the systems may also be driven by some unmeasured
stochastic disturbances. ARMA(X) model (AutoRegressive Moving-Average with/without eX-
ternal input) has been one of general tools to describe such systems in the presence of colored
disturbances.

Exploiting Bayesian inference and finite mixture analysis, the thesis studies this standard
model and investigates two types of its finite mixtures with emphasis on both theoretical and
algorithmic aspects.

1.1 State of the Art

After being apparently first used in a statistical framework by Cochrane and Orcutt in 1949, the
ARMAX model was introduced into system identification by Astrém and Bohlin in 1965. Then
Clarke introduced it into control literature in 1967. Since then, the ideas and techniques related
to this model have played more and more important role in such diverse areas of science and
technology as signal processing, adaptive control, communication, and biomedical engineering.
It is also known to be equivalent to the linear state-space model that forms the corner stone of
modern estimation and control theory, see [1] or [2].

Describing stochastic disturbances as a moving average (MA), the ARMAX model gains certain
flexibility. It, however, also results in a nonlinear problem in its estimation with the product of
two unknown quantities, namely the MA coefficients and the noise term, presenting in the cost
function. Therefore, actually in many situations, such as adaptive control, to avoid the associated
convergence and computational difficulties of ARMAX, people often still have to use another
simpler AR(X) model (Auto-Regression with/without the eXogenous input). The popularity of
the ARX model is mainly because that its estimation is simple and can be performed exactly by
Least Squares (LS) method. Despite its usefulness, however, ARX has limited applicability since
it copes only with uncorrelated process noise.

Among the multitude of estimation variants of ARMAX models, it seems that approzimate
minimization of the sample variance of the Prediction Error (PE) method, [1] or [2], and Eztended
Least Squares (ELS), see for example, [3], have become two popular options. Especially, the PE
method has become something like a golden standard. These methods are, however, oriented
only to point estimation. Consequently, only asymptotic information on precision of estimates
is available. It implies that other tasks, for instance structure estimation, are weakly supported.
Moreover, these methods impose the restrictive constraint on MA part by requiring its strict
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stability and may face a range of problems when this assumption is (almost) violated.

From Bayesian viewpoint, the difficulty in estimation of ARMA(X) stems from the lack of
sufficient statistic with the dimension smaller than the number of data samples. In 1981, Pe-
terka [4] relaxed the stability restriction on the MA part and proposed a real-time Bayesian
estimation of AR(X) part when its noise covariances are known. Essentially, he showed that
LD factorization of the known covariance/correlation matrix acts as an optimal, time-varying,
pre-whitening filter on the observed data. The LD type filtering does not impose any constraint
on the MA part and allows its roots to be even at stability boundary. What’s more, the resulting
estimation with a chosen canonical state representation was proved to be algorithmically simpler
and numerically more robust than the standard Kalman filter. The filtered data are then used
in standard Bayesian estimation of its ARX part. Consequently, the uncertainties are under the
control, Bayesian structure estimation can be used [5], etc.

Since it is rarely met in practice that the noise covariances of the model are known, Pe-
terka [6] then extended the idea in 1986 to real-time estimation of ARMA(X) model under a
weaker condition that the MA part is known only up to its C-parameters. Unfortunately, further
attempts, such as to estimate the unknown C-parameters recursively, are hindered by the time-
varying evolution of the LD filtering. To be at least able to select the most suitable one among
finite prior candidates of the C-parameters, Peterka [7] proposed one improvement in 1989 based
on a Bayesian comparison of hypothesis. He considered all chosen C-parameters simultaneously
and evaluated a posteriori probabilities on hypotheses that specific C-parameters in the given
set is the most suitable alternative. This improvement gives, however, no general rule how to
generate such candidates. Moreover, regardless of the quality of the candidates, a posteriori
probabilities converge to a zero-one vector in a generic case.

Thus, the extensive Bayesian use of ARMAX model is hindered mainly by the difficult estima-
tion of its C-parameters. One of motivations of the thesis is to prolong the line of Peterka and to
address improved Bayesian estimation of this model by dealing with its unknown C-parameters.

Meanwhile, the literature review and practical applications have indicated that a single
model cannot deal with some complex problems, for instance, modelling non-homogeneous data
in econometrics. Here non-homogeneous means that the data of interest arises from two or more
sources. As a result, some more comprehensive models are called for combining the features of
different models to describe and learn the behavior of complex systems. As one of such options,
probabilistic finite mixtures have become a popular modelling tool with a widespread practical
use [8]. To explore possible improvements on Bayesian approach by means of probabilistic
mixtures is the other motivation of this work.

Bayesian inference simply considers finite mixtures as a special case of a multi-parameter
estimation problem. Consequently, it is not difficult to obtain formal Bayesian solutions for
mixtures, as long as estimation of individual components can be made. The problem is that nu-
merical implementation of the formal solution is plagued with computational difficulties. For this
reason, the formal solutions have to be complemented by some feasible approximations. With the
developments of numerical analysis and increasing power of computers, there are several numer-
ical methods currently available to provide such approximation with certain efficiency. Among
them, Expectation-Maximization (EM) algorithm has become the most often used method, see
for example [9]. Generally, this method is used in parameter estimation problem when the data
are incomplete or have missing (hidden, unmeasurable) values [10]. Estimation of mixtures is one
of its well-known applications. The EM algorithm provides a local maximum with a monotonic
but rather slow convergence. Another classical method worth to be inspected is Markov Chain
Monte Carlo (MCMC) technique. The MCMC technique can be easily combined with Bayesian
approach to fit mixtures, but its known applications mainly deal with low dimensions [11]. The



1.2 Aims and Ideas 3

thesis is mainly interested in and shall further study a relatively new method, Quasi-Bayes (QB)
estimation method [12]. As an extension of a known algorithm [8], it has good properties, a
Bayesian motivation as well as predictable and feasible computational complexity. Our interest
in the QB method has been driven by these reasons.

Encouraged by these progress in mixture estimation and the success in estimation of single
ARX model, estimation of ARX mixtures can be used extensively. Naturally, it is desirable to
extend the existing mixture scheme of ARX to the case of ARMAX.

The thesis investigates the properties and the estimations on two types of ARMAX mixtures:
One is MARMAX model, a general finite mixtures with ARMAX components. It is a natural
mixture generalization of the ARMAX model. The other one is so called ARMMAX model, which
is a novel system description tool introduced by the thesis. The ARMMAX model is a special finite
mixture of ARMAX with the common ARX part in all its ARMAX components. Obviously, such
a model structure depicts well the situations when there is a fixed deterministic input-output
relationship described by the common ARX part while characteristics of the noise parts vary.

1.2 Aims and Ideas

The thesis generally attempts to improve Bayesian modelling and parameter estimation in the
presence of stochastic colored disturbances. More specifically, we attempt to achieve the follow-
ing aims:

1. To reexamine Bayesian modelling from the view of probabilistic dynamic miztures.

Although Bayesian approach can be easily taken to fit mixture models, a consistent mix-
ture overview of Bayesian modelling [4] so far has not been well built yet. There are several
possible ways to introduce mixtures into Bayesian modelling. Since mixtures can be in-
terpreted as universal approximators of probability density functions [8, 13], the simplest
and the most natural way is to make use such a property.

However, facing our inability in estimation of general dynamic mixtures, we introduce and
interpret a restricted description of dynamic mixtures in a feasible way.

2. To reexamine the LD type filters. The emphasis is put on the extended LD filter where
the MA part is known only up to its C-parameters [6].

This helps to clarify a few its implementation issues for efficient practical use of this type
filters. It will also make a basis for us to address the case when the MA part is unknown.
The whole remaining study will rest on these two reexaminations.

3. To investigate the two types of ARMAX mixtures, namely the MARMAX model and the
ARMMAX model. Specifically, to study and compare their modelling properties, to explore
their feasible estimation algorithms and their possible applications.

The extended LD filter and the QB estimation, especially QB estimation of normal ARX
mixture, throw light on how to efficiently estimate ARMAX mixtures when the MA parts
are given.

The developed MARMAX-QB and ARMMAX-QB estimations provide a quantitative measure
of descriptive quality of ARMAX components in parallel. In this sense, the two ARMAX
mixtures actually provide certain approximate ”algorithmic parallelism” to inspect several
ARMAX’s in parallel.
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4. To improve Bayesian parameter estimation of ARMAX model by dealing with its unknown
C-parameters. Our improvement is to reduce the uncertainty of the MA part by a point
estimation of the C-parameters and preserve Bayesian setting up to the ARX part.

Since only a point estimate of the C-parameters is sought for, a natural idea is to use the
existing point estimation methods, such as PE and ELS, for this task and then combine it
with Bayesian method for the rest estimation. Following this idea, we consider a PE-related
method, so-called PEB method. The nice properties of the PE method enable the hybrid
PEB method to deal efficiently with the unknown C-parameters in high dimension (> 2).
However, the PEB method inherits the requirements on the stability of the C-polynomial
as well from the PE method.

As pointed out by Peterka, the C-polynomial with its roots lying close to/on the unit
circle is often a rule rather than an exception, especially in case of fast sampling. Thus,
the potential difficulties in the stability requirements on the C-polynomial motivated us
to adopt the idea of the extended LD filter rather than the other often used filters, such as
stable inverse. This also encourages us to follow the line of Peterka to seek for approaches
with their applicability not being limited by such stability requirements and the dimension
(> 2) of the problem.

We shall show that estimation of the C-parameters can be formulated as an unconstraint
maximization problem and how the use of the extended LD filter restricts greatly our
choices to deal with such a problem. With its simplicity, robustness and guaranteed
convergence properties [14], a derivative-free multi-directional search (MDS) method [15]
has finally been selected. As this method is generally more suitable to be executed in
parallel, it is of our interest to make its parallel computing easier to be accessible to a single-
processor machine. The approximate ”algorithmic” parallelism of the ARMAX mixtures
suggests us one interesting way to tackle this issue. The trick is to combine the MDS
method with the ARMMAX-QB/MARMAX-QB estimation in the approximate ”algorithmic
parallel environment” of ARMMAX/MARMAX model for the parallel evaluations of objective
function in the MDS. It finally leads to so-called MAQ and MMQ estimation algorithms.

1.3 Thesis Layout

After the introduction of this chapter, the remaining eight chapters of the thesis are organized in
the following way: The reviews of Chapter 2 and Chapter 4 form the theoretical and algorithmic
basis. The reexaminations of Chapter 3 and Chapter 5 present a restricted dynamic mixture
modelling and the mechanism of the LD type filters. Aided by them, the four chapters followed
are devote to the core issues and the conclusions. Specifically, the individual chapters are
characterized as follows.

As a preliminary, Bayesian Paradigm together with finite mirtures and simplex-based direct
search methods are briefly recalled in Chapter 2.

In Chapter 3, we reexamine Bayesian modelling from the view of probabilistic finite mixtures.
The reexamination enables us to consider the standard classes of models, such as ARX, ARMAX,
together with mixture of ARX, MARMAX, ARMMAX models within a unifying modelling frame-
work. Our rest discussion actually is devoted to the exploration of the relationships between
these models and their Bayesian estimations.

The existing Bayesian solutions: estimation of ARX models, approximate QB estimation of
mixtures and QB estimation of ARX mixtures are recalled in Chapter 4. To provide the main
schemes and principles necessary for achieving satisfactory estimation results, the essences of
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several important related techniques are included as well. Chapter 5 revises the estimation of
the ARMAX with known MA part, more exactly, LD type filters. These two chapters serve as
an algorithmic basis, especially the extended LD filter plays important role in the estimation
algorithms developed later.

Chapter 6 focuses on the investigation of the MARMAX and the ARMMAX mixtures. We
shall discuss some of their modelling properties and propose the MARMAX-QB/ARMMAX-QB
estimations method to address the estimation and prediction of these mixtures with given C-
parameters of the MA parts.

Three hybrid methods, the MAQ and MMQ methods together with the PEB method, are
then presented to improve Bayesian estimation on an ARMAX model. This gives the content of
Chapter 7.

The effectiveness of the proposed estimations are illustrated on some simulated and real data
sets, which goes to Chapter 8. It demonstrates the promising properties of the MAQ and MMQ
algorithms and confirms the underlying theory. Besides some sensitive tests, we present the
comparisons between these two estimations and the PEB method as well.

In the concluding chapter, 9, we summarize the main results and outline some directions of
future work.

Some notes on the scopes

It is also fair to point out several restrictions of our discussion:

e The discussion focuses mainly on single-output (SO) normal (Gaussian) type models.
majority of estimations presented can be easily extended to the multi-output (MO) case.

For the estimation of ARMAX model, when the assumption that the MA part is known can
be made, the majority results of Chapter 5 are directly applicable on its MO extension,
see [6]. When such an assumption cannot be made, MO extension of Chapter 6 may not so
straightforward. The approach studied in [16], where a MO linear system was described by
a collection of SO models and thereafter the identification based on such kind of entry-wise
models, provides one possible way to deal with the problem.

To show the main idea how to extend the various SO QB mixture estimations to the
corresponding MO cases, we present the factors level description of mixtures and the
corresponding QB mixture estimation in Appendices at the end of the thesis.

e The proposed estimations are applicable on the the processes with external input. However,
the problem of designing control strategy is not included. A detailed treatment related to
the ARMAX models can be found in [17].

e The important structure estimation is not treated at all. Bayesian structure estima-
tion [5], [18] can directly be used to relax this restriction.



Chapter 2

Preliminaries

The Bayesian modelling and estimation are used throughout the thesis. We shall briefly review
its philosophy here together with some other relevant material which we need for the later
discussion, such as finite mizture distributions and simplex-based direct search methods. Since
the complete discussion of these issues are beyond the scope of the thesis, only the main ideas
and principles behind are included here.

2.1 Bayesian Paradigm

The Bayesian methodology is one of techniques developed to cope with uncertainties and to solve
statistical problems [4]. Generally, its final purpose is to provide a rational basis for some kind
of decision-making by providing probability distributions of unknown quantities conditioned on
the available knowledge.

2.1.1 Uncertainty and Probability

In Bayesian view, random means uncertain rather than a sole description of a process of observing
a repeatable event. According to it, all forms of uncertainty can be inherently quantified by
means of probability. Not only input-output data but also some unknown quantities such as
model parameters and hypotheses are taken as random. Instead of being interpreted in terms
of limits of relative frequencies or other objective ways, the concept of probability in Bayesian
inference is used to describe uncertainty about the unknown random quantities.

Numerical values of probability of a random variable are described by probability density
function (pdf) or probability function (pf) according to the type of the argument. The manip-
ulation with the pdfs relies on a few properties and relations, we summarize some of the most
important ones as follows.

Proposition 2.1.1 (Calculus with pdfs) For any random wvariables o, 3,7, the following
properties and relations hold for their pdf/pf:

e Nonnegativity

fla, Bly), f(alB,7), f(Bla, ), flaly) = 0.

e Normalization

| e idads = [ f(algvda = [ fa)da =1.
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e Independence

If a does not depend on (3, then they are mutually (unconditionally) independent.
f(alB) = f(a) & f(Bla) = f(B) & fle, B) = f(a) f(B)- (2.1)
If o, B are conditionally independent under the condition v, then

falB,y) = flaly) & f(Bla,y) = F(B])- (2.2)

Note that conditional independence does not imply unconditional independence.

e Marginalization

flal) = [ #8005, 1510) = [ #@Bin)da. (23)

This relation determines the marginal distribution from the corresponding joint probability
distribution.

e Chain rule

fla, Bly) = f(alB, ) f(Bly) = f(Ble,v) faly). (2.4)

This relation gives the rule how a joint probability distribution can be decomposed. It
together with the marginalization operation determine the structure of the Bayesian rea-
soning.

If we rewrite (2.4) as

~ flBv)
flalB,y) = ) (2.5)

then, it describes the conditioning operation.

e Bayes rule

_ f@BNfBly)  flalBy) f(Bly)
T8l = =50y = THalB) (B dp (2:6)

This famous rule shows how a prior pdf f(B|y) can be corrected in the light of new infor-
mation brought by the quantity . This rule plays a critical role in the updating the prior
pdf into a posteriori one when dealing with Bayesian estimation and prediction. Note that
the integral in the denominator is just a mormalizing factor which does not depend on (3.

Note that the above relations are described only for the continuous case for simplification
of the formulas. However it has to be kept in mind that the integration has to be replaced by
summation whenever the argument of pdfs is discrete. In addition, for simplification on notation
of pdfs, we do not explicitly and repeatedly state the conditions which are fixed when solving
a given problem, we also omit the conditions which shall not create confusions when not stated
explicitly.

In the analysis and design, Kullback-Leibler (KL) distance [19] is often used as a convenient
tool to measure the proximity (distance) of a pair of pdfs.
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Proposition 2.1.2 (KL distance) Let f, g be a pair of pdfs acting on a common set z*. Then,
the Kullback-Leibler distance D(f||g) is defined as

D(fllg) = |

xz

) f(z)In (gég) dx, (2.7)

and it has the following basic properties
1. D(fl|lg) > 0, i.e., nonnegativity holds.
D(fllg) = 0 if and only if f = g almost everywhere on z*.
D(f|lg) = oo if and only if g =0 and f > 0 on a set of positive measure.
D(fllg) £ D(g|lf), i-e., symmetry doesn’t hold.

SR CIR

Triangle inequality doesn’t hold.

2.1.2 Bayesian Modelling

To interact with a system, a description of the system properties, a model is needed. Modelling
of relationships among a sequence of observations is to provide a means to help us to get better
understanding about the inspected complex systems. This section is devoted to a brief review
of Bayesian modelling. It shall be reexamined from the view of finite dynamic mixtures in the
next chapter.

System Models in General

Consider a stochastic system on which a time-oriented discrete data sequence di,do, -, dg, - -
is observed at discrete time instant ¢ = 1,2, ---. The sequence of data observed on the system
up to time t is denoted by

d(t) = (du, -, de),

where data record d; is composed of a pair of variables

dt = (utv yt)v

with u; defining a directly manipulated input to the system at time ¢ and y; defining the output,
i.e., the observed response of the system at time t to the past history of data d(¢ — 1) and the
current input u. If y; is a scalar value, one speaks of a SO (single-output) system, otherwise, it
is a MO (multi-outputs) system. The discussion of the thesis is based on SO models.

Adopting Bayesian viewpoint, a complete description of the stochastic behavior of data at
time instant ¢ is given by a joint conditional pdf

fldid(t = 1)) = f(ued(t — 1)) f (yelue, d(t — 1)). (2.8)
The set of the first factor in the right hand of the equation
fuld(t = 1)) (2.9)

gives actually the control strategy. They describe the transformation, in general stochastic, by
which the input u; is determined on the basis of the known past history of the process. The
collection of the remaining factor

f(ytlug, d(t — 1)) (2.10)
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gives a general description of system, a system model, in the form of a set of probability densities
conditioned on data. It models the dependence of the output y; on the known past history of
input-output data, including the current input.

In practice, we usually have just partial knowledge of the system because of the existence of
the unknown parameter ©. Therefore, only a parametric system model is available as a set of
conditional probability densities

f(yi|ug, d(t — 1),0). (2.11)

It is parameterized by a finite dimensional parameter © and describes the dependence of the
output y; not only on the data but also on the unknown parameter ©.

A model is called linear, if the expected value of output y; conditioned on the past history
of the input-output process depends on the past data linearly and if the variance of y; does not
depend on these data.

Modelling of Continuous Output

To make the general parametric system model (2.11) practical, it is necessary to express it
through a finite number of parameters. The parametrization can be done in many ways differing
in underlying assumptions.

Usually, if the output 1 is a continuous random variable, it may be useful to introduce a re-
lated random variable e; as a difference between the output y; and its expected value conditioned
on the past history of the input-output process

€t = yt—y)t(ut,d(t—l),@), (212)

where the conditional expected value of output is
g}t(ut, d(t - 1), @) = E[yt|ut, d(t - 1), @] = /ytf(yt\ut, d(t - 1), @)dyt (213)
One of important properties of the sequence e;,t = 1,2, - - - is its whiteness:
e these random variables have zero unconditional expectation, [e;] =0
e they are mutually uncorrelated, Elete;_;] =0, i #0, i <t.

If we assume that the entire form of the distribution of e; is independent of the past input-
output data

fletlus, d(t = 1)) = f(er) (2.14)

with the one-to-one mapping between y; and e;, the system model then can be given in the form
of a stochastic equation
Y = g}t(ut, d(t — 1), @) + e (215)

If further on, the normality (Gaussian type) of e; is assumed and the conditional expected
value gy = §¢(ug, d(t — 1),,0) is expressed as a function of the past history of the input-output
data through a finite set of parameter, parametric system model (2.11) can be specified as

f(yelue, d(t —1),0) = Ny (9¢,7e) (2.16)

Here r, is the time-invariant noise variance, when it is unknown, it should be included into the
parameter collection and estimated as well.
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Thus, under the above assumptions, the modelling problem for the problems of continuous
output can be greatly reduced. Supposing various approximations of the g (u, d(t — 1)), we
can arrive at different type models classes such as classic linear ARX model and ARMAX model.
The detail derivation of some selective models go to the next chapter together with the mixture
models under a mixture modelling framework.

2.1.3 General Bayesian Estimation and Prediction

In this section, we shall give an overview of general Bayesian estimation and prediction. The
majority discussion of the rest thesis inspects how to apply this general theorem to provide
specific parameter estimation and prediction for several dynamic processes driven by stochastic
disturbances.

In the classical approach, the parameter is assumed to be deterministic but unknown con-
stant, therefore a point estimate is mostly used.

Unlike it, the principle of the Bayesian approach is to take the uncertainty of the unknown
parameters into account and consider the parameter itself as a random variable to which a cer-
tain prior pdf is assigned, even though it is actually a fixed unknown constant. Thus, Bayesian
paradigm is known to lead to conceptually consistent treatment, since expectation in a cost
function is taken with respect to both the stochastic behavior of the system and the uncertainty
of parameter. However, the price for this is that it meanwhile increases enormously the cor-
responding ”information state”, given by the conditional probability of the original state and
the parameter. Consequently, only the cases where the conditional probability can be speci-
fied through a finite-dimensional sufficient statistic, recursive updating of the full ”information
state” is practicable. For instance, the difficulty of the parameter estimation of ARMAX is due
to the lack of such kind of sufficient statistic whose dimension is smaller than the number of
data used for estimation.

Given a parameterized model, based on observations of other random variables that are
correlated with the parameter ©, Bayesian inference explores the relations among three types
of pdfs:

e a priori pdf f(0]d(0)).

It expresses the preliminary (expert) knowledge of the unknown parameter or uncertain
events and has to be assigned by analysis of the certain system or by the experience before
the observed data are incorporated. Specification of a proper prior distribution has not
been completely solved yet, especially in the context of mixtures. We shall review the
iterative construction of prior pdf with flattening, one of most advanced techniques, in
Chapter 4.3.4.

o predictive pdf f(yi|ue,d(t —1)).

It is used to predict the next output y; based on the known past history of the input-output
data.

e a posteriori pdf f(O|d(t)).

It characterizes the uncertainty of unknown parameters or other events in light of the data.

Meanwhile, the existence of unknown parameter © generally leads to the conditional pdfs
describing control strategy depend on the parameter, i.e.,

Flug|d(t — 1),0). (2.17)
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However, to be able to deal with the possible applications in adaptive control with a closed
control loop allowed, a so-called natural conditions of control have to be used to excluded this
dependence.

Definition 2.1.1 (Natural Conditions of Control) Undernatural conditions of control, the
input ug may depend on the unknown parameter © only through the past observed data d(t —1).
It means

flugd(t = 1),0) = f(ugld(t = 1)),

or equivalently the sole external signal u; brings no information on the unknown parameters ©,

f(®lug, d(t — 1)) = f(Old(t —1)).

With the informative knowledge provided by input-output data and a given prior, the Bayes
rule (2.6) immediately gives us a tool for the sequential updating of parameter ©.

Proposition 2.1.3 (General Bayesian estimation and prediction) Under natural con-
ditions of control, Definition (2.1.1), consider a parameterized model (2.11) of the studied sys-
tem. then
i) the evolution of a posteriori pdf f(©|d(t)) of unknown parameter is given by the recursion
d(t—1 dit—1 d(t
f(yelue, d(t — 1)) Z(d(t))
where the given prior pdf is written in the form f(©|d(0)) = f(©), since we have no data
available at time t = 0. The product L(d(t),©) with the inserted observations d(t), called
likelihood function,

t
L(d(t),0) = H fld(m)|d(r — 1), ur,©), (2.19)

=1

contains all information about © which can be extracted from data d(t). Z(d(t)) is a normaliza-
tion factor, which is independent of ©,

T(d(0) = [ L), 0)f(©)de.

i1) the predictive pdf is

f(ylue, d(t — 1)) = /f(yt|uta d(t —1),0)f(eld(t —1))de, (2.20)
or alternatively it can be expressed in terms of Z(-) as follows

Pl = 1)) = HEEED. (2.21)

Remarks 2.1.1

1. Note that it is often not easy to apply the above analytical Bayesian solution to a given
particular case, for example in mizture estimation. But formal solution shows clearly the
essence of the estimation and helps to construct reasonable approximations. In the later
chapters, we shall return to this issue for some detail discussion.
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2. The recursive evolution of the pdf f(©|d(t)) allows us to interpret a posteriori pdf as a
prior one before processing the new observations.

3. Let M be the set of models, which are considered as candidates to represent the system
under study, label its elements by a “structural” pointer s and consider it as a part of
parameters of system. Then, when it is unknown, the uncertainties we have to face are
not only the uncertainty of model parameters © but also that of the structure of model.
Bayesian approach treat also the latter uncertainty. The resulting structure estimation s
solved elegantly as a special case of estimation [5]. For simplicity, throughout the thesis,
we assume the structures of the studied models are given as prior information.

2.2 Mixture Distributions

In order to describe and learn the behavior of complex systems, probabilistic mixtures together
with multiple models, neural networks and cluster analysis are widely used to combine the
features of different models. In practical applications, mixtures often also serve for describing
a system with some unmeasurable data. In another words, mixtures have the ability to learn
complex topologies. A finite mixture model describes the observed data by a convex combination
of a finite number of probability density functions [8].

2.2.1 Description of Static Mixtures

Static mixtures with time-independent components and mixing weights are described here in
this section. The thesis is mainly devoted to the discussion on dynamic processes, therefore a
description of dynamic mixtures is needed. This will be considered in the next chapter when we
address mixture modelling.

Suppose that a random variable or vector x takes values in a sample space, x*, its distribution
can be represented by probability density functions in the form

Tp
flz) = Z ap fp(z), rex* (2.22)
p=1
where np
ap >0, p=1,---.np Y ap=L1 (2.23)
p=1

With a finite number of components, i.e., n, < oo, then we shall say x admits a finite mizture

distribution and f(x) is a finite mizture density function. The parameters o = [ay,- -, ap,]
are called mizing weights. Individual pdfs, fy(x),7 = 1,---,n,, describe the components of the
mixture.

Component densities often have specified parametric forms, so that the corresponding finite
parametric mizture has the following description

Tp
f(z|®) = Zapfp(x‘@p) (2.24)
p=1
where each component f,(x|0),) is parameterized by the associated unknown parameters ©,,.
The complete parameters set of the mixture is the collection of all component parameters and
mixing weights,

O = {ay, @p};:il :
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Here if the number of components in mixture, n,, is unknown, then it may has to be included
into © to take this uncertainty into accounts.

Note that in the above descriptions, components are denoted in a way consistent with [8].
Another notation

f(@]©p,p) = f(]0p).

is actually adopted in our later discussion

Components need not to come from the same distribution, but most often they do. Different
kinds of mixtures are formed, with the corresponding components modelled in a variety of dis-
tributions, like Gaussian (normal), Poisson, Gamma, log-Normal, Multinomial/Binomial, etc..
Normal mixtures, with an unspecified number of components, provide a flexible class of models
which is widely used in statistical modelling. As remarked by Ferguson (1983) [8]:

An arbitrary density on the real line can closely be approximated by a normal mizture.

2.2.2 Related Issues
Universal Approximation Property

Mixtures can be interpreted as universal approximators of probability density functions or ap-
proximators based on radial basis functions. It means [8]:

Provided the number of component densities is not bounded, certain forms of mix-
ture can be used to provide arbitrarily close approxrimations to a given probability
distribution.

Meanwhile, the insight could be also brought to universal approximation property of mixtures
from wuniversal approximation theorem of neural networks [13]. In the neural networks context,
the hidden units provide a set of ”functions” that constitute an arbitrary ”basis” for the input
patterns when they are expanded into the hidden-unit space. These function are called radial
basis functions. Based on them, mixture models are closely related to neural networks. For
example, Gaussian mixture models can be viewed as a form of generalized radial basis function
network in which each Gaussian component is a basis function or ‘hidden’ unit.

The above universal approximation property of mixtures is important by providing necessary
theoretical support for the approximations. It plays a critical role when we build a mixture-
based Bayesian modelling framework later on. Nevertheless, from practical viewpoint, both
universal approximation theorem of neural networks and the universal approximation property
of mixtures have their corresponding limited practical value. In the mixture Bayesian modelling,
Chapter 3, we shall return to this issue for finite dynamic mixtures.

Mixture Estimation

Efficient mixture estimation is one of most general statistical problems related to mixtures.
In earlier period, Graphical method and Moments method were used for parameter estimation
of mixtures. However, graphical method can only provide crude estimation of the underlying
parameters while moments methods suffer from that it is not practical for a large number of
parameters. Compared to them, Maximum Likelihood Estimation, Bayesian FEstimation have
got more and more attention for their convenient statistical properties.

By Bayesian inference, a finite mixture is simply a special case of a multi-parameter estima-
tion problem. There is little additional note needed to be said to apply Bayesian paradigm to
finite mixtures and obtain their formal Bayesian solutions. However, the implementation of these
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formal Bayesian solutions are plagued with computational difficulties. The difficulties essentially
stem from the complex analytical expression of a posteriori probability density function. The
calculation of likelihood function and its integral would be the main computational burden.
Consequently, the number of terms that need to be stored and handled blows up exponentially
and cannot be handled exactly.

Fortunately, with the developments from numerical analysis field and increasing power of
computers, there are many numerical methods available to provide certain efficient approximate
estimation of mixtures, such as EM (Expectation- Maximization) algorithm [9], MCMC (Markov
Chain Monte Carlo) techniques [11], and QB (Quasi-Bayes) estimations [12], to name some of
them. The thesis adopts the QB mixture estimations: the existing estimation of normal ARX
mixture is recalled in the next chapter, then we extend the QB estimation to the estimations of
ARMA(X) mixtures in the Chapter 6.

The number of components

Another problem often encountered in mixture analysis is that the number of components in
mixture, ny,, is unknown so that we need to take this uncertainty into accounts as well. How
to decide the number of components is an important but difficult issue in many mixture appli-
cations. It often leads to the problems closely related to cluster analysis, see for example [20].
Together with the structure of individual parametric components, it is consider under structure
estimation by Bayesian inference.

For the mixtures used in the thesis, in the case of mixture of ARX, this issue is well solved
as a part of structure estimation, see [18]. The idea could be well extended to ARMAX mixtures
cases. In particular, when employing ARMAX mixtures to estimation single ARMAX, the number
of components in the mixtures coincides with the number of vertices in the simplex of the MDS
algorithm and can be determined by the order of the MA part, see Chapter 6.

2.3 Direct Search Methods

When dealing with the estimation on the C-parameters of an ARMAX model later in Chapter 7,
a general unconstrained optimization problem is encountered,

min g(z) (2.25)
to minimize the scalar-valued nonlinear function g(x) of n-dimensional z, z € R", g : R" — R.
Here, the information about the gradient of the objective function g(x) is unavailable.

To solve the above problem, although there are many methods potentially can be exploited,
we have focused on two important examples of direct search methods or more exactly simplez-
based direct search methods. A direct search method does not use numerical or analytic gradients
and use only function values to minimize the nonlinear function g(z). A detailed discussion of
direct search methods can be found in [21] or [22]. Simplex-based methods are a large subclass
of direct search methods. Note that it should not be confused with the simplex algorithm of
Dantzig for linear programming.

Essentially, simplex-based methods evolve simplez, an pattern with the evolving n—+1 vertices
in R",

S=<uz, -, xpy1 >
Thus, in two-dimensional space, a simplex is a triangle; in three-dimensional space, it is a pyra-
mid, etc. Generally, non-degenerate simplez is needed. A simplex is said to be non-degenerate,
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if the n edges adjacent to any given vertex in the simplex span the space R". Two types of
non-degenerate simplex are most often used:

e A regular simplex. It has all edges in the same length with the specified orientation. It
can be created by a simple procedure described in the book [23].

o A right-angled simplex. With a given initial guess z1, the rest vertices of a right-angled
simplex is defined to be of some fixed distance in each of n coordinate directions from the
initial guess point.

zp =21+ Bply, p=2,---,n+1, (2.26)
where 1,, denotes the unit coordinate vector and the scalar 3, is non-zero.

Some other kinds of non-degenerate simplex are also possible to be used. For example, the
routine of the Nelder-Mead (NM) simplex method in Matlab toolboxes adopts a different type
initial simplex.

Each iteration of a simplex-based direct search begins with a simplex from previous iteration.
Next, one or more trial points are generated by some operations from the current simplex. Then
the function values of the generated trial points are compared with the function values of the
vertices in the current simplex. After each operation, if at least one trial vertex has a better
function value than that of the current best vertex, the operation is called successful. To accept
one operation, we replace the vertices of current simplex by the trial points after the operation.
The iteration is terminated as a new simplex with its vertices function values satisfying some
termination conditions.

The following two subsections reviews two of the most popular simplex-based direct search
methods, respectively.

2.3.1 Nelder-Mead Simplex Method

As the most famous simplex-based direct search method, Nelder-Mead (NM) simplex method,
was proposed by Nelder and Mead in 1965 [24], based on the idea of Spendley, Hext, and
Himsworth [25]. Despite of its popularity in practice, this method has been perceived as com-
pletely "heuristic”, since it is often plagued with a weak convergence analysis and some other
troubles [21]. A recent progress has been reported in [26] that: In R!, it is robust and conver-
gence to a stationary point is guaranteed under the standard assumptions. In higher dimension
R"™ n > 1, some general properties can also be proven, but no property can be provided to
guarantee global convergence even for R?2.

The NM method creates a sequence simplex and modifies them to adopt the local landscape
by five possible operations: reflection, expansion, inside contraction, outside contraction, shrink-
age, each associated with a scalar of the operation. A nearly universal choice of these scalars
are

p=1 x=2, £=1/2, 0=1/2

where p, x and o are used for reflection, expansion and shrinkage, respectively. £ is for both
inside contraction and outside contraction. In Figure 2.1 and Figure 2.2, the effects of the
possible operations are shown for the case of two dimensions in one iteration of the search..
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Figure 2.1: NM simplices after a reflection step and an expansion step. The original simplex is
shown in dash with the best point denoted as x; and the worst one as 3

Figure 2.2: NM simplices after an outside contraction, an inside contraction and a shrink step.

One of advantages of this method is that it requires only one or two function evaluations
in each iteration to construct a new simplex while the other methods may need much more
function evaluations. It searches a strict improvement over the worst point. There are two
possible outcomes of the NM method at each iteration: A single new test point shall be accepted
and replace the worse vertex for the next iteration; or if a shrink is performed, a set of n new
points, containing the best point, forms the new simplex for next iteration.

To perform the NM search, a routine is available in Matlab optimization toolbox [27] and
the following basic description shows its principles.

Algorithm 2.3.1 (NM algorithm)

Initial phase

o Select an initial guess x§ and define a non-degenerate initial simplex formed by n + 1
vertices
<$(1)7"'7x91+1 >

e Select the scalars, p, x, 0 and &, for reflection, expansion, contraction, shrink operations.
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e Select stopping rules and set the counter j := 0.
e FEvaluate the function values g(z?), fori=1,--- ,n+1.

e Order labels so that g(z9) < g(29) < -+ < g(2%,,),i = 1,---,n + 1, using some given
tie-breaking rule, see [26].

Iterative phase
Do while stopping rule is not met, set j := j + 1.

1. Reflection

o Define a reflected point x”
o=+ p(z - 2lh),
where T =Y 1" 4 x{fl/n is centroid of the best points (i.e., all vertices except the worst
point :Uf;rll)
e FEwaluate the function value g(z").

o Accept the reflected point " and terminate the iteration, ifg(:c{fl) < g(z") < g(xi™1).
2. Expansion
If g(ai™h) > g(a"),
o Define expanded point x¢

€

2¢ =T+ x(a" —F) =T + px (7 — ).

e FEwvaluate the function value g(z€).

o Accept the expanded point x€ and terminate the iteration, if g(z€) < g(z"). Otherwise,
accept the reflected point x” and terminate the iteration.

e Go to step 5.

3. Contraction If g(z") > g(xi™1), perform a contraction between T and the better one
between :Uz;ll and x".
a. outside if g(zJ71) < g(z") < g(:cfljrll), i.e. x" is strictly better than xZ;ll
e Define outside contracted point

2=+ &x" — ).
e FEwaluate the function value g(z€).

o Accept the outside contracted point x¢ and terminate the iteration, if g(x¢) < g(a”).
Otherwise, go to shrink step 4.

b. inside if g(z") > g(x},1),
e Define inside contracted point ‘
=z —&ZT— xf;ll)
e FEwaluate the function value g(z).

e Accept the inside contracted point x° and terminate the iteration, if g(z¢) < g(z"*1).

Otherwise, go to shrink step 4.
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4. Shrink
e Define and accept n new shrink points, fori=2,--- n+1
v =af o] - o)
o FEwvaluate the function values g(xf), fori=2,--- n+1
5. Order

Order the labels so that g(:cjl) < g(a:jz) << g(miﬂ)),i =1,---,n+1, using some given
tie-breaking rule [26].

2.3.2 Multidirectional Search

Inspired by the NM simplex method, multidirectional search (MDS) [15] has brought a new
interest in direct search methods since 1989. It offers the following favorite features:

e [t can be executed in parallel to take advantage of the computational parallelism.
e It does not require the information about the derivative of the objective function.
e It has strong proved convergence properties and robustness.

e It works well with "noisy” function values.

A great advantage of the MDS is its strong convergence analysis [14]. However the guaranteed
property is paid by a rather slow convergence.

The basic idea of multidirectional search algorithm is to perform concurrent searches in
multiple directions. Its goal is to construct a sequence of points, denoted as the best vertices of
the simplex, that convergence to a critical point, ideally a maximizer of the objective function.

In contrast to the NM method, the MDS method searches a point strictly improving over the
best vertex instead over the worst point as the NM does. Meanwhile, it requires 2n function
evaluations in each iteration which is higher than that needed in the NM. But the acceptance
criteria used in both methods is simple decrease rather than sufficient decrease.

There are three possible operations used in the MDS method: reflection, expansion, contrac-
tion with the associated operation scalars: p, x and &, where unit reflection factor p = 1 is
almost always used so that we shall not explicitly denote it later on. Although these operations
are defined in the same way as the corresponding ones of the NM, they now involve the n edges
of the simplex emanating from the best vertex so that the entire simplex is reflected, expanded,
contracted. Figure 2.3 shows these three possible operations in the j-th iteration of search:

Firstly, a reflection step takes place. Through the best vertex x; of the current simplex, the
remaining vertices are reflected to give the trial reflected points

xszm{_l—xg_l, for i=2,---,n+1
If at least one reflected vertices has a better function value than the best vertex, the reflection
is called successful and then one expansion step is followed. In this operation, reflected edges
are further expanded to generate the new expanded vertices and check if any improvement can
be made by increasing the searching step length,

:x{_1+x(x{_1—xj_1), for i=2,---,n+1

e
Z; i

7

with expansion factor y.
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e
XZ

Figure 2.3: Three possible trial steps of the MDS method at the j-th iteration, where the current
simplex is < 29, z}, ¥} > with z; denoting the best point while 3 denoting the worst one. The
trial points of the three operations are distinguished by the upper index.

Only when some expanded vertex is better than all the reflected vertices, we would accept
the expansion simplex, otherwise we accept the reflection. Thus when reflection is successful,
the final accepted simplex would be either a expansion simplex or a reflection one.

If a reflection is unsuccessful, i.e., none of reflected vertices gives a better function value than
the best vertex, then a natural response is try to restart the search with a smaller simplex. It
means that one contraction step is taken and accepted to contract the current original simplex
by halving its every edge.

c 1
T, =

le'f —|—£(x{71—mjfl), for i=2,---,n+1
with the contraction factor &.

The MDS method preserves all information about the relative scaling elements across all
iterations of the search, while the same cannot be said for the NM simplex algorithm. In
contrast to the NM, the shape (angle) always remains the same as that of the original one in
the MDS, although the size of the simplex is also modified all the time. The expansion and
contraction steps automatically adjust the size of simplex by re-scaling the lengths of all the
edges in the simplex. So that if the initial simplex is either too small or too big, the algorithm
can rescale accordingly. But it, particularly in the case of too big initial simplex, may prove to
be quite costly to spend a significant number of iterations to expand or contract simplex before
any real progress can be made.

For implementation, the MDS needs to specify

e An initial simplex Sy =< a9, ---, 29 41 > to start the search procedure.
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If the problem is scale dependent so that the variable may differ signifcantly in scale, the
use of right-angled simplex would be advantageous, otherwise, the use of a regular simplex
is a ”safer” choice.

Scaling scalars associated with the operations.

Formally, the MDS only requires the rational expansion factor y is strictly greater than
1, i.e., x > 1, while the contraction factor £ is a rational number between 0 and 1, i.e.,
0 < ¢ < 1. But they are usually assigned the following values

xX=2, £=1/2
and unit reflection factor.
Stopping criteria.
The following two rules are often used:

— To limit the number of iterations j by an upper bound J.

— To inspect the relative size of simplex measured by the length of the longest edge
adjacent to the best vertex z

1 ) )
Afg%’%”xz ]| <e €€(0,1), j<J

Where A = max(1, ||/ |]).

The multidirectional search algorithm described here shall help us to understand the specific
features of its tailored versions MMQ and MAQ in Chapter 7.

Algorithm 2.3.2 (MDS algorithm)

Initial phase

Select an initial guess z9.

Define a non-degenerate initial simplex

<~’U(1]v T 7x9L+1>
formed by n + 1 vertices.
Select expansion x € (1,00) and contraction € (0,1) factors
Select stopping rules.
Set j, the counter of the total number of iterations used in the search, to zero.
Evaluate the function values g(x%), fori=1,---,n+ 1.

Swap the labels so that g(z9) = argmin; g(29),i =1,---,n+ 1.
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Iterative phase
Do while stopping rule is not met, set j := j + 1.

1. Reflection

e Define n reflected vertices

- - '
T=2r —al, 1=2,---,n+ 1

L

e FEuvaluate the function values g(x}), fori=2,---,n+ 1.

e Go to the step 2 if min g(z}) < g(x ). Otherwise, go to the step 3.
2. FExpansion

e Define n expanded vertices

e 1
x5 =

e (@] =, i=2,--,n+1

o FEwvaluate the function values g(x§), fori=2,---,n+1.

o Accept the expanded simplex, if min g(x§) < min g(x}), i.e., replace xf by the expanded
trial points x§, for © = 2,---,n + 1. Otherwise, accept the reflected simplex, i.e.,
replace z] by the reflected trial points x}, fori=2,---,n+ 1.

e (o to step 4.
3. Contraction

e Define n contracted vertices

— ol gl — T, i=2,,n+1.

c
Z; i

7

o FEwvaluate the function values g(x§), for i =2,---,n+ 1.
e Accept the contracted simplex, i.e., replace xf by the contracted points x5, for i =
2, n+1.

4. Swap ' '
Swap the labels so that g(x]) = argmin; g(z}),i =1,---,n+ 1.



Chapter 3

Stochastic Models of Dynamic
Systems

Although finite probabilistic mixtures have become a fruitful application branch of Bayesian
approach, a consistent mixture view of Bayesian modelling so far has not been well built yet.
First section of this chapter is devoted to the discussion on one possible dynamic mixture
modelling. In particular, a restricted description of dynamic mixtures is introduced and inter-
preted.
The remaining sections present the descriptions of some specified parametric models within
a unifying modelling framework.

3.1 Dynamic Mixture Modelling

Recall that to provide a parametric system model by Bayesian modelling is to define a family of
conditional probability density functions, see Chapter 2.1.2

f(yelue, d(t —1),0), for tet*

We then face a problem of approximating such probability density functions.

The universal approximation property of mixtures discussed in Chapter 2.2.2 is applicable to
dynamic cases as well. Thus, dynamic mixtures can be interpreted as universal approximators
of probability density functions or approximators based on radial basis functions.

Based on these two facts, it is conceptually straightforward to extend dynamic mixtures to
the Bayesian modelling as follows

Tp
Flyelue, d(t =1),0) = > ap(ue, d(t —1),0)f(yelue, d(t —1),05,p), (3.1)
p=1
with its dynamic mixing weights satisfying
Tp
ap(ubd(t - 1)7 6) >0, p=1,--- » lps Z O‘p(utv d(t - 1)7 @) =1 (32)
p=1

and its p-th dynamic component being described by the density f(y:|us, d(t — 1), 0y, p) with its
associated component parameter set O,,.
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To interpret the dynamic mixture description (3.1), let us consider a sequence of discrete
random variables {p;}ies+, each variable p; has n, possible values {1,---,n,} = p*. Then, the
operations of marginalization (2.3) and chain rule (2.4) imply the following relations

flyelue,d(t = 1),0) = > fly,pe = plug, d(t — 1),0)
p=1

= Fplun d(t — 1), 0, 0)f (e = plund(t — 1),0).  (3.3)
p=1

Note that here an assumption that the output 1; and the variable p; at time ¢t are conditionally
independent of the past history of the variables p(t — 1) = {p1,- -+, pi—1} has to be used.

Similarly to the natural conditions of control, Definition 2.1.1, if we assume that a sole
external signal u; brings no information on the unknown variable p;, such that

f(pr = plug, d(t = 1),0) = f(pr = pld(t —1),0), (3.4)
and represent it by means of a data-dependent variable
ap(d(t —1),0) = f(pe = pld(t —1),0). (3.5)

Thus, the discrete random variables {p; }tc¢+ can actually be considered as pointers which label
the active component at each discrete time instance .

Obviously, using (3.4) — (3.5) to rewrite (3.3), we then obtain the general description of
dynamic mixtures (3.1) under the condition that a sole external signal u; brings no information
on the unknown variable p;.

Unfortunately, the complexity associated with the general description limits our ability to
handle the corresponding estimation. Therefore, a restricted description of dynamic mixtures
with constant mixing weights o,,(©) and dynamic component f(y:|us, d(t — 1), 0y, p)

f(yelug, d(t —1),0) = i ap(O) f(yelue, d(t — 1), 0y, p), (3.6)
p=1

is actually used in the thesis. Note that in the later discussion, the notation ay, = a,(©) is often
used for the sake of simplicity.

The possibility to use such a restricted description is supported by a fact revealed by the
proposition below.

Proposition 3.1.1 (Asymptotic convergence of mixing weights) If we assume that a sole
external signal uy brings no information on the unknown variable py, i.e., (3.4), the stochastic
process with random variables {ay,(d(t —1),0),t € t*} is almost surely a convergent martingale.

Proof: For a fixed © and p, using the definition (3.5) and the definition of expectation, we have
S[Oép(d(t), ®)|d1> teey dtflv 6] = /f(pt = p|d(t)7 @)f(dt|d(t - 1)3 @) ddt (37)

Meanwhile, using chain rule (2.4), the following relation holds

f(pe = pld(t),0) = f(p}(:dﬁ’d‘(ijd_(tl)_é))’@). (3.8)
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Substitute (3.8) into (3.7). After a cancellation, it follows

Elap(d(t),O)ldr,ndi1, €] = [ flpe = p.dild(t ~1),0) dd, (3.9)
Applying marginalization (2.3) and the definition (3.5) into (3.9), we finally obtain
Elap(d(t),0)|dr,....,di—1,0] = ap(d(t —1),0). (3.10)

Thus, according to [28], the process with random variables {a,(d(t —1),©),t € t*} is a martingale.
On the other hand, it is non-negative and bounded, since it corresponds to the probability (3.5).
According to martingale convergence theorem [29)], it is then straightforward that o, (d(t—1),0)

convergent almost surly to a constant probability. 0

Clearly, this fact allows us to interpret our restricted dynamic mixtures (3.6) as an asymptotic
limit of the general dynamic description (3.1).

Remarks 3.1.1

1. It is easy to verify that the description of static mixtures with time-independent components
and mizing weights, which is given in Chapter 2.2.1, corresponds to the general description
(3.1) restricted by the assumptions,

Not only a(ut,d(t —1),0) is assumed to be constant and a sole external signal u; brings
no information on it

a(u,d(t —1),0) = a(O), (3.11)

or in another words, the variable p; at time t is conditionally independent of the past
history of the data and the variables p(t — 1),

f(pe|ug, d(t — 1), p(t — 1),0) = f(p:|©),

but also the output y; at time t is conditionally independent of the past history of the data
and the variables p(t — 1), such that

f(yelu, d(t = 1), p(t = 1),0) = f(:[©). (3.12)

2. Note that, with the condition on the number of components, i.e., n, < 0o, finite miztures
may be not always able to arbitrarily closely approximate a probability density functions by
means of finite mixtures. In this sense, the finite mixture view of Bayesian modelling can
not substitute the general Bayesian modelling as long as finite miztures are in use.

3. The discussion of the thesis shall focus on the above component level description of SO miz-
tures. A brief discussion of the description of MO miztures is given in the Appendiz, where
each component is further decomposed into a product of factors for predicting individual
scalar output entries.

4. To design estimation method for the mixztures, it is convenient to adopt alternative de-
scriptions of mixtures (3.6) using the introduced discrete random pointer p,. We leave
the detailed discussion on this issue to Chapter 4 and Chapter 6 when we discuss mizture
estimations for specific models.
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5. Structure of a parameterized mixture is determined by the number of components and
structures of parameterized components. Structure of a parameterized normal regression
component is determined by the structure of the corresponding regression vector. In the
case of ARMA(X), the structure of the MA term has to be taken into account as well.

To allow single-component mixture, n, = 1, some general model classes, such as ARX, AR~
MAX, can be derived similarly to the traditional way [4] and [17].

With more than one components, 1 < n, < 0o, some more comprehensive model properties
could be introduced, for example non-linearity. At present, the most research of the mixture
field is focused on extending the basic models classes to the corresponding mixtures.

Selectively, some parametric models are described and introduced in the remaining sections.
All of them are used in the thesis.

3.2 ARX Models

Consider the mixture description of dynamics (3.6), and assume that:

i) There is only one component;

ii) The older input-output data cannot bring any additional information about the expected
value of output. Or in other words, only a finite and fixed length of the past input-output
history is significant for the prediction of the output.

iii) The expected value of output depends on the past data linearly and its variance does not
depend on these data.

The last two assumptions imply the expected value of output § = g(us,d(t — 1),0) =
Elyt|ued(t — 1),6] is a linear function of the finite number, say n, of foregoing input-output
history

g}t(ut, d(t — ].), 9) = (9/11115, (313)
where ' denotes transposition. The data d; = [y, us] are observed at time instance ¢ < oo.
The ny,-dimensional vector 1y = [Ut, Ye—1,Ut—1, "+, Yt—n, Ut—n]  is often called regression vector,
it is a known function of the finite past data. The vector 6 = [by,a1,b1, -, an,b,]" contains

regression coefficients. It is a vector of unknown parameters with its dimension identical to 7.
Note that for the sake of simplicity, a constant term is missing here and in the model description
given below, although such a constant term usually can not be eliminated if the parameters are
unknown.

Applying it into the reduced system description (2.15), i.e.,

yr = Je(ug, d(t —1),0) + e, tett

we come to the input-output relation of ARX model (Auto-Regression with eXogenous input),
which is also often called as linear regression

yr = 0" + ey (3.14)

If it is assumed to be Gaussian type, then the ARX model is determined in terms of conditional
pdfs as

f(yt‘utvd(t - 1)’ @) = Ny(9/¢t77‘e), te t* (315)
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and parameterized by
@ = {9’ T‘e},

where 7. = E[ese}] is constant noise variance.

Note that, when the regression model is identified from real data in practical applications,
it is important to incorporate a sufficient long past history into the model and guarantee the
white noise properties of e;. It means that although only a finite and fixed length of the past
input-output history are assumed to be used, this length n must be chosen sufficiently large.

3.3 ARMAX Models

Although ARX model is a very useful tool for system description, its applicability is limited
by lacking of adequate freedom in describing the properties of the disturbance term. To add
flexibility to it, the disturbance term could be described as colored noise, a moving-average (MA)
of white noise.

Consider the mixture description of dynamics (3.6), and assume that:

i) There is only one component;

ii) The expected value of output 9 = @ (us, d(t — 1),0) is a function of the entire past history
of input-output data.

To express g; through a finite number of parameters, let us assume it is defined recursively
through a finite number m of past data and a weighted sum of n. past history of itself

Ne m m
G+ clii = Y gi—i+ Yy biwi, (3.16)
i—1 i=1 i=0

where § = g;(us, d(t—1)). In a similar way as in the last section, a constant term is intentionally
ignored for simplicity.
Applying it into the reduced system description (2.15), i.e.,

Yt = Qt(d(t - 1)7ut7 9) + €t,

then it gives the input-output relation of ARMAX model (Auto-Regression with Moving Average
noise and eXternal input)

n n Ne
Yo=Y Qi+ > bit_i + Y cieri + ey, (3.17)
i=1 i=0 i=1

where a; = g; — ¢; with g;, ¢; being appropriated complemented by zeros. n = m + n. is a finite
number.

Our discussion on the estimation of this model later on is closely related to that of the linear
regressions (3.14). For this reason, we shall rewrite the above description of the ARMAX models
in regression form as follows

yr = 0 + vy, (3.18)

where the regression vector i, and regression coefficients 0 are defined in a similar way as last
section. vy is a colored noise with zero mean and the finite time-invariant correlation span

Elvu—;] = riy, for 1=0,1,...,n,
= 0, for [i|>ne,
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which can be considered as a moving average (MA) defined on the sequence of mutually uncor-
related and thus entirely unpredictable white noise {e;},

Ne
UVt = E Ci€t—j
i=0

Note that cp = 1 has to be defined here. ¢y, - - -, ¢, are often called C-parameters and represented
by an n.-dimensional vector
C=let, e,

Obviously, the following relation then holds
i = Te ch:z CiCk—i, i = Oalv"-ancv

where r. is constant noise variance. Moreover, if the known past history of input-output is long
enough so that the influence of initial conditions g;, for i = 1,---, max(n, n.), may be negligible
and if the normality of e; can be assumed, then an ARMAX is fully parameterized through the
following parameter set

© = {0, r, C}
or alternatively
© = {60, C}.
Throughout the thesis, the part described by
Oa = (0,7¢)

is often discussed as a whole and called as the AR(X) part of the corresponding ARMA(X) model.
For this reason, we have introduced such a notation here.

In the above discussion, we considered the ARMA(X) models as an extension of regression
models assuming that infinitely long past history of the process was available for the observation.
The recursive definition (3.16) of the conditional expected value §; makes sense only when the
stability restriction is imposed on the C-polynomial (in the backward shift operator z~1)

ClzH)=14crz7t 4. 42

by requiring all its roots to lie strictly outside the unit circle. However, when the ARMA(X)
model is understood as a generator of the process driven by a colored noise v¢, then the stability
of the C-polynomial C'(z~1) need not to be required.

These two interpretations of the ARMA(X) models are conceptually rather different also in
the meaning of the random variable e;:

e It is considered as the difference between the true value of output and its expected value.
e It is considered as a fictitious, unobservable and actually nonexisting white noise.

When it is defined in the former way, it could be reconstructed from the observed data, while it
is not possible for the latter case if the C-polynomial is unstable.

Thus, we shall handle the ARMAX models in such a way that these two case are not distin-
guished. The study of LD type filters later on in Chapter 5 shall show, with a finite and growing
length of observations, the time-invariant C-parameters have to be considered as time-varying,
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they have to be recalculated and update in real time. It also shows they finally converge to
the coefficients of a stable polynomial even when the original C-polynomial is unstable. This
favorable fact makes us able to relax the stability requirement on the C-polynomial C(z7!) to
allow its roots to be even at the stability boundary.

Remarks 3.3.1

Note that an alternative form of the standard ARMAX model is known as Delta model. Al-
though their theoretically equivalence, Delta model appears to be numerically more robust and
therefore more suitable for real-time computation in adaptive and self-tuning control.

Both the ARMAX and Delta models can be transformed into a canonical state-space model.
State space representations make the the algorithms compact and uniform for both univariate
and multivariate case for control, prediction, and system identification. They may require less
the computational complexity as well.

A study on these alternative representations of the ARMAX model can be found in [17]. The
treatment on the problems of the related estimation, prediction and control can be found there
as well.

3.4 ARX Mixtures

Consider the general description of mixtures (3.6), and assume that:
i) There is more than one but a finite number, 1 < n, < oo, of components;
ii) Each component is described by one ARX model.

Then (3.6) is specified as an ARX mixture,

Tp
Flyelug, d(t —1),0) = > o f(yelue, d(t — 1),0p), (3.19)
p=1
with the mixing weights o = [avg, - - -, ay] satisfying
np
apZOa pzlv"'anpv Zapzla
p=1

Each normal ARX component is described by f(yi|us, d(t —1),0p) = Ny, (0,01, e p), and pa-
rameterized by the unknown associated parameter ©, = {6,,r.,}. The parameter set © of the
mixture is the collection of all components’ parameters and mixing weights

O = {a, @P}Zil )

This type of mixtures has been the most popular option in the applications of mixtures.

3.5 MARMAX Models

Consider the mixture description (3.6), and assume:

i) There is more than one but a finite number, 1 < n, < oo, of components;

ii) Each component is described by one ARMAX.
Then, the general description (3.6) is specified as a natural mixture generalization of the au-
toregressive moving average. For this reason, we call it MARMAX model.
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At each time instance t, the probability density function (pdf) of the MARMAX is given as

f (yelu, d(t=1),0) = > apf(yelue, d(t 1), 04, Cy) (3.20)
p=1

where mixture weights satisfy
p
ap207 D= 17"'anp> Zapzlv
p=1

and f(y¢|ug, d(t —1),0,,p, Cp) describes its p-th ARMAX component. Here, the parameter O,
and Cp = [cp1, -, Cpn.| describe the ARX part and the C-parameters of the p-th components,
respectively.

If the normality is assumed, the MARMAX model is then parameterized by the parameter set

0 ={0,, 9., a},
with

@a = {ea,p}zilv @ayp = (017 T€§p)7 60 = {Cp}zih o= [041, B Oznp] (3'21>

3.6 ARMMAX Models

Consider the mixture description (3.6), and assume:

i) There is more than one but a finite number, 1 < n, < oo, of components;

ii) Each component is described by one ARMAX;

iii) There is a common deterministic ARX part in all ARMAX components while the charac-
teristics of the stochastic noise parts vary.

These assumptions lead to the general description (3.6) being specified as a special mixture
of ARMAX. This novel type model describes well the cases when common ARX part has a physical
meaning of interest while C-parameters of the stochastic disturbances may vary. Since it mainly
offers flexibility with respect to the MA noise term of the model, we call it ARMMAX model.

The probability density function of the ARMMAX model at each time instance t is

f (plurd(t—1).0) = 3" apf(plur, d(t — 1),0,.C) (3.22)
p=1

with mixture weights

p
ap >0, p=1,--+,ny, Zapzl.
p=1

and f(y¢|u, d(t — 1), 04, C)p) describing its p-th ARMAX component.

Here the last assumption implies that there is a common parameter set @, parameterizing
the ARX parts of all ARMAX components. Thus, if the normality is assumed, the ARMMAX model
is parameterized by

0 ={0,, 9., a},

with the common parameter set of the ARX parts ©, = {0, 7.} and different C-parameters of
the MA parts ©, = {C’p};ﬁl.



Chapter 4

Bayesian Estimation and Prediction

Some existing Bayesian estimations and predictions are reviewed in this Chapter. They provide
the solid basis for us to discuss the estimations of the more difficult cases, such as MARMAX,
ARMMAX and ARMAX models, in the later chapters.

To provide the main schemes and principles necessary for achieving satisfactory estimation
results, the essences of the critical related techniques are included as well. The emphasis here is
put on the grasping their main ideas. More detail treatments and broader views can be found
in the given references.

4.1 Common Tools

There are many issues that may influence our ability to solve estimation and prediction tasks
for various parameterized models. In particular, several of them are in common for all models
considered in the thesis. For this reason, we first collect a few tools to deal with them, before
we go to the Bayesian solutions of each specific model individually.

4.1.1 Estimation with Forgetting

Estimation with forgetting is often used to track slow changes of parameters and make the
system adaptive. This is because the assumption that a certain set of parameters is strictly time-
invariant is difficult to be fulfilled precisely in practice. Moreover, the parameters of the chosen
model structure can be slightly different for different time intervals, since any mathematical
model can be only an approximate description of reality. Thus, it is practically important to
extend parameter estimation to parameter tracking.

The basic idea of tracking slowly varying parameters is to grasp both the significant time-
varying relationships and the slow changes effects. This requires a compromise between

e admitting time variations of ©,
e assuming that O =~ O;.

The approach called stabilized forgetting [30] is often used to handle this optimization problem.
In terms of KL distance (2.7), the above requirements can be equivalently expressed by
minimizing two KL distances simultaneously

e D(flIf)
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. D(foA)

where f = f(©,41 = O]d(t)) is the pdf achieving the compromise between both of the require-
ments, f = f(Opr1 = O; = O|d(t)) is the pdf assuming no parameter changes after measuring
d; and before processing di11, while f4 = fa(0;41 = O|d(t)) is an alternative one describing
parameters after some changes.

To control the compromise, let us select a positive weight A € (0, 1], then the desired pdf f
is found as a minimizing argument of the functional

D (fl1£) + (1= NP (fllfa), A€ (0,1] (4.1)
It coincides with the geometric mean of the pair of pdfs
foc AN (4.2)
or in the complete form
(@111 = Old(t)) o [£(Or1 = ©; = Old(E)] [fa(Ors1 = Od(1)] (4.3)

Here the parameter A is called forgetting factor, which can be interpreted as the probability that
the parameters do not change. It can be either taken as a tuning knob or estimated.

Remarks 4.1.1

1. Loosely speaking, the forgetting operation is a compromise between the selected alternative
fa and the posterior pdf f(Oir1 = Oy = ©O|d(t)). It preserves the basic property of time
updating so that the posterior pdf on parameters propagates without obtaining any new
measured information.

2. The alternative pdf fa(-) expresses the belief where the parameters might move within the
time interval [t,t + 1) while we have no new observable information. This pdf has to be
specified externally and possibly updated in the each time iteration.

Often, the pessimistic uniform alternative pdf (x 1) has been used. This special case
of stabilized forgetting is called exponential forgetting. It allows us to follow relatively
fast parameter changes but it forgets the accumulated information with, often too high,
exponential rate. For this reason, it is worth to preserve what we feel as a guaranteed
information. The prior pdf f(Oi11 = ©) is a typical, reasonably conservative, choice of
the alternative pdf fa(Oiy1 = ©ld(t)).

3. The non-trivial alternative pdf prevents us to forget the “guaranteed” information as it
is always incorporated after exponential forgetting. This stabilizes the whole learning and
reflects positively in its numerical implementations. Without this, the posterior pdf may
become too flat whenever the information brought by new data is not sufficient.

4. It is instructive to inspect the influence of forgetting on the data. The older the data are, the
stronger "flattening” is applied to the corresponding model. Consequently, the older data
influence the estimation results less than the new ones. Data are gradually “forgotten”.
This explains why the probability X\ is called forgetting factor.

5. The forgetting factor X is a parameter fized throughout the time updating. The closer to
unity the X is, the slower changes are expected, or in another word, the higher weight the
posterior pdf corresponding to the time-invariant case gets.
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4.1.2 Algorithm of Dyadic Reduction

To counteract numerical troubles in the decompositions and minimizations of a nonnegative
definite quadratic form, an elementary algorithm of Dyadic reduction is often in need [17].

Proposition 4.1.1 (Algorithm dydr) Consider a symmetric nonnegative definite or a posi-
tive semi-definite matriz matriz M of the rank 2, it can be expressed as a weighted sum of two
dyads,

M :[&m[%lgbhmw, (4.4)

where Dy, Dy, are positive scalar weights and a,b are column vectors of the same length ng > 2.
The representation (4.4) is not unique and different equivalent forms can be found to define
the identical kernels of the single quadratic form. If we consider a special equivalent form

M :[Qﬂ[%jgdhgﬂ, (4.5)

where the j-th entries of ¢, d have the fixed values
¢;=1,d; =0, fora chosenje{l,...,n.}. (4.6)

Then, the second decomposition (4.5) can be determine uniquely by means of the first one (4.4),
using a simple algorithm given below.

Algorithm 4.1.1 (Dyadic reduction: dydr)

1. Set D, = a?Da + b?Db.

2. Setaw =42 y="tl
DoD
4. Set Cj = 1, dj =0.
5. Bvaluate remaining entries of c,d as follows ¢; = xa; + yb;, d; = —bja; + ajb;, i # j.

4.1.3 Exponential Family

It is practically important in real time identification to require only a finite and fixed size of
the memory to store finite-dimensional sufficient statistics without loss any useful information.
It is implied by the fact that the data set is growing persistently in real time. For instance,
the difficulty in the estimation of ARMA(X) model stems from the lack of such kind of sufficient
statistic.

Therefore, it is of interest to study model classes with such property. They are essentially
from exponentially family, enriched by uniform distribution with unknown boundaries. Many
useful properties are associated with this family. In particular, they are known to have conjugate
(self-reproducing) prior and fixed-dimensional sufficient statistics which exist both for unknown
parameters and the predicted output.

To be able to deal with dynamic cases, our definition of exponential family additionally
requires a non-standard recursive updating of the data vector as below.
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Agreement 4.1.1 (Exponential family) For a random variable y;, its pdf is said to belong
to the dynamic exponential family if it can be written in the form

f(yilue, d(t = 1),0) = f(yeltr, ©) = A(O)D(¥y) exp[(B(¥y), C(0))], (4.7)

where (-,-) is a functional operator linear in the first argument. In our context, we define

!/

x'y if ¢, y are vectors, ' is transposition
() = { ’ (4.8)

tr[z'y] if x, y are matrices, tr denotes trace
Uy = [ye, ¢)] is a finite dimensional data vector, it is recursively updated by (d¢, Vy_;) — ¥,
A(O®) is a non-negative scalar function of parameters O,
D(W,) is a non-negative scalar function of data Uy,
B(¥,),C(0O) are functions of ¥ and © respectively, with compatible finite and fized dimensions.

An inspection whether there is a wider set of parameterized models with the advantageous
properties of the exponential family opens just a narrow space [31]. Essentially, the exponential
family coincides with all parameterized models that are sufficiently smooth functions of parame-
ters and with supports independent of parameters. Uniform distribution with unknown constant
boundaries represents one of a few feasible examples of pdfs out of the exponential family. The
class of models that lead to a finite-dimensional characterization of pdfs occurring in filtering is
even more restrictive. Its discussion can be found in [32].

The general functional recursions of updating parameters and predicted outputs for the
exponentially family can be reduced to an algebraic recursive updating of the finite-dimensional
sufficient statistics, i.e., a array V; and a scalar 4. Thus, the estimation and prediction within
this family becomes very simple, especially with the conjugate prior pdf.

Proposition 4.1.2 (Estimation and prediction in exponential family) Under natural con-
ditions of control (Definition 2.1.1), consider a model, which belongs to the exponential family
(4.7) and is parameterized by time-invariant ©, = © € O*.

i) If a priori pdf f(©) is assigned with its support being restricted by the indicator x(-) of
the set ©*, then a posteriori pdf of unknown parameters is

L£{d(t),0)f(©) _ A"(0)exp[(Vi, C(0))x(©)f(O)

old(t)) = , 4.9
Feld) = = T (4.9)
with statistics recursively evolving as
‘/t:‘/t—l"i‘B(\I/t)a Vo=0; vi=1_1+1, vy=0. (410)
The predictive pdf is given by
D(\Ijt)I(‘/’t_l + B(\I/t), Vi1 —|— 1)

ug, d(t—1)) = , 4.11
el d( ~ 1) T (411)

where normalization integral Z(V,v) is evaluated by
I(V,v) = /A”(G) exp[(V, C(©))]f(©)x(©) d®. (4.12)

it) If the prior is chosen in the conjugate form determined by the “prior statistics” Vy, v
f(©) o< A*(0) exp[(Vo, C(©))]X(0O), (4.13)
and if
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o Vh, vy replace the zero initial conditions in (4.10),
e the indicator x(-) is formally used as the prior pdf.

Then the estimation and prediction formulas (4.9), (4.11) are valid.

i11) If further on, stabilized forgetting with forgetting factor X\ € [0,1] is used to allow slow
parameter changes and the alternative pdf given in the conjugate form determined by the pair of
sufficient statistics Va., vay, then, the estimation and prediction formulas (4.9), (4.11) remain
valid with the statistics evolving according to the recursion

Vi = AMVici +B(¥y)) + (1= X\)Vayr, Vo given (4.14)
v = AMv—1+1)+ (1= Nvag, v given.
Note that D(¥;) doesn’t influence the estimation and it enters the prediction independently.

Meanwhile, the need to have the complete recursion of the statistics explains why our definition
of exponential family requires for the possibility to update W; recursively.

4.2 Bayesian Solution to ARX Models

After having recalled the common tools, we shall review the existing Bayesian estimation of ARX
models in this section and QB estimations of (ARX) mixtures in the next section.
Consider a parameterized normal ARX model described by the pdf

Fyilug, d(t — 1),0) = Ny, (0", re), (4.15)
with

(yr — 0'1y)?

2re

Ny (01, re) = (277) 0P exp {— } = (27re) %S exp {—Q}Rtr (U, 051,071, 0'])} ,

(4.16)
where 1 is the regression vector, while ¥ = [d, ']’ is the data vector, ’ denotes transposition.
The model is parameterized by the regression coefficients and noise variance of the driving white
noise

© = {0,r.}.

For simplicity, the index e of r. is often omitted whenever there is no danger of confusion.

It is straightforward to apply general Bayesian estimation and prediction to ARX models.
However, in order to get numerically satisfactory identification result, several techniques specif-
ically related to this model have to be complemented.

4.2.1 GiW Conjugate Prior Pdf

Recall the fact that normal regression models belong to the exponential family, with the following
correspondence to the general form of exponential family (4.7)

Na(0'¢,r) = A(©)D(¥)exp[(B(¥),C(0))],

with
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AO) = r05, D(\IJ)E(QW)_O'5, B(¥) = v’
c©) = 2r Y-1,0[-1,¢], (B,C)=tr[B'C].

Thus, it possess conjugate (self-reproducing) prior in the form of Gauss-inverse-Wishart (GiW)
distribution

T70.5(1/+nw+2)

exp {—2lrtr(V[—1, 671, 9’])} L (17)
where n,, is the dimension of regression vector 1, it is identical to the dimension ng of the vector
of regression coefficients. The positive definite matrix V; is called extended information matrix.
It together with the degrees of freedom 1, form sufficient statistics for estimation of ©.

The updating of V; is often poorly conditioned and the use of its L' DL decomposition is the
only safe way to counteract the induced numerical troubles. This issue is reviewed in the next
section, and thereafter the properties of the GiWW pdf are summarized there using the L' DL
decomposition.

4.2.2 L'DL Decomposition of Extended Information Matrix
L'DL Decomposition

The recursively updating of the extended information matrix V plays decisive role in the esti-
mations. If a stabilized forgetting with a forgetting factor A is used, as a specification of (4.14),
the V in the context of AR(X) is updated by the recursion

Vi = AMVim1 +9,0)) + (1= A\)Vay

Obviously, a recursion of the type
V =\V + v/

is then required in essence. Here the positive scalar § actually equal to the forgetting factor A.
However, in the mixture context, normal ARX component/factor requires a weighted updating
Vi—1 + wW, ¥} instead. This leads 3 to be determined by both the forgetting factor A and the
weight w, see the next section for details. Thus, for the completeness and consistence of the
notations, we introduce the quantity (.

On the other hand, as mentioned earlier, the updating is poorly conditioned and it is neces-
sary to use an L'DL decomposition

V =LDIL, (4.18)

where L is a lower triangular matriz with o unit diagonal and D is a diagonal matrix with
positive diagonal entries. Experience confirms that a safe processing of real data records is
impossible without it. Moreover, the evaluation of the determinants occurring in various pdfs
becomes simple with the L' DL decomposition.

Hence, it follows that the recursion V.= AV + UV’ has to be converted into a recursion
L'DL = AL'DL + BYV¥’ and the updating is applied on the matrices L, D instead of V itself.

Based on the algorithm of Dyadic reduction, Proposition 4.1.1, the efficient updating can be
performed as follows

Algorithm 4.2.1 (Updating of L'DL = AL'DL + V¥’)
1. Setb=, D, = f.
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2. Call the function dydr, for j = \il, U — 1,...,1
[Dj, Dy, j-th column of L',b] = dydr (A % Dj, Dq, j-th column of L', b, j)

The book [4] or [33] gives a broader view on the L' DL decomposition.

Complete squares and minimization of quadratic forms

Next, let us examine how the L' DL decomposition of the extended information matrix V works
on the quadratic forms
(-1, '|V[-1, 0]

in the considered pdf (4.16).

Proposition 4.2.1 (Completion of squares) Consider the extended information matriz V
and its L' DL decomposition, and partition them according to the two parts ordered in the cor-
responding data vector ¥ = [y, ']

!
V = [ ‘Yy ‘é{w ] , Vy is scalar, (4.19)
vy P
1 0 D 0
L = , D= Y , D, is scalar.
[Lw Lw} lo Dw] ’
Then, it holds for the quadratic form that
1, 0V[-1,0] = [-1,0|L'DL[-1¢) = (6 — ) Ly;DyLy(0 —0) + D,  (4.20)
6 = L;lLyw = least-squares estimate of 0,

where the quadratic form is minimized by 0 = 6 and the minimum reached is D,.

Basic properties and moments of GiW pdf

Now, let us summarize some properties of the GiW pdf based on the above partitioned L' DL
decomposition of the extended information matrix.

Proposition 4.2.2 (Basic properties and moments of GiW pdf) Forthe GiW pdf (4.17),
if the partitioned L' DL decomposition of the extended information matriz (4.19) is considered,
then

1. GiWy,(V,v) has, besides (4.17), the following alternative expressions

GiWy,(V,v) = GiW,,(L,D,v)
o) ! L0 — L) Dy(Ly — L D 4.21
= WGXP{—%[( w8 = Lyy) Dy (L0 — Lyy) + y}}(. )

T*O.S(VJranrQ) { 1 R
exp 4 —

I(L,D,v) 5 [0 0/CT (0 —0)+ D, } : (4.22)

with the least-squares estimate of 0,

N — -1
9 = Lw Lyw,
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the covariance factor of least-squares estimate,
_ “1py—1/7/\—1
C = sz Dw (L¢) ,
and the normalization integral Z(L,D,v),
I(L,D,v) = T(0.50)D; "% |Dy| 02050 4m) (97)05m0 (4.23)

I(z) = / 2" lexp(—z)dz < 00, forz >0 (4.24)
0

which doesn’t depend on the unknown parameters 8 and r. Clearly, it is finite iff v > 0
and V' is positive definite (or equivalently, D is positive definite).
2. The GiW pdf has the following marginal pdfs and moments:

o The marginal pdf for the unknown noise variance r,

7,70.5(1/+2) D
L,D = —— -=Y 4.2
S0 D) = e |5t (4.25)

with the associated normalization integral and moments

I'(0.5v)
(D =
( yv”) (O5Dy)0 5v
D 272
E[r|lL,D,v] = ” _y2 =7, var[r|L,D,v] = ” i 7 ElrYL,D,v] = Dyy’
0In(I'(0.5v))
8[1H(T)‘L, D, I/] = h’l(Dy) — ln(2) — W
e The marginal pdf for the unknown regression coefficients 6
~ ~ 1—0.5(r+n
f0|L,D,v) = ZI-YD,v) [1 + D, (0 — 0) LiyDy Ly (0 — 9)} (i) ,(4.26)
with the associated normalization integral and moments
Dy | TT:2%, T(0. —
I(D, V) = | T,Z)| lel (()055(]/ + nd) Z)) ,
D,
EW|L,D,v] = L;'Lagy =6, cov||L,D,v] = Dy L;'D (L) =+C
, L, = o Hdy =Y, v y Ly - U _9 ) P P - :

4.2.3 Estimation and prediction

Normal regression models belong to the exponential family, thus the estimation and prediction
reduce to algebraic recursive updating of the finite-dimensional sufficient statistics.

Proposition 4.2.3 (Estimation and prediction of ARX models ) Consider a normal re-
gression model (4.15), if a conjugate prior GiWe(Vo, ) (4.-17) and a conjugate alternative
GiWe(Vay,vay) in stabilized forgetting (see Section 4.1.1), are used, then, the Bayesian poste-
rior pdf of unknown parameters remain as

f(©ld(t)) = GiWe(Vi, 1) (4.27)
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with the sufficient statistics evolving according to the recursions

Vi = AMVis1 + 9,0 + (1= AN)Vay, Vo given (4.28)
v = AMvi—1+1)+ (1 —=Nvag, 19 >0 given. (4.29)

The partitioned L' DL decomposition of the matrix V, (4.19) and Algorithm 4.2.1, has to be
propagated for numerical stability.

The predictive pdf is known in the form of Student distribution. With the data vector
Uy = [ye, )], its values can be directly evaluated according to the expression of the Student form

vy it —0.5
fv) = VL 0511 +1)) [lz : 1;%).;1,?]1“) ) (4.30)

T(0.5v4_1) (1 + Do 10

where I'(-) is the gamma function (4.24), é; = y; — é£_1¢t is the prediction error, and ( =
-1 —1 -1
£L¢;t—1Dw;t—1(Lib;t—1) Yt
Alternatively, the values of predictive pdf can also numerically evaluated as the ratio

2m) " OST(Viey + U0 1 g + 1)

Q) = TVt ; (4.31)

where the same type integrals Z(V,v) (4.23) is used.
Remarks 4.2.1

1. The evolution of sufficient statistics is equivalent to well-known recursive least-squares (LS)

estimates:
6 = L;lLW is LS estimate of 0, (4.32)
D
Vi y2 is LS estimate of r, (4.33)
v —
rC = 'f’lelDlzl(Lip)*l is covariance matriz of LS estimate of 6. (4.34)

2. The predictive pdf is the key element needed in the estimation. It is thus worthwhile to check
which is computationally simpler between the presented two formulas in the evaluation of
its values.

The former (4.30) is less suitable for the evaluation if the prediction errors é; are not
explicitly required, but it has advantage that the prediction errors é; suit for an intuitive
judgement of the predictive properties of the inspected model.

The latter one (4.31) use an explicit expression for the integral Z(V,v) (4.23) and is often
more suitable for the evaluation. The derivation of this formula can be found in [4]. It is
this formula (4.31) that is most often used in the thesis.



4.3 Mixture Estimation and Numerical Approximation 39

4.3 Mixture Estimation and Numerical Approximation

Consider the mixture

fudu, d(t —1),0) = Y apf(yilue, d(t — 1), 0,,p), (4.35)
p=1

which is parameterized by the collection

O = {ay, @p}Zil :

The mixture weights a = [a1, -+, ay,,] satisfy
"p
ap >0, p=1,--+,ny, ny < 00, Zapzl,
p=1

and each component is parameterized by ©, and described by

f(yt’uh d(t - 1)7 @pﬂp)'

As mentioned in Chapter 2.2.2, although to obtain formal Bayesian solutions for the above
mixture is easy, its implementation is plagued with computational difficulties that the resulting
formal analytical expression of posterior pdf consists of a product of a sum of function depend-
ing on observed data and unknown parameters. Here in this section we consider a feasible
approximate treatment by the Quasi-Bayes (QB) estimation.

4.3.1 Alternative Description of Mixtures

For the design and description of the QB estimation method, it is convenient to use discrete
random pointers p; € p* = {1,2,---,n,} to label the active component at each discrete time
instance ¢t = 1,2,---,t. The pointers py, - - - ,p; are assumed to be mutually independent with
time-invariant probabilities

F(pe = plus, d(t — 1),0) = a,

Similarly to the EM method, the pointer p; can be considered as the unmeasured data of the
system. Thus, with them together with measured output ¥, there is an alternative joint view
on the mixture at each time instant ¢,

f(ytupt‘uta d(t - 1)7 @) = H [apf(yt|ut7 d(t - 1)7 @pap)ysp’pta (436>

pEP*

1 ifa=b

0 otherwise ° By marginalization (4.36) over

where 0 is Kronecker symbol defined by d, 5 =

pt, the marginal pdf f(y:|us, d(t —1),0, ) gives the general mixture description (4.35).

4.3.2 Dirichlet Conjugate Prior Pdf of Mixing Weights

For the introduced pointers p; € {1,...,n,} = p*, it holds

1)
Qpy = f(pt’utvd(t - 1)7@) = H O‘Pp’p%

pEP*
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where, by definition,
Qap = P?”{pt :p} = f(pt = p‘Ut,d(t - 1)76)7 b= 1727 -y M,

which satisfy the constrains oy, > 0, 2221 ap = 1.

It corresponds to a special case of Markov chain. And as we known, Markov Chains belong
to the exponential family so that they possess conjugate (self-reproducing) prior in the form
know as Dirichlet distribution.

Thus, the distribution on mixing weight « can be specified as in the conjugated Dirichlet
form.

f(a) = Diy(k). (4.37)

The Dirichlet distribution is shaped by n,-vector statistic £ with positive entries k),

H anp—l
Dia(k) = % o< IT e, (4.38)
pEP*

where B(k) = M
pEp

4.3.3 Approximate QB Estimation

Based on the discussion of the previous two subsection, approximate QB estimation method is
described here.

Let us specify prior pdfs of each individual components f(©,|d(t)), ideally in conjugate form.
Moreover, assume the pdf of all parameters f(©|d(t)) in the product form

f(Old(t)) x H F(Oplu, d(t — 1)) Dig(Kpyt)- (4.39)

peEP*
Then, the Bayes rule can be used to update it to a posteriori pdf

Kp;t +5p,pz+1 -1

FO,prarfuesr, d(t) oc [ f (westlwesr, d(t), ©p, p))7ets f(O|dy) ey

pEP*

Here the alternative mixture description (4.36) and the Dirichlet conjugate prior pdf (4.37) of
mixing weights are used.

In order to obtain the approximation of the desired pdf f(©|uit1,d(t)), a marginalization
over piy1 could be performed. However, it destroys the assumed form of (4.39). One possible

way to preserve this form is to replace 0, , by its conditional expectation

Opprrs N Wyl = E[0pper [ueg1, d(t)] = f(peg1 = plugs, d(2)). (4.40)
here the scalars w41 can be calculated by integrating (4.40) over the parameters ©

_ Gpst f (Y1 ue1, d(t),p) R f (Y w1, d(2), p) 441
Wpit+1 = N P d -~ _ - d ~\ ) ( . )
Sopepr Qptf (Werluerr, d(t), D) Dpep fptf (Yet1lues1, d(t), D)

which requires the point estimate of mixing weight

~ Rp;t
Gt = — P x Kpits (4.42)
Zﬁep* Kpst
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and the Bayesian prediction of each component

Z(d(t+1)|p)
Z(dt)lp)
Note that the approximation (4.41) can be interpreted as the Bayes rule applied to the discrete
unknown random variable p; € p* with the prior probability ¢;.;.
By inserting the approximation (4.40) and (4.41) into (4.39), the approximately updated
posterior pdf preserves the same functional product form as (4.39). Here, the posterior of each
individual components is updated by

F(©pld(t +1)) o< [f (yerr|uera, d(t), Op, p) P41 f(Op|d(t)) (4.44)

and the updating a posteriori Dirrichlet pdf of the mixing weights leads to a updating its statistic

(W1 |wg1, d(t), p) = /f(yt+1|ut+1> d(t), 0p) f(Opluty1,d(t)) dO, = (4.43)

Rpt+1 = FKpit + Wpit+1- (4.45)

Algorithm 4.3.1 (QB estimation algorithm of mixtures)

Initial (off line) mode

o Select the complete structure of the mixture, i.e. specify the number of components ny, and
the structure of each component.

e Select prior pdfs f(©,) of the individual components, ideally, in the conjugate form with
respect to the parameterized components f(di|tp.s, ©p,p). Specify the initial values of the
associated statistics V.0, Vp.o-

e Select prior pdf of component weight o in the form of Dirichlet pdf, f(a) = Diy (k). Specify
the initial values kp,o > 0. Intuitively motivated values about 0.1t were found reasonable.

o Select forgetting factor X € (0,1], alternatives fa(©p) and fa(a) for stabilized forgetting.
Sequential (on line) mode,

1. Compute the point estimates of the component weights ép, by means of (4.42).

2. Acquire the data record dyy1.

3. Compute the values of the predictive pdfs for each individual components p € p*, with
(4.43) and the measured data record dyy1.

4. Compute the probabilistic weights wp441 by (4.41).

5. Update a posteriori Dirrichlet pdfs of mizing weights by the evolution of the scalars Kp,i4+1

by (4-45).

6. Update a posteriori pdfs f(©,|d(t + 1)) of the parameters associated with individual com-
ponents according to the weighted Bayes rule (4.44).

7. Evaluate, if need be, the characteristics of f(Op|d(t+ 1)) describing other parameters ©,.

8. Repeat the sequential mode when t < {.
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Remarks 4.3.1

1. Note that the predictions of individual components without data weighting is performed for
evaluation of the weights wei+1. The parameter estimation algorithm performs almost the
same algebraic operations but with weighted data. This simple observation is exploited in
implementation of the algorithm. Moreover, it can be used in judging of estimation quality.

2. The algorithm is applicable whenever the Bayesian estimation and prediction for each
component can be managed. Thus, the scope is restricted to the parameterized model class
admitting finite-dimensional statistics. It consists essentially of the exponential family
augmented by the uniform distribution with unknown boundaries. Normal regression mod-
els and Markov chains, are prominent examples of dynamic components. Others are more
or less restricted to static ones.

Later in Chapter 6, we shall discuss how to extend the idea of the QB algorithm to deal
with the estimation of ARMAX mixtures based on a pre-whitening.

3. To increase the chance to gain a successful estimation, some iterations are mecessary so
that iterative QB estimation is in need. Meanwhile, a hybrid of the quasi-Bayes and EM
algorithms, batch QB estimation, may be desirable sometimes.

To avoid redundant discussion, we shall only demonstrate the essence of using iterations
and batch version in the next section on the estimation of ARX mixtures.

4.3.4 Iterative Construction of Prior Pdf with Flattening

A proper specification of a prior pdf is generally not a trivial task, especially in the context
of mixtures where the prior knowledge is dealt with at the component level: a prior pdf for
each component is considered as an entity on its own [34]. A study on the issue with various
techniques can be found in [35]. Here we only consider one of most important techniques: how
to construct iteratively prior pdf using flattening to reduce our uncertainty on the quality of a
given prior.

Generally, the Bayes rule specifies the posterior estimates in a non-iterative fashion

f(8ld(1) o f(d(t)|©)f(®),

which relies not only on information provided by data but also on the prior knowledge. To
increase the chance to obtain a successful estimation, using some iteration is proved to be
helpful. It solves the estimation problem as a repeated task with the same data sample. The
basic idea behind is to use a posteriori pdf f(0|d(f)) instead of f(O) as the new guess of prior pdf
in each iteration, hoping that f(©|d(t)) could give a better clue about the unknown parameters
than the original f(©).

It leads to an iterative use of the Bayes rule,

Fa(Bld(8)) o< f(d(1)|©) fu-1(O1d(D))

with f,(©]|d(t)) being the posterior pdf obtained through the n-th iteration. If f5(0©) = f(0),
then £(©ld(F))  [£(d(DIO)]" £(©).

Meanwhile, notice the fact that if the original prior pdf has been assumed unreliable, its
posterior pdf then is possibly too concentrated on a false set of parameters. It implies a direct
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using the new obtained a posteriori pdf as a new prior could be dangerous. To prevent this
possible false over-confidence, a flattening mapping G

G+ for (Old(E) = fu(O) (4.46)

has to be used after each time of iteration, as a compromise between the following contradictory
requirements

° fn(@) resembles fn_1(9\d(£))§

° fn(@) is flat enough. To serve for this purpose, a prototype of the flat distribution f(©)
is in use and the f,(©) is required to resemble it. Uniform pdf, even improper one, often
suits to be such a flattening alternative.

In each individual iterations, if we express the above requirements in terms of the KL distance
(2.7), then they lead to minimizing two KL distances simultaneously

« D(flIf)

« D(fIIF)

Similarly to what we did in Section 4.1.1 for stabilized forgetting, a positive weight ¢ can be
selected as a design parameter to control the compromise, then the desired pdf f is found as a
minimizing argument of the functional

D(fIf)+a (fIF), a>0 (4.47)
which coincides with the geometric mean of the pair of pdfs
foc AP with A=1/(1+q) € (0,1). (4.48)

In its repetitive form, it follows

A’IL

A £(d(i),0)fa1(©)] " [F(©)) A o
fn(@)z[ ( ()0) ! )A} O £(d(E), ©) fa-1(6)
I eade)f©)] 7o) de

Here the non-negative power A, € (0,1) is called flattening rate. The examination on the
influence of A, and the specification of their value by means of asymptotic analysis can be
found in [35].

[FO A (4.49)

"

4.3.5 Iterative and Batch QB Estimations of ARX Mixtures

After the discussion on iterative construction of prior pdf with flattening in previous section,
here we shall illustrate iterative and batch uses of QB Method on the estimation of normal AR(X)
mixtures. The purpose of this section is threefold:

o To dllustrate iterative use of the QB method with flattening.

Iterations and therefore flattening are extensively used in the QB estimation of mixtures.
In the design of the QB method, it is assumed that the estimate of mixture parameters ©
is of a product form

f®ldt) o« [T £(©pld(t)Dia(rip).

pEDP*
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The KL distance of a pair of such products is simply sum of KL distances between the
corresponding marginal pdfs creating the product. Consequently, the discussion of last
section can be applied to each of them with its specific weight and thus its specific A,,.

o To illustrate hybrid batch use of the QB Method.

The construction of the QB estimation implies that its results depend on the order in which
data are processed. Experiments have shown that this dependence may be significant. As
a hybrid of the quasi-Bayes and EM algorithms, an algorithm called batch QB estimation
(BQB) can be used to avoids this drawback.

The BQB estimation is used in iterative form with a very slow convergence. Compared
to iterative QB estimation, the difference is that in each iteration only new estimate of
dp,p, is updated while the other parameters preserve their values from previous iteration
without updating. Essentially, it estimates pointers to components within n-th iteration
by using approximation of pdfs of the mixture parameters that is fixed within the n-th
stage of the iterative search for the posterior pdf.

o To specify the @B method on the estimation of normal AR(X) miztures.

If each parametric component in mixture is specified as a normal regression, it gives a
normal ARX finite mixture. So far, this type mixtures has become the most popular
option in the applications of mixtures. Estimation normal AR(X) mixtures is a typical direct
application of the QB method with the consideration on the Gauss-inverse-Wishart (GiW)
conjugate pdf of each individual components and numerically stable learning algorithms
based on L'DL decomposition.

Algorithm 4.3.2 (Iterative QB estimation algorithm of normal ARX mixtures)

Initial (off line) mode

e Select the stopping criterions, such as monitoring the increment of log-likelihoods with a
selected tolerance and checking the number of iterations

— Set a number N, the mazrimum number of iterations which is allowed in the iterative
estimation.

— Set the iteration counter n := 0;

o Select the structure of the mizture to specify the number of components n, and the structure
of each component. The structure of each component here is determined by the structure
of the corresponding data vector V.

e Select the prior pdfs f(©,) of the individual parameterized components in the conjugate
GiW form,

f(©p) = GiW@pﬂ"p(Vpn;Ov Vpny0) = GiW@p:Tp(Lpn;Ov D05 Vpn;o)
and specify the initial values Lpn.0, Dpn:0, Vpn:o,
o Select prior pdfs of component weights o = [, - -+, o, | in the form of Dirichlet,
fla) = Diq(k)

and specify the initial values Ky > 0.
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e Select forgetting factor A € (0,1], a set of alternative pdfs fa(©,) and fa(a) for stabilized
forgetting.

e Select a set of pre-prior pdfs, f(©,) and f(a) to serve for flattening.
Iterative mode, running forn=1,...,N.

1. Use the current prior pdf f,(0©) = Diy(ky) [pep GiWy,, r, (Lpn;0, Dpn;o, Vpno) in the fol-
lowing evaluations.

2. Set the likelihood value of the mixture, often natural logarithm likelihood (log-likelihood) is
used, ln,0 = 0.

Sequential mode, running fort=1,2,...,1t.
(a) Compute the point estimates of the components weight

& L= Rpn;t—1
st—1 — )

e Zﬁep* Rpn;t—1

(b) Acquire the data record dy.

(c) Calculate the value of the predictive pdf for each individual component, p € p*.

o Perform, for each individual component, a trial updating of the statistics by the
data vector Vp.;.

/
Vznn;t — ‘/pn;tfl‘}'\llpn;t‘l}pn;tv

Vpnit = Vpn;t—l+1-

Note that here this updating uses neither stabilized forgetting nor the date weight-
ing. The partitioned L' DL decomposition of extended information matriz Vp, are
updated and used.

e Determine the values the predictive pdfs by means of the above trial updates and
the formula (4.31)

(27T)_0'51(Lpn;t7 Dpnits Vpnst)
I(Lpn;tfla Dpn;tfla Vpn;tfl) ’

f(ytlug, d(t —1),p) =

(d) Update log-likelihood value of the mizture

pEP*

ln;t - ln;t—l +In (Z CAVpn,t—lfn(yt‘utyd(t - 1),]?)) .

(e) Compute the probabilistic weights wpp.t,

Wyt = dlm;t—lf(yt’ut: d(t - 1)7p) pe p*
o Z;ﬁEp* &fm;tflf(yﬂut, d(t - 1)7]5) ’

(f) Update the scalars of the Dirichlet pdf

*
Kpnit = Kpnit—1 + Wpnit, D EDP .
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(9) Update Bayesian parameter estimates of different components, i.e., update the corre-
sponding statistics

Lpn;t—la Dpn;t—la Vpnst—1 — Lpn;ta Dpn;tv Vpn;t-
The updating is equivalent to the weighted version of (4.28)-(4.29)

VD";t = )\(Vpn;t—l + wpn;tq/pn;t\p;m;t) + (1 - )‘)VApn;ta (4'50)
Vpnit = )\(Vpn;tfl + wpn;t) + (1 - )\)VApn;b (451)

Here X is the forgetting factor and the statistics with the index of A” describe the
alternative pdf fa for stabilized forgetting.
Note that in the mixture context, slightly different from the LD updating of single
regression model of Section 4.2.2, a recursion of V.= AV + BUW type is used with
the positive scalar B being determined by both the forgetting factor A and the weight
Wpn;t -

(h) Evaluate, if need be, characteristics of the pdf f(Opy|d(t)) describing other parameters
Opn.-

(i) Go to the beginning of Sequential mode while data are available, while t < i

3. Stop, if n > n or if the increment of log-likelihood l,,.; is smaller than the given tolerance.

Otherwise,

e Select a flattening rate A, and apply flattening operation on f(Opn|d(t)) and f(cpn|d(t))
according to (4.49) for each individual components.

o Increase the iteration counter n := n + 1, set | = Ly, and go to the beginning of
Iterative mode.

Remarks 4.3.2

1. The predictive pdf could also be computed in its Student form. It makes sense only when
prediction errors are explicitly needed.

2. Although it may be worth to consider stabilized forgetting on the statistics key with its
specific forgetting factor and alternative, this possibility is not currently used in our dis-
CUSSLON.

The corresponding processing-order-independent batch QB estimation algorithm of normal
AR(X) mixtures can be described as follows. This algorithm uses Bayesian predictors for estimat-
ing the Kronecker symbol d,,,,,. They, among other, respect uncertainty of the current estimates
of unknown parameters. Predictions become too cautious if this uncertainty is too high. It may
break down the algorithm completely. Knowing it, the remedy is simple. Essentially, predic-
tions used in the EM algorithm that ignore these uncertainties have to be used in several initial
iterative steps of the algorithm.

Algorithm 4.3.3 (Batch QB estimation algorithm of ARX mixture)

Initial mode Initial (off line) mode
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Select the stopping criterions, such as monitoring the increment of log-likelihoods with a
selected tolerance and checking the number of iterations

— Set a number N, the mazrimum number of iterations which is allowed in the iterative
estimation.

— Set the iteration counter n := 0.

o Select the structure of the mixture to specify the number of components n,. The structure
of each component is determined by the structure of the corresponding data vector W,,.

e Select the prior pdfs f(©,) of the individual parameterized components in the conjugate

GiW form,
f(@P> = GiW@p,Tp(Vpn;Ov Vpn;O) = Giwep,rp (Lpn;Oa Dpn;07 Vpn;O)
and specify the initial values Lpn.0, Dpn:0, Vpn:o-

o Select prior pdfs of component weights o = [, - -+, aun, | in the form of Dirichlet,

fa) = Diq(k)
and specify the initial values Ky > 0.

o Select forgetting factor A € (0,1], a set of alternative pdfs fa(©,) and fa(a) for stabilized
forgetting.

e Select another set pre-prior pdfs, f(©,) and f(a) to serve for flattening.
e Make copies Ly,g = Lpn, Dp.o = Dpn, Vp,o = Vpn and Kpo = Kpn-
e Set a mazimum for the log-likelihood of the mizture | = —cc.

Iterative mode, running forn=1,..., N.

1. Use the current prior pdf fn(©) = Dia(tn) [1,epr GiWa, 1, (Lpns Dpns Vpn) in the following
evaluations.

2. Set the initial log-likelihood of the mizture l,,0 = 0.
Sequential mode, running fort=1,2,...,1t.
(a) Compute the point estimates of the components weight

~ - Rpn;t—1
Apnst—1 = .
Zﬁep* Rpn;t—1

(b) Construct the data vectors W,..
(¢c) Compute the values of the predictive pdfs for components, with the data vectors ¥,

In (e ¥, 0) /f Yelug, d(t —1),0p,p) fn(0p) dO,,

where the prior pdfs of the components GiWg, ;. (Lpn, Dpn, Vpn),p € p* are constant
during the time cycle.
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(d) Update the log-likelihood of the mixture
ln;t - ln;tfl + In (Z dpn;tflfn(yt|ut7d(t - 1)7p)> .
peEP*
(e) Compute the probabilistic weights wpn, to approximate opp, as

Gopnst—1.fn (Ye|ue, d(t — 1), p)
sepr Qpnit—1 fu(yelue, d(t — 1), p)

Wpnit = D

(f) Update the statistics determining the posterior pdfs, evolving from copies of the prior
statistics Lp.o, Dpo, Vpo and Ky
L,pn;tmetLIm;t = )‘<L;n;t—1Dpn;t—1Lpn;t—1 + wpn;t‘I/p;t‘I’;;t) + (1 - )\)L;lpn;tDApn;tLApn;t
Vpnst = )\<Vpn;t—1 + wpﬂ;t) + (1 - A)VAP’th’
Kpt = HKpit—1 + Wpn;t-
Here the updating is date weighted. X is the forgetting factor and the statistics with
the index of "A” describe the alternative pdf fa for stabilized forgetting.
(g) Go to the beginning of Sequential mode if t < t. Otherwise continue.
3. Stop, if n > n, or if the log-likelihood of the mizture does not increase l,.; < [ or the
increment of likelihood is smaller than the given tolerance.

Otherwise,

o Apply flattening operation on f(Op,|d(f)) and f(cu|d(t)).

o Increase the iteration counter n := n + 1, set | = Ly, and go to the beginning of
Iterative mode.



Chapter 5

Bayesian Solution to ARMAX
Models with Known MA Part

In the last chapter, we recalled the existing Bayesian solutions of ARX model and its finite
mixtures. From now on in the following chapters, we come to discuss ARMA(X) model and
two types of its finite mixtures. This chapter recalls and reexamines Bayesian estimation and
prediction of ARMA(X) with known MA part, or more exactly the corresponding LD filters. It
makes the basis for the remaining discussion of later chapters.

Consider a SO normal ARMAX model in a regression form describing the relationships of a
(possibly multi-variate) external input u; to a scalar output y,

ye = 0"t + vy, (5.1)

where ' denotes transposition. The n,-dimensional regressor 1), is a known function of u; and the
past data d(t — 1). The unknown parameter set 6 describes the deterministic part of the model,
it is a vector with its dimension identical to ny. vy = e; + > cier—; is a colored stationary
noise of order n., which is usually interpreted as a moving average defined on a sequence of
mutually un-correlated, zero-mean, Gaussian noise {e;}. Thus its covariances

Elvvi—] = ry for i=0,1,...,n,
= 0, for li]>ne.

fulfill the following relation with the noise variance re,
e
T =Te Zcick,i, with ¢g=1.
k=i
The model is generally parameterized through the parameter set
© = {60, C},

with the AR(X) part of the model described by 0, = (6, r.) and the C-parameters of the model
are represented by an n.-dimensional vector C' = [c1,- -, ¢p,].

It is well-known that there are some close relationships between ARMAX and ARX under
some conditions. Here we consider two of such cases:

e When we know the stochastic MA noise part of the model up to its covariances, either
ri, ©=1,...,n. are directly known or both r. and the C-parameters C are known.
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e When we know the MA part only up to its C-parameters. It means the noise variance r,
is unknown and has to be estimated.

The discussion on Bayesian solutions of the ARMA(X) under the above two situations forms
the content of this chapter. The emphasis is put on the reexamination of the case where the MA
part is known only up to its C-parameters.

As mentioned in chapter 3, Delta models, an alternatively form of the ARMA models, may
appear to be numerically more robust and therefore more suitable for real-time computation
in adaptive and self-tuning control. The discussion of this chapter is based on ARMAX models.
However, it can be easily extended to the case of Delta description when necessary.

5.1 Known MA Part up to Noise Covariances

Under the assumption that the covariance matrix is known, Peterka [4] in 1981 showed that LD
factorization of the known noise correlation matrix of the model acts as an optimal, time-varying,
pre-whitening filter on the observed data. These results are recalled in this section.

5.1.1 LD Filter

Assume we know the covariances r;, i = 1,...,n. directly or we know both noise variance 7.
and C-parameters, then, the ARMAX model (5.1) now is parameterized only by

0=4 (5.2)
and the covariance matrix ) of the noise v; is Toeplitz matrix with its i-th sub- and super-

diagonals satisfying

Ne
Qipri = 10 or Qpity = reZcick,i, for i=0,1,---,n. and co =1,
k=i

Let us consider its L' DL decomposition

Q=LDL,

where D = diag[Dy, D2, ..., Dy] is a diagonal matrix with positive diagonal elements D,, 7 =
1,...,t, and L is a lower triangular matrix of the form

_ 1 -

L271 1
I —
an—l,nc e an—l,l 1
I Lin, Ly 1]

with its zero entries represented by the empty entries. The non-zero elements of L, D matrices
can be evaluated recursively as follows

Di=ry, Loi=rD;', Dy=ry— L3,D1 (5.3)



5.1 Known MA Part up to Noise Covariances 51

and for 7 = 3,4, .., and i = n.,n. — 1,...,1 with n = min(ne, 7)
n n
Lri = |ri—= > LypDroyLr_in—i | DY, Dr=ro— > LypDryLrp.  (5.4)
k=i+1 k=i+1

these elements are the functions of either C-parameters and noise variance r, or noise covariances
Ty

Using the above LD decomposition, Peterka showed the following relationships between
ARMAX model and ARX model.

Proposition 5.1.1 (Relationships of ARMAX with known covariances to ARX)
Consider a normal ARMAX model, if its noise covariance matriz is known, then the model is pa-
rameterized only by unknown parameters © = 6 and the conditional probability density function
of its output y; can be expressed by

Y
Fylue, d(t —1),0) = (2rDy) " exp [—M = Ny, (12, Dy) (5.5)

2Dy

with
_ n
e = 0+ Z Lt ;Gt—i, m = min(n,t).
i=1

The filtered data vector ¥y = [ij;, )] is obtained by passing the observed data vector Uy = [y, 1]/
through the the pre-whitening filter

n
g+ Y Legfi—i = v, 1=y, (5.6)
i=1
~ n ~ ~
Vo> Ly = Y, 1 =11 (5.7)
i=1

where the filter is determined by the L, D entries (5.3)-(5.4).

5.1.2 Estimation and Prediction

Since the covariances are known, a sufficient statistic of fixed dimension can be found both for
the estimated parameters and the predicted output. Hence its exact Bayesian solution of real-
time parameter estimation and prediction, possibly controlled in closed adaptive control loop,
can be obtained without loss of information. To apply the general Bayesian estimation and
prediction Proposition 2.1.3 on (5.5), Peterka proved the following proposition.

Proposition 5.1.2 (Bayesian estimation and prediction of ARMAX with known covariances)

Under natural conditions of control, see Definition 2.1.1, consider a normal ARMAX model. If
its covariances are known so that the model is parameterized only by © = 0, and if the prior pdf
of the unknown parameter 0 is assumed in the normal form

F(0ld(t = 1)) ~ Np(0;-1, Royr—1),
then the normality is reproduced, so that

f(yt’utvd(t_1>) ~ yt(ghRy;t)?
£01d()) ~ Ny(by, Roy).
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Here the following algebraic recursion holds for the conditional expectations 7 and the covari-
ances Ry, Ry

Ge = U1+ Z Li;G—i, n=min(ne,t) (5.8)
=1

R,y = Di+ %Re;tfﬂzt (5.9)

0 = 01+ Ki(§r — ¥)0i—1) (5.10)

Ki = Ry 1R,y = Royhi Dy (5.11)

Rgy = Roy—1— Roy10eR, {0 Roy—1 (5.12)

Thus, the overall algorithm for the real-time estimation of the parameter 6 and for the one-step-
ahead prediction of output y; is obtained when the recursions (5.8)—(5.12) are supplemented
with the recursive updating of the L, D entries (5.3)—(5.4) and the data filtering by (5.6)—(5.7).

5.2 Known MA Part up to C-parameters

Now let us consider a more general situation where only C-parameters of the ARMA(X) model
are known. Can we still achieve the optimal prefiltering using LD factorization?

With an introduced canonical state-space representation of ARMA model (Delta model),
Peterka developed the algorithm for recursive joint estimation of the rest unknown parameters
and the state in [6, 7]. To address the problem of estimating/searching unknown C-parameters
later, it may be more convenient for us to reexamine the results here based on regression form
of ARMA model and to clarify a few related issues.

5.2.1 Extended LD Filter

If the MA part of the model is known only up to its C-parameters C' = [cy, -, ¢y, ], then the
noise variance 7. has to be estimated and an ARMAX model is parameterized by a pair

O4 = (0,7¢). (5.13)
Meanwhile, we find it is convenient to introduce a matrix S as
Stixi = Si, for i1=0,1,---,nc (5.14)
with s; = Y7'¢ . ¢icp—i. This leads to
Qipri = TeSi for 1=0,1,---,nc

here the relation r; = r.s; is used.
Consequently, the covariance matrix {2 can be re-written in term of S

Q=r.S.

Clearly, when only C-parameters are known, we know the covariance matrix €2 only partially up
to the matrix S. For this reason we call it partial covariance matriz.
Let us apply LDL’ decomposition to this partial covariance matrix S

S =LDL,
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where L is a lower triangular matrix and D = diag[D;, Do, ..., D] is a diagonal matrix with
positive diagonal elements D, 7 = 1,...,f. The non-zero elements of L, D matrices are the
functions of C-parameters and can be evaluated recursively in a similar way as that of the
previous section

D1 = S0, L2’1 = SlDl_l, D2 = S0 — L%71D1 (515)

and for 7 = 3,4, .., and i = n¢,ne — 1, ..., 1 with n = min(n., )

n n
Lri = |si— > LegDrjLr—ip—i | D7}y, Dr=s0— Y LrpDr_pLrg. (5.16)
k=i+1 k=i+1

Note that in contrast to the last section where the elements of the filter are determined by the
covariances, here they are functions of only the C-parameters.

With this decomposition, the similar derivation to that of the last section leads to the
conclusion that the conditional pdf of output y; is a normal one like (5.5) with some slight
changes.

Proposition 5.2.1 (Relationship of ARMAX with known C-parameters to ARX)
Consider a normal ARMAX model. If only C-parameters of its color noise are known, then the
model is parameterized by O, = (0,r.) and the conditional probability density function (pdf) of
its output y; can be expressed in a normal form as follows

N 2
f(wlue.d(t = 1),00) = (2mreDy) " exp [—M]:Nym,ram, (5.17)

where

n
Mt = 9/¢t+ZLt,i?§t—i7
i=1

with n = min(n.,t) and

n
G+ Y Legfi—i = v, 1=y,
i=1
Yy + ZLt,i¢t—i = Y, P1=11. (5.18)
=1

where the filtered ARX model is parameterized by the unknown parameters ©, = (0,7e) and acts
on the filtered data vector Uy = [y, ;)'. Note that the entries of L, D now are determined by
the LDL' decomposition of the partial covariance matriz S.

5.2.2 Estimation and Prediction

If we define the filtered data U after a scaling as follows

U, — [\/% f/%] (5.19)
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then, the conditional probability density function of output y; (5.17) can be equivalently reex-

pressed in terms of U,

~1/

Flyelug, d(t —1),04) = (27r,) 05D, 0 exp{—;tr (@twt[—Le’]/[—Le’])}. (5.20)

Te

It has the following correspondence to the exponential family (4.7)

fyelug, d(t —1),04) = A(Oa)D(¥y) exp [(B(¥),C(O,))] (5.21)

A(O,) = 1%, D(V;) = (2nD;) %5,
B(¥,) = U7, C(0q) = 2r; 1 -1,0')[-1,0'], (B,C) = tr[B'C).

Here B(¥;) is a function of ¥; and indirectly expressed in term of ;. D;%5 is a function of
known C-parameter and determined by the LD factorization of the known partial covariance
matrix. Strictly speaking, such a time-varying variable is not a standard item of D(W;) in
our definition of the exponential family (4.1.1). It, however, is important to note that D, 0-5
will make no influence on the parameter estimation and will enter the prediction independently
without involving in the rest calculation. This observation suggests that we can still select a
conjugate prior for the parameters ©, = (1¢, #) in the form of GiIW pdf (4.17).

Obviously, applying the above proposition into the Proposition 4.1.2 of estimation and pre-
diction in exponential family, it follows

Proposition 5.2.2 (Bayesian estimation and prediction of ARMAX with known C-parameters)
Under natural conditions of control, Definition 2.1.1, consider the normal ARMAX model. If we
assume that the C-parameters are known, then the model is parameterized by ©, = (0,71¢). If

the extended LD filter (5.15)-(5.16) is used:

i) The conditional probability density function (pdf) of output y; is equivalently expressed as

Flulug, d(t —1),04) = (27r) "5 D% exp {—;tr (\it&/;[_L oY1, ef])} ,

re
and a conjugate prior and a conjugate alternative can be selected in the GiW form (4.17)
[(©) = GiWe(Vo,1p) and  fa(©) = GiWe(Vay, vay)

with a forgetting rate \ (see Section 4.1.1).
it) The Bayesian posterior pdf of parameter then remains in the GiW form GiWg(Vi, 1),
with its sufficient statistics evolving according to the recursions

z z/
Vi = A <Vt_1 + \Ilt\I/t> + (1 = A)Vay, Vo given (5.22)
vi = Mv—1+1)+ (1= Nvag, vy > 0 given. (5.23)

i11) The values of predictive pdf are evaluated as the ratio

z =/
(27)~ 95D 95 T (VH + U0y, v + 1)

Pl d(t = 1)) = S 7 (5.24)
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where the integrals Z(V,v) =Z(L,D,v) can be computed by the formula (4.23) with the filtered

data Uy. Dy is is the function of the C-parameters and determined by the LDL' decomposition
of the partial covariance S.
One-step prediction of the output y; can be evaluated directly by the formula

n
g = 0P+ Z Li;iGi—i,  n=min(n,t),
i=1
where Ly ; is the the function of the C-parameters and determined by the LDL' decomposition
of the partial covariance S.

Note that here two kinds of LD decomposition are involved in the estimation and prediction:
One is the L' DL decomposition of extended information matriz V to avoid the induced numerical
troubles in the estimation, while the other one is the LDL' decomposition of the partial covariance
matriz S to prefilter data.

In summary, compared to the last section, our extension here is able to cope with a more
general case by estimating the unknown noise variance as well. Meanwhile, a wider set of
unknown parameters including noise variance leads to a different choice of prior from that of
the last section.

5.3 Some Properties of LD type Filters

In the previous sections, we described the LD type filters to provide real-time Bayesian estimation
of the ARMA(X) model when the MA part is known. Here we discuss some of their properties
which are vital when addressing the case with unknown C-parameters later on.

As we have showed above, LD factorization of the known (patrial) covariance matrix acts as
an optimal, time-varying, pre-whitening filter on the observed data:

e The main power of the LD filters is that they impose no restriction on the stability of the
C-polynomial.

— The time-evolution of the LD type filters actually provides a sort of spectral factor-
ization of the polynomial product

C(2)r.C"'(z71),

where C(z71) = 1+ ¢127 1 + -+ + ¢,z " is the C-polynomial in the backward shift
operator z~'. Thus the pre-whitening made by this filter does not depend on the
stability of the polynomial C'(27!) so that it is able to cope with all kinds of roots:
strictly stable, close to the boundary, at the stability boundary and strictly unstable.
The factorization converges relatively fast. [36] showed that if there are no roots on
the unit circle, it converges geometrically.

The often used filters, such as a stable inverse (spectral factor) imposes stability
restrictions. For a given canonical state representation, Peterka showed that the esti-
mation of main parameters and the state is algorithmically simpler and numerically
more robust than the standard Kalman filter.

It is showed by Aasnaes and Kailath [37] that the often used predictor with Lt ; = Lo ;
doesn’t produce optimal predictions (not even asymptotically) if the roots of the
polynomial C'(271) lie on the unit circle and the convergence to the optimality may
be very slow if the roots are close to the unit circle.
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— For a given C-polynomial C(z~!), for growing t,

* the diagonal elements of D converge monotonically. One of our interesting ob-
servation of the convergence of D, is that: Dy, = 1 as long as all roots strictly
insides the unit circle, otherwise Dy, > 1.

* the time-varying entries L;; of the triangular matrix L (5.1.1) converge

Lt,i_>6i7 t—>OO, Z':]-f”anc
these limits define a polynomial C
ClzYYy=1+ézt 4+ 4, 2"

If the given C-polynomial C' (Nz_l) has all its roots outsides or on the unit circle,
the relation between it and C(2~!) holds

when there are some roots lying on the unit circle, this convergence goes from
the outsides of the unit circle. If the given C-polynomial C(z~!) has some roots
to be insides the unite circle, then

C(z7 1Y) is the stable reflection of C(z~1) with the guaranteed stability
Thus asymptotically for ¢ — oo, the LD factorization produces the coefficients of
the stable reflection of the C-polynomial and ensure the stability of the optimal
filters even when this C-polynomial has some unstable roots.

e The uncertainties of unknown parameters are under the control, Bayesian structure esti-
mation of the ARX part can be used [5], etc.

e The evaluation of the filter is computationally inexpensive.

In SO cases, it is sufficient to only store n2 + 2n. + 1 scalars at each time instant in the
recursive evaluations of the extended LD filter, namely n? + n. elements for the lower
triangular matrix L and n. + 1 diagonal elements for the matrix D.

e Real-time Bayesian estimation of the ARX part can be provided using the filtered data.
One important fact has to be emphasized here is that:

Consider two situations in the estimation, one case where the given C-polynomial has some
unstable roots while alternatively when it is its stable reflection that is given.

Then, as showed earlier, the obtained estimates of noise covariances r; are finally identical
in both cases. But they do produce different estimates of noise variance 7.

Knowing these facts helps us to avoid unnecessary difficulties in general cases. However,
we shall show one case later where the difficulties created by such a simple difference may
become not trivial any more. It is detailed studied later in Chapter 6 and Chapter 7.

e The C-parameters of MA term have to be considered as time varying, i.e., the filter is time-
varying, even when the covariances are time-invariant. The variations are data independent
and driven only by the time-invariant C-parameters. This variations hinder the attempts
to estimate the unknown C-parameters recursively. Moreover, they make evaluation of
derivatives of the related likelihood function at least impractical.



Chapter 6

Bayesain Solutions and Modelling
Properties of ARMAX Mixtures

The optimal LD filters, as shown in the last chapter, lead to a real-time Bayesian estimation of
the AR(X) part and imposes no restriction on the stability of the MA part, if an ARMA(X) is known
up to its MA Part. Based on the extended LD filter, this chapter presents an investigation on
the two types ARMA(X) finite mixtures, which were introduced and described in Chapter 3:

The MARMAX model (3.20), a natural mixture generalization of the linear ARMA(X) with
each of its component f(y;|us, d(t —1),0,,C),p € p* described by one ARMA(X),

f (yelu, d(t = 1),0) = > o f(yelue, d(t — 1), ap, Cp.p), (6.1)
p=1

which is parameterized by the parameter set
0= {Qaa O, Oz},

with ©, = {@a,p};ﬁl, O, = {C’p}Zil, o = [a1,- -+, ap,]. Here the mixing weights o satisfy
ap >0, p=1,---,np, > .7 o =1. The parameters O = {0, 7cp} and Cp = [cp1,- -, Cpn,]
describe the ARX part and the C-parameters of the p-th components, respectively.

The ARMMAX model (3.22), a special mixture of ARMAX having a common deterministic

ARX part in all ARMAX components while the characteristics of the stochastic noise parts vary,
p
f (yt|ut7 d(t - 1)7 @) = Z apf(yt|ut’ d(t - 1)) @m Cp’p)v (62)
p=1
which is parameterized by the parameter set
0 ={0,, O, a}.

Here, in contrast to the MARMAX model, all ARX parts of the ARMMAX model are described by
a single common parameter set

O, = {0, 7). (6.3)

Our discussion focuses on a few properties of these two mixtures and develops their efficient
Bayesian estimations and predictions when the C-parameters of the models are known.
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6.1 Relationships to ARMAX models

It is no doubt that the MARMAX model is richer than a single ARMAX model. What about then
the role of the ARMMAX model in system description?

The ARMMAX model describes well the cases when the common ARX part has a physical
meaning of interest while characteristics of the stochastic disturbances may vary. Thus, it is
more flexible than a single ARMAX model by providing more freedom in describing stochastic
part of the input-output relationship.

It is not only intuitively obvious but also can be shown formally as follows.

Proposition 6.1.1 (Moments of ARMMAX model) For an ARMMAX model with a given
selection of C-parameters ©, = {Cp}pep+, an equivalent single ARMAX model exists in terms of
the first moment. The equivalence does not hold with respect to variance.

Proof: Results are implied by the mixture definition, the linearity of the expectation and the identity
E [y?] = varly] + E*[y].
For simplicity, the proof is presented with n, = 2. For a 2-component ARMMAX, the mixing
weights are
a = [ag, a9), with ag =1 — ay,

and a pair extended LD filters, determined by ©. = {C}, C>} and (5.15)-(5.16), generate the filtered
data

\i’p;t = [?]tﬂ/;;;;t]/, p € {1,2}.

Then, the corresponding conditional expectation E|-|-] and variance var|-|-] of the output y; are

Ey|ug,d(t —1),0] = ay (9/1;1;1‘, + Al;t) + a2 (9,7%;2;1& + AQ;t) (6.4)
= ¢ (041'&1;16 + 0427/;2;1&) + a1 A1 + asAoy,

_ _ 2
var [ye|ug, d(t —1),0] = ajag [9/ (¢1;t - ¢2;t) + Ay — AZ;t} + (6.5)
+re (1 D1y + aaDoy) .

where Ay = > Ly i§i—i, n = min(ne, t), p € {1,2}, c.f. Proposition 5.2.1.

Smooth dependence of the filtered data vectors on the ©. implies that an equivalent single
ARMAX model in terms of the first moment exists with its C-parameters being a convex combination
of the C7 and Cs. Clearly, the equivalence can not be found with respect to variance, since the
dependence of the conditional variance on data cannot be neglected. 0

6.2 Estimation and Prediction of ARMAX Mixtures with Known
C-parameters

The possibility to use the ARMAX mixtures is supported by the LD filters and the QB mixture
estimation algorithms described in previous chapters. They throw light on how to estimate the
MARMAX and ARMMAX when the C-parameters are known.

Before starting the discussion, it is worthwhile to state an important fact we rely on: If
assume

e the normality of the models,
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e C-parameters of MA parts O, = {C)},ep are fixed.

Then, individual components of the ARMAX mixtures can be pre-whitened and represented by
filtered regressions.

Specifically, each component of the MARMAX (3.20), say the p-th component, can be de-
scribed by the filtered regression

f(yt|ut7 d(t - 1)7 @a,pa Opap) = Nﬂp;t (eéﬂzp;ta re,pr;t), pE p*a

while that of the ARMMAX (3.22) can be described by

17 *
- ) ) ) = Up; N2 A .
f(yt‘uhd(t 1) O, Oc p) N z(e ¢pt Ter t) pep

In both cases, with its advantages stated in the Chapter 5, the extended LD filters are used for
the pre-whitening. The filtered data d;p;t and the LD decomposition factors such as D, are
functions of the known C-parameters.

With this fact, two extended Quasi-Bayes algorithms are developed here for the estimations
of normal MARMAX model and normal ARMMAX model, respectively. For simplicity, we only
give the basic description of the algorithms without the consideration of their iterative and batch
versions, although they are necessary and important in practical use. The discussion on these
two versions QB estimations for ARX mixtures in Section 4.3.5 shows clearly their essence and
can be easily extended and applied on the ARMAX mixtures. For the same reason, the algorithms
are described to the level of components without the consideration of factors. They could be
extended to the treatment of factor level using the complement of Appendix B.

6.2.1 QB Estimation and Prediction of MARMAX Models

Based on the extended LD filters and therefore the filtered regressions, it is easy to extend the
QB mixtures estimation of Section 4.3, in particular the QB estimation of normal ARX mixture
Section 4.3.5, to provide the estimation of the MARMAX as follows.

Proposition 6.2.1 (QB estimation of MARMAX model with known C-parameters)

Consider the MARMAX model (3.20) and assume that its C-parameters O, = {Cp}Zil are known.
i) Let us introduce unobserved discrete random pointers p,t € t* to label the active component

at each time instant t and assume it takes the value p € p* = {1,...,ny,} with the probability .
Then, considering the pointer p; together with the observed data dy leads to the joint pdf

Fe,pelue, d(t —1),0) = T lopf Welue, d(t — 1), 04, Cp, p)) " (6.6)

pEP*

with its marginal pdf f(ye|lug,d(t — 1),0) describing the MARMAX mizture. ©qp = {0p,7ep}
describes the unknown AR(X) part of the p-th component in the mixture. § is the Kronecker
function.

i1) If normality is assumed, then each of its components can be described by the filtered
Tegression

f(yelug, d(t — 1), Oap; Cp,p) = Nﬂp;t (G;aﬁp;tvre,pr;t)a peED (6.7)

using the filter (5.15)-(5.16) determined by the LDL’ decomposition of the corresponding known
partial covariance matriz. The filtered data vector \I/p;t:[gjp;t,i/};;t]/ is generated by means of
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(5.18). Dy is the t-th diagonal element of the matriz Dy, here the D, is the diagonal matric
from the L' DL decomposition of the patrial covariance matrixz of the p-th component.
Consequently, the joint (6.6) pdf can be specified as

d 6p,pt
f (e, pelug, d(t — 1),0) = H |:apt'/\[?7p;t (%”%;;tﬂ“e,pr;tﬂ . (6.8)
pEP*

i11) Under the natural condition of control, Definition 2.1.1, let us take the conjugate priors
of the mizing weights f(a) and the parameters of individual components f(Oqp) in the Dirichlet
form and the GiW form, respectively

f(@upld(t —1),Cp) = GiWe, ,(Vpi—1,Vp-1), pE P
flald(t —1),0.) = Dig(ki—1).

Moreover, let us assume the pdf of all unknown parameters be of the product form

f(Oq;ald(t —1),0.) H GiWe, ,(Vpit—1, Vpst—1) Dia(Fp;t—1) (6.9)

pEDP*

and approzimate the Kronecker 0, ,, by its conditional expectation wy.,

Kpit—1 f (Yelug, d(t — 1), p) x
: —, pEpP. 6.10
> pep Kpt—1f (yt|ue, d(t — 1), p) (6.10)

wpt = Elopp,|dt), O] =

Then, a posteriori pdf of the whole mizture in time instant t preserves in the same product
form as (6.9). Here a posteriori pdf of its p-th component is expressed by

f(@a,p d(t); @c) X |:f(yt|7~;p;t7 Ga,pvp):| ot G'l‘W@a‘p (‘/t—ly Vt—1)7 P c p* (611)

with the associated statistics being updated according to the recursions

~ ~/

Vot = Vpa—1+ wp;t\i’p;tq/p;tv Vpit = Vpit—1 + Wpt- (6.12)

Meanwhile, a posteriori Dirichlet pdf of the mizing weights « is given by its updated statistics

Rpt = ﬂp;t—l"‘wp;b (613)

The estimation uses the filtered data after a normalization WV, = \%;i (5.19).
pit

The predictive pdfs of each component is of Student form and its value can be calculated by

/

(27er;t)_O'5I (VP;t—l + @p,t‘i’p;tv Vpt—1 + 1)
Z(Vpst—1, Vpit—1)

f(yelug, d(t —1),p) = , pEP (6.14)

where the same type of integrals T(V,v) (4.23) is used. Dpy—1 is the function of the C-parameters
and determined by the LDL' decomposition of the corresponding partial covariance matriz.

Proof: The first statement is directly implied by marginalization over p;. The second statement is
based on the pre-whitening by the extended LD filters.

With them, to apply Bayes rule, c.f. (2.6) under the natural conditions of control, Definition
2.1.1, it leads to the the exact updating with the unknown value 4y, .
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To preserve a posteriori pdf of the parameters in the desirable product form, we approximate
Op,p, by its expectation wy,; using marginalization over ©, and . Here, the facts are exploited that
the predictive pdf of each component is of a Student type (4.30) and the elementary property of
Dirichlet pdf Di, (k) stating that Efoy|k] k. 0

The above estimation proposition leads to the following algorithm,

Algorithm 6.2.1 (MARMMAX-QB algorithm)

Off line (initial) mode
e Require the C-parameters of the model ©. = {Cp}pep+ to be given in some way.
o Select structure of the mixture by specifying

— the number of components n,,.

This number also determines the number of filters needed.

— the structure of each individual component.

It means to determine the structure of the ARX part by the corresponding data vector,
the structure of the MA part by its order n. and the structure of C-polynomial.

Select the prior pdfs f(Oqp) of each parameterized component in the conjugate form
f(Ouyp) = GiW@a,p(Vp;Oa Vpo) = GiW@a,p(Lywp;Oa Lipp;0, Dyp;0;, Dypro Vpo), DEDP

with the corresponding specified initial statistics values Lyyp.0, Lyp:0s Dyp;0s Dapp:0s Vpio -

Select prior pdfs of component weights in the conjugate Dirichlet form

f(O[) = DiOé(K'O)v

with the specified initial values rp,p > 0.

Select forgetting factor X € (0,1], a set of alternative pdfs fa(©,) and fa(a) in conjugate
forms for stabilized forgetting.

e Specify the initial values of n, extended LD filters defined by (5.15)-(5.16) for prewhitening.
On line (sequential) mode
1. Ewvaluate the point estimates the mizing weights o, based on data d(t — 1),

Kpt—1

a1 = Elapld(t —1)] = S
peEp* Vpit—

2. Acquire the new data item d;.

3. Run ny LD filters (5.15)-(5.15) (in parallel) to generate the filtered data \i/p;t, according
to (5.19).

4. Calculate the value of the predictive pdf for each individual components:
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e Perform a trial updating of the corresponding statistics,

!/

V});t = ‘/p;t—l + \i/p,t\i/p;t, pE p*
Vpt = Vpi—1+ 1.
Here neither stabilized forgetting nor date weighting is used. The partitioned L' DL

decomposition of extended information matriz Vp; has to be used for the sake of
numerical stability, see Section 4.2.2,

Lp;t—17 Dp;t—la Vpit—1 — Lp;t; Dp;t; VUpst.

e Determine the values of the predictive pdfs, using the above trial updates and the

formula (6.14).
5. Compute the probabilistic weights wp, using (6.10).

6. Update a posteriori pdf f(a|d(t)) of mizing weights, i.e., update the scalars kpy, using
(6.13).

7. Update a posteriori pdf f(Oqp|d(t)) of each individual components, i.e., update the corre-
sponding statistics, using the recursions (6.12).

Here, the filtered data vector is weighted by wy, in the updating. The L' DL decomposition
of the extended information matrix

*

Lp;t—lv Dp;t—17 Vpit—1 — Lp;t7 Dp;t7 Vp:its pep
has to be used again.

8. Ewvaluate, if need be, the characteristics of f(Oqp|d(t)) describing other parameters.
For instance, the point estimates of the Oqp = [0ap, Tepl|, according to (4.32)-(4.34).

9. Repeat the sequential mode, when t < {.

6.2.2 QB Estimation and Prediction of ARMMAX Models

With the restriction that there is a common ARX part in all components, the estimation of
ARMMAX model is relatively simpler than that of MARMAX mode and requires less computation.

Proposition 6.2.2 (QB estimation of ARMMAX model with known C-parameters)
Consider the ARMMAX model (3.22) and assume that its C-parameters O, = {Cp}Zil are known.
i) Introduce unobserved discrete random pointers py,t € t* to label the active component at

each time instant t and assume it takes the value p € p* = {1,...,n,} with the probability .
Then, there is the joint pdf of the unobserved pointer p; and the observed data d;
f(yt,Pt’Utv d(t - 1)7 @) = H [apf(yt|ut7 d(t - 1)7 @Ch vap)]apﬁpt (615)
peEP*

Its marginal pdf f(yilug,d(t — 1),0) is described by the ARMMAX model. ©, = {0,1¢} is the
parameters set describing the common unknown AR(X) part of all components.
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i1) If normality is assumed, then each of its components can be described by the filtered
regression

f(yt’utv d(t - 1)7 9(17 667p) = Nﬂt (Hllgp%t’ Terﬂf)? pe p* (616>

using the filter (5.15)-(5.16) determined by the LDL' decomposition of the corresponding known
partial covariance matriz. The filtered data vector i’p;t:[gp;tﬂzzl;;t], is therefore generated by
means of (5.18). Dy is determined by the extended LD filters.

Consequently, the joint pdf (6.15) can be specified as

~ Op.py
f (e pelug, d(t — 1),0) = H [O‘pNﬂt (‘9/1/’p;tvrer;t)} : (6.17)
peEp*

i11) Under the natural condition of control, Definition 2.1.1, let us take the conjugate priors
of the mizing weights f(a) and the common pdf f(©,) of all components in the Dirichlet form
and the GiW form, respectively

f(Oqld(t —1),0.) = GiWe,(Vi—1,14-1), p€P"
flald(t —1),0:) = Dia(kpt-1),
Moreover, assume the pdf of all unknown parameters be of the product form
f(Og,ald(t —1),0.) = GiWe, (Vi—1,v4-1)Dig(Ki—1). (6.18)
Then, it holds
f(Oq,a,p|d(t),©.) = (6.19)

= =/
= GiWe, (1/;_1 + 3 O U Uy, vio1 + 1) Dig | ki—1+ Y 0pp,[0,...,0,1,0,...]
* * N———
peEp peEp p—1

If we approzimate oy p, by its expectation wypy = E [0pp,|d(t), O]

K‘p;tflf(yﬂut) d(t B 1)7p)
Y peps Fpt—1f (yelug, d(t — 1), p)

/

x Z (Vt—l + \ifp;t\ifp;t, vi—1 + 1> (Kpst—1 + 1).

(6.20)

Wp;t

Then, a posteriori pdf of the parameters at time instant t is preserved in the same product form
as (6.18), with the associated statistics updated according to the recursions

= =/
Vi = Viei+ Z wp;t\:[}p;t\:[lp;ta vp =11 +1, (6-21)
peEP*®
Kpt = Kpit—1 1 Wpit, peEp’ (6.22)

\\;% (5.19). They describe the Quasi-Bayes

with the filtered data after a normalization \ilp;t = 75

estimation of the ARMMAX model.
The predictive pdfs of each component is of Student form and its value can be calculated by

!/

(2mDyp) 95T <Vt1 + ‘i/p,t‘i’p;t, Vi1 + 1)

ug, d(t —1),0.,p) = , pED” 6.23

where the same type of integrals Z(V,v) (4.23) is used. Dpy_1 is the function of the C-parameters
and determined by the LDL' decomposition of the corresponding partial covariance matriz.
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Proof: The proof can be carried out similarly to that of Proposition 6.2.1, with the attention paid
on the influence of the assumption that all components have the the common ARX part parameters.

The assumption implies that a single extended information matrix V; and a scalar v; are updated
in the estimation for all components by means of (6.21), instead of updating the statistics for each
component individually. Consequently, the predictive pdf of each component (5.19) may not only
determined by the corresponding C), but also by the others C-parameters ©.. 0

The above proposition of the estimation leads to the following algorithm,

Algorithm 6.2.2 (ARMMAX-QB algorithm)

Off line (initial) mode
e Require the C-parameters of the model ©, = {Cp}pep= to be given in some way.
o Select structure of the mixture by specifying

— the number of components n,,.
This number also determines the number of filters needed.

— the structure of each individual component.

It means to determine the structure of the ARX part by the corresponding data vector,
the structure of the MA part by its order n. and the structure of C-parameters.

e Select the prior pdfs f(©,) for all parameterized components in the conjugate form
f(©a4) = GiWe, (Vo, o) = GiWe, (Lyy:0, Ly, Dy;0, Dys0, 10),
with the corresponding specified initial statistics values Lyy.o, Ly, Dy:0, Dys0, 0.

e Select prior pdfs of component weights in the conjugate Dirichlet form
fa) = Dia(ko)
with the specified initial values kp.0 > 0.

o Select forgetting factor A € (0,1], a set of alternative pdfs fa(Op) and fa(a) in the conju-
gate forms for stabilized forgetting.

e Specify the initial values of n, extended LD filters defined by (5.15)-(5.16) for prewhitening.
On line (sequential) mode

1. Ewvaluate the point estimates the mizing weights o, based on data d(t — 1),

o Rpit—1
Gpi—1 = Elap|d(t —1)] = =—2——.
P P ZﬁEp* Kpit—1
2. Acquire the new data item dj.

3. Run n, LD filters (5.15)-(5.15) (in parallel) to generate the filtered and scaled data \ifp;t,
according to (5.19).
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4. Calculate the values of the predictive pdfs for each individual component:

e Perform a trial updating of the statistics for each individual component, p € p*,

= =/
| Wfl‘F\I’p,t‘I/p;t-
Upt = V-1 + 1
Here neither stabilized forgetting nor date weighting is used. The partitioned L' DL

decomposition of extended information matriz Vy, has to be used for the sake of
numerical stability, see Section 4.2.2

Lt—17 Dt—l - Lt7 Dt7

e Determine the values the predictive pdfs by means of the above trial updates and the

formula (6.23).
5. Compute the probabilistic weights wy, using (6.20).

6. Update a posteriori pdf f(ald(t)) of mizing weights, i.e., update the scalars kpy using
(6.22).

7. Update a posteriori pdf f(O|d(t)) of the common AR(X) part, i.e., update the corresponding
common statistics, using the recursions (6.21)-(6.22).
Here, the filtered data is weighted by wp,; to update a single set Vi, vy for all components.
The L' DL decomposition of the extended information matriz
Ly, Dy—1,vi—1 — L, Dy, vy,

has to be used again.

8. Evaluate, if need be, the characteristics of f(©q|d(t)) such as the point estimates of the
common parameter O, = [04,7¢], according to (4.32)-(4.34).

9. Repeat the sequential mode, when t < i.

Remarks 6.2.1

1. The predictive pdf is the key element needed both in the QB-MARMAX estimation and the
QB-ARMMAX estimation. Being convenient for evaluation of likelihood function, the ratio
(4.31) is used to compute their values. However, when prediction errors are explicitly
needed, it may be also advantageous to directly use the expression of the Student form

(4.30).

2. The MARMAX-QB and ARMMAX-QB estimations require feasible computational load which
is close to several recursive least-squares estimations. The computational burden increases
linearly with the number of components n.

3. Similarly to the last chapter, two kinds of LD decomposition are involved in the both
estimations:

e I'DL decomposition of extended information matriz V in its updating to avoid the
induced numerical troubles.

e LDL' decomposition of partial covariance matriz S in prewhitening.
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6.3 Approximate Parallelism

Another important property of the ARMAX mixtures is that they can be interpreted as an
approximate parallel realization of several ARMAX models. In another words, the ARMAX mix-
tures and therefore their estimations provide a quantitative measure of descriptive quality of
the corresponding ARMAX components in parallel. In this sense, the ARMAX mixtures provide
certain “algorithmic” parallelism to inspect several ARMAX’s in parallel. However, it has to be
stressed that they can only produce approrimate parallelism, since an approximation is used in
the numerical mixture estimation.

With their different model structures, MARMAX models and ARMMAX models provide differ-
ent level parallelism. We shall firstly give two propositions below to support this claim on the
MARMAX models, we then discuss the case of ARMMAX models afterwards.

Proposition 6.3.1 (Asymptotic of Bayesian estimation) Under natural conditions of con-
trol, Definition 2.1.1, if some finite constants satisfying 0 < Kg < Kg < oo exist, at the time
instant te € {1,2,...} for almost all © € ©*, such that

Ko f(yelug, d(t —1),0) < O f(ylug, d(t — 1)) < Ko f(ye|us, d(t — 1),0), VYt > te, (6.24)

where 1 f(y;|ug, d(t — 1)) denotes the “true” generator of data. The index © indicates that the
constants may dependent on it.

Then, the pdf f(©|d(t)) converges almost surely (a.s.) to a pdf f(O|d(c0)). Moreover, the
support supp [ f(Old(c0))] = {O : f(B|d(c0)) > 0} of the asymptotic pdf f(O|d(c0)) coincides
with the following set of minimizing arguments

wupp (SOoeN) =g o oo (11710). 629

where Heo <[O]f||@) = limy o0 Hy ([O]f||@>, with

[o] Ur, d(T —
(i) = 3 [O]f@T'““d(T‘”)l“[f(ifﬂd(i(—l,g))] dor (620

Thus, if there is a unique consistent estimate of O, then the Bayesian estimation provides it.

Proof: Under the natural conditions of control, a posteriori pdf can be written in the form

OHO) o= 1@ e LimaDIL), wi (627)
_ = []f yT|uT7 ( _1))
o) = L | ety (625)

This form exploits the fact that the non-normalized a posteriori pdf can be multiplied by any factor
independent of O.
Let us fix the argument © € ©* and define the deviation

£ (yr Jur, d(T — 1))] g lln l ] £ (yr Juy, d(T — 1))
f(yT’uﬂ d(T - 1)7 9) f(y7|u77 d(T - 1)7 6)

eo;r =1In [ 1 |ur, d(T — 1)] ,  (6.29)
where “IE[ fur,d(r — 1)] = [ 1 f(yr|ur, d(r — 1)) In [ 2ttt gy, is the conditional ex-

f(yT‘uTvd -
pectation of In [%} with respected to [ f(y-|u,,d( —1)). A direct check reveals

that the introduced deviations eg., are zero-mean and mutually non-correlated.
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Followed (6.26), (6.28) and (6.29), it holds
— H, (1 1
H(A(D)]10) = He (17110) + 3 cosr.
T<t

The assumption (6.24) implies that the variance of eg.; is bounded. Consequently, the last term on
the right hand side of the above expression converges to zero almost surely (a.s.), see [29]. The first
term is non-negative, as it can be viewed as a sum of KL distances (2.7). Due to (6.24), it is also

finite. Thus, (6.28) converges almost surely to the non-negative value H ([°}f||®).

Moreover, the pdf H ([0]f||®) remains unchanged, if we subtract infgegupp[ £(0)n0* Hoo ([O]f||@)
from the exponent of its non-normalized version (6.27). Then, the exponent contains

—tx an asymptotically non-negative factor.

Thus, the pdf f(©|d(c0)) may be asymptotically non-zero only on the minimizing arguments of
(6.25).

If the unique O exists such that 19 f(y,|u,,d(r —1) = f (yT|uT, d(t —1), [0]6), then it is the
unique minimizing argument due to the elementary properties of the KL distance. M

The following proposition exploits the results of the above proposition to justify our claim on
the parallel nature of the MARMAX model.

Proposition 6.3.2 (Parallelism of MARMAX model) Under the natural conditions of con-

trol, Definition 2.1.1, consider a MARMAX model parameterized by the collection O, = {Cp}pep
i) Then, the predictor of the model has the form

Tp
Flyelu, d(t =1),0c) =3 ape-1(0c) f (yelue, d(t — 1), Cy), (6.30)
p=1
with the point estimate of mizing weights
Gpt—1(0¢) = Elapld(t — 1), O],
and the component predictor
= M
fytlue, d(t —1),Cp) x T (VP;tl(Cp) + Wi (Cp) V4 (Cp), Vpst—1 + 1) . (6.31)

In addition, the following inequality holds

0 < H(F10) < 3 dpoe(©c)Hy (111160) (6.32)

pEP*

with a.s. existing

1< [e] -1
dp;oo(@c) _ tli)r& &p;t(@c)> 0< Hp ([o]fH@C) _ tliglo = Z In ( f(yT’uTad(T )) ) ]

3 — f(yrlur, d(r = 1), Cp)

i1) If the "true” system is described by a single ARMAX model and we use the MARMAX model
i its estimation,
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e the C-parameters of the "true” ARMAX system are defined by some vector °1C,

o the C-parameters C,, p € p*, of each component of the MARMAX model has the same
order ne as that of the 1°1C,

o the C-parameters O, of the MARMAX are the vertices of a non-degenerate simplex in n.+1-
dimensional real space.

Then O, may belong to the support of a posteriori pdf f(O.|d(c0)) only if the weighted component
entropy rates Gp:oo(Oc)Hp ([O]fHGC) are simultaneously minimized. In other words, ©. may

belong to the support of a posteriori pdf only if the vector C, mazimizes asymptotically the
weighted component log-likelihood,

Lp(d(t), ©c)

t
Ay ) nf(yrlur, d(7 = 1),Gy)], p € "t — 00 (6.33)
T=1

with the component predictors (6.31).

Proof: The form of the mixture predictor (6.30) is simply obtained by taking the conditional expec-
tation with respect to the « and the ARX parts. The form of the component predictors (6.31) is
implied by Proposition 4.2.3.

The Jensen inequality implies the inequality between finite sums defining asymptotically the
involved entropy rates.

Almost sure convergence of &, follows from the fact that, as a conditional expectation of a
bounded variable, it is a bounded martingale, see Chapter 3.1.

Properties of a specific component entropy rate can be shown exactly as in the proof of Propo-
sition 6.3.1.

The minimum can be reached if the (asymptotic) estimate of component weights &;_1(0.) is

e cither a zero-one probabilistic vector so that only the pdf f(©|d(o0)) of one component have
the smallest KL distance to the true one.

e or a vector with non-zero entries simultaneously so that more than one components having the
same smallest KL distance to the true one.

The latter possibility is excluded by the use of C),'s defining a non-degenerate simplex. ]

The above propositions justify partially the parallelism of ARMMAX models as well. However,
assuming a common AR(X) part, ARMMAX models leads to a joint updating of the common
parameter ©, = {0,, 7.} in the estimation, i.e., (6.21)

= =/
Vi = Vit > wpt VW, vi=via+1,
pEP”

This joint updating may bring some undesirable influences. Currently, no formal analysis is
available to measure this influence. Here we just give a preliminary discussion on one of most
significant problems.

The problem stems from the use of LD filter. Recall that the estimation of an ARMA(X)
based on the extended LD filter, Section 5.3, under two situations
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e a C-polynomial having some unstable roots is given,
e its stable reflection is given.

may lead to the identical estimate of the colored noise covariances r; in both cases but different
estimates of noise variance r..

This simple fact brings no trouble for MARMA (X) models. However, it could bring some bias
in the estimation for ARMMA (X) models through the joint updating of the common AR(X) part
when both stable and unstable cases are involved.

It is well-known that, for any C-polynomial (in the backward shift operator z 1)

ClzY)=14c1z7 4+ ... +ep 2",

there always exists another polynomial C'(z~1) as the stable reflection of the C(z~1). C(z7")
has the guaranteed stability and shares the same spectral density as the C(z71).

On the other hand, although we showed that LD factorization converge to the coefficients of
the stable reflection C'(2~!) even when the original given C-polynomial C'(z~!) is unstable, the
transient period of the filter before convergence is important and directly influences the practical
results.

Thus, one possible idea here is to use a stable replacement operation before we run the filters:

To replace a given C-polynomial by its stable reflection when it occurs to be unstable.

It has to be stressed here that such a stable replacement operation may have some numerical
precision problem to certain level in practical:

It is only possible to prove that the roots of a given polynomial can be found within
some roundoff error, or reversely the coefficients of a polynomial could only be found
with its roots equal to some given roots within roundoff error.

Therefore, other solutions are worth of considering. One of them is discussed in the concluding
chapter.



Chapter 7

Improved Bayesian Solutions to
ARMAX Models

Under the assumptions that the covariances or the C-parameters of its stochastic MA part are
known, we had a first inspection on Bayesian estimations of ARMA(X) model in the Chapter 5.
Now let us return to this topic for some further study. We consider improved Bayesian estimation
and prediction of ARMA(X) model to have Bayesian estimation setting up to its ARX part and
to reduce the uncertainty of its MA part by searching for a point estimate of the C-parameters.

7.1 MMQ and MAQ Methods

Consider the SO normal ARMA(X) model (5.1), i.e.,

yr = 0" + vy
In contrast to the case of Chapter 5, here we do not know the parameters of its stochastic MA
part, neither the noise variance r. nor the n.-dimensional C-parameters vector C' = [c1, -+, ¢p,]
are known. The model is then parameterized by

0 ={0,, C},

where O, = (0,7.) describes the AR(X) part of the model.

Our goal on the estimation of the MA part here is to seek for an approach with its applicability
not being limited by the stability requirement and to deal efficiently with the unknown C-
parameters in high dimensions (> 2).

7.1.1 Problem Formulation

From Bayesian viewpoint, to estimate the unknown C-parameters of the above model is to use
a posteriort pdfs by specifying the Proposition 2.1.3 as follows:

For any given a priori pdf f(C), the observations d(t) correct it to a posteriori pdf f(C|d(t))
through the Bayes rule (2.6). Under the natural condition of control, Definition 2.1.1, it reads

f(Cld(t)) o< L(d(t), C) (O, (7.1)

where « means proportionality, i.e., equality up to a normalizing factor which is independent of
C. The likelihood function
¢

L(d(t),C) = H f(yr‘ur, d(r —1),0) (7.2)

T=1
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contains all information about C-parameters which can be extracted from the observed data
d(t). For a fixed C, its value is simply a product of values of the predictive pdfs.

Unfortunately, such a posteriori pdf could only be used formally. The complex nature of
likelihood function £(d(t), C') makes its general analytical treatment difficult, see the next section
for more detail. Assuming that a finite set of the competing C’s are available, Peterka [7] in 1989
made the formula (7.1) applicable by a Bayesian comparison of hypothesis to select the most
promising candidate. Essentially, he evaluated simultaneously several posterior probabilities
f(C|d(t)) on the hypotheses that a specific given C-parameters vector is the best one among
the given set based on the observed data samples. However, no rule has been given how to
generate such a candidate set. In addition, another problem he encountered is that a posteriori
probabilities converge to a zero-one vector in generic cases, see Proposition 6.3.2, regardless of
the quality of the original choice of candidates.

To overcome the practical restriction of the Bayesian comparison of hypotheses while pre-
serving its ability to use full Bayesian solution with respect to the ARX part motivates the rest
discussion of this section. Essentially, an efficient numerical maximization procedure is sought
for generating the most interesting competitors around the maximum of the posterior pdf.

For presentation simplicity, we restrict ourselves to a uniform a priori pdf f(C) in (7.1) and
search for the candidates in a neighborhood of

arg max f(Cld(t)) = arg mcaxﬁ(d(t), C), CeR". (7.3)

With the given order n. of the MA part, it defines a n.-dimensional optimization problem of
maximizing the scalar-valued nonlinear function £(d(t),C) : R"™ — R. Note that usually this
optimization would have to subjected to the constraint that C' € C*, here C* C R'< is the space
determined by the stability requirement on its C-polynomial. Nevertheless, for the reasons
stated in Chapter 3.3 and Chapter 5, we are allowed to consider it as an unconstrained problem.

7.1.2 Choices of MDS method and ARMAX Mixtures

It hasn’t been an easy task to choose a proper method to solve the optimization problem (7.3)
in our estimation setting. A variety of reasons stated below have focused our attention on the
multidirectional search method (MDS), which was reviewed in Chapter 2.3.2:

First, an efficient evaluation of the gradient is inhibited by the time-variation of the LD filter
and therefore the complex nature of the £(d(t),C) (7.2). Thus, we have to restrict ourselves to
derivative-free methods.

Then, The fact that evaluations of the £(d(t),C) (7.2) could be expensive narrows down the
options further on by excluding stochastic optimization methods.

Meanwhile, as shown in Chapter 5, if we want to use LD type filters for prewhitening, we
have to consider the C-parameters of the model as time varying even when they are originally
time-invariant. The variations are data independent and driven only by the time-invariant
C-parameters. Therefore, although the evaluation of the type filters is computationally inex-
pensive, its associated C-parameters variations hinder the attempts to estimate the unknown
(C-parameters recursively. It seems to preclude to use Monte-Carlo-based maximization.

Moreover, the optimized likelihood function may be multi-modal with quite sharp but smooth
modes. Thus, we can rely at most on the continuous differentiability of the objective function
L(d(t),C) with respect to C.

These considerations reduce our options more or less to simplex-based direct search ap-
proaches. The review of Chapter 2.3 showed that the NM algorithm, the most popular simplex
method, has only weak convergence analysis established in one dimension. This excludes it
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from our considerations since we want an algorithm also efficient in higher dimensions (> 2).
The review also revealed that the MDS method has brought a new interest in the direct search
methods by the following properties:

e It has strong convergence properties and verified robustness.

e It is a derivative-free method, i.e., it does not require the information about the derivative
of the objective function.

e It works well with "noisy” function values.
e It is suitable to be executed in parallel.

Obviously, the first three properties are all favorable to our problem. Especially with its strong
convergence analysis, the MDS method guarantees the efficiency in high dimension.

However, its fourth property needs to be justified for its efficient use in practical. The original
intention of the MDS method is to execute several evaluations of objective function in parallel
on a machine of multi-processors by taking advantage of the computational parallelism. But it
then faces problems such as the cost of synchronization (i.e. interprocessor communication) and
some additional restrictions on the objective function. What’s more, it is only single-processor
machines that are most often available.

Therefore, our practical interest here is to look for an efficient use of the MDS method on a
single-processor machine rather than parallel ones. The studied approximate parallelism of the
ARMAX mixtures in the last chapter suggests the possibility and feasibility to use these mixtures
to provide certain ”algorithmic parallel environment” for the parallel evaluations involved in the
multidirectional search.

Recall that the MARMAX and ARMMAX model can only provide approximate parallelism
with the approximation used in the corresponding numerical mixture estimations. In another
words, only approximate likelihoods are available rather than their exact values. In this point,
it is attractive for us that the MDS method is able to work well with "noisy” function values.

With the limitation discussed in Chapter 6.3, the ARMMAX models, compared to the MAR-
MAX models, may seem less suitable to provide the parallel evaluations for the MDS. However,
with its certain efficiency confirmed by experiments, it may still make sense to discuss this
possibility here.

7.1.3 Description of MMQ/MAQ Estimation

Now let us combine organically the essential ingredients selected in last section:
e The MDS method,

e The parallelism of the ARMAX mixtures, with the associated efficient iterative estimation
algorithm MARMAX-QB/ARMMAX-QB,

This leads to so-called MMQ (MDS-MARMAX-QB) estimation and MAQ (MDS-ARMMAX-QB) es-
timation of an ARMAX model. These two estimation procedures share the same main scheme
and can be distinguished according to the type of mixtures used: With MARMAX type mixtures,
it corresponds to the MMQ estimation. With ARMMAX type mixtures, it becomes the MAQ
estimation.

The main idea here is that unknown C-parameters could be searched by the MDS method in
"approximated algorithmic” parallel environment of the ARMAX mixtures to generate a sequence
of points that convergence to a critical point, ideally the ”true” C-parameters. More exactly,
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e The number of vertices in the used simplex is equal to the number of components in the
corresponding ARMAX mixtures.

For the n.-dimensional optimization problem (7.3), the number of vertices in the used
simplex is n. + 1 according to Chapter 2.3. Here, n. is the order of the MA part and it
is required to be known. Thus, n. + 1-vertex simplex and n. + 1-component mixtures are
adopted in the estimations.

e The evolution of simplex corresponds to the redefinition of MARMAX/ARMMAX mixture.

The search rules of the MDS method drive the evolution of simplex. Then, the vertices of
the evolving simplex specify the C-parameters O, = {C}}pcp+ of the used mixtures.

e The mixtures facilitate the objective-function evaluations for the MDS.

The estimation of the mixtures relies on the MARMAX-QB/ARMMAX-QB algorithms devel-
oped in last chapter. In particular, the estimation of the ARX part relies on running several
extended LD filters in parallel so that Bayesian setting can be preserved at least up to this
part.

For a given C-parameter C),, C, € ©O., when the mixtures are not used, it corresponds
to a single ARMA(X) model with the likelihood L£(d(t),Cp). When the mixtures are used, it
corresponds to a single ARMA(X) component of the mixture used with the component likelihood
value 1,(d(t), Cp), which can be interpreted as an approximation of the likelihood L(d(t),Cp).

Thus in the context of the MMQ/MAQ estimation, the optimization problem (7.3) can be
approximately expressed in terms of the component likelihoods I(d(t), C'). Consequently, we shall
use the component likelihood values to judge the quality of the individual given C-parameters.

As usual, natural logarithm likelihoods (log-likelihoods) are used in practice because it is
numerically easier. In the case of using the MARMAX, the component log-likelihoods can be
given as follows

Ip( Z In [f(yr|us, d(t —1),Cp)], Cp€O. pep (7.4)

while in the case of the ARMMAX, the log-likelihood of each component may also depended on
the C-parameters of the other components,

L ( Z In[f(yr|ur,d(r—1),0.)], pep” (7.5)

where O, = {Cp}pep, P ={1,---,nc.+1}.

It is worth of stressing that component log-likelihoods are reflected in the overall log-
likelihood of the corresponding mixtures, which are in the following forms respectively for the
the MARMAX

L(d(t),0.) = Z In Z Gpir(Oc) f(yr|ur, d(t —1),Cp) | , (7.6)

=1 L pEP™

L(d(t),0.) = Zln Z Gpir(Oc) f(yr|ur, d(7 —1),0,) | . (7.7)

T=1 | PEP™

The values of the mixture log-likelihood can be obtained as a byproduct of the QB estimations.
They may serve for monitoring of success of the search made via component log-likelihoods.
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MMQ/MAQ Algorithm

Here an algorithmic description of the MMQ/MAQ estimation is given below. For the involved
Bayesian estimations, we have to consider the construction of prior pdfs. They shall be discussed
together with the other implementation details in next section.

The procedure searches a point strictly improving over the best vertex. Three possible
operations are defined to generate the trial points, see Chapter 2.3.2: reflection, expansion,
contraction. After each operation, if at least one corresponding trial point has a higher log-
likelihood than that of the current best vertex, the operation is called successful. To accept one
operation, we replace the current vertices of the simplex by the corresponding trial points after
the operation.

For simplicity, we denote [ = [l1,...,l,.+1] as the vector of all component log-likelihood
values. The upper index distinguishes the operations or iteration stage, while the lower index
distinguishes the component. For instance, l;, means the log-likelihood of the p-th component in
reflection operation. The same rules is applied on the notation of C-parameters. For instance,

C’S = [c(iP, S c?lmp] means the initial values assigned to the C-parameters of the p-th component.

Algorithm 7.1.1 (MMQ/MAQ Estimation Algorithm)

Initial phase
e Specify the order n. of the MA part and select the type of mixtures, MARMAX or ARMAX,

to be used for function evaluations.

e Select a starting point of the search procedure, i.e., a suitable initial guess CY of the C-
parameters.

e Generate an initial non-degenerated simplex based on C?,
<CY- 0 >
by defining the other n. vertices Cg, p=2,---,n.+ 1, see the next section.

e Select the expansion and contraction scalars x € (1,00), & € (0,1) with the default unit
reflection factor.

o Select stopping rules, see the next section.
o Specify the options of the corresponding off-line steps for the MARMAX-QB estimation or
the ARMMAX-QB estimation, see Chapter 6.2 and Chapter 4.3.5.

To increase the chance to gain a successful estimation, some iterations are necessary $o
that iterative estimation is in need. To avoid redundant discussion, we did not give the
description of iterative MARMAX-QB estimation or the ARMMAX-QB estimation. These
iterative versions, however, can be easily obtained by the the discussion of Chapter 4.3.4

and Chapter 4.3.5.
o Set j, the counter of the total number of iterations used in the search, to zero.

o Perform an initial iterative MARMAX-QB or ARMMAX-QB estimation, see Chapter 6.2 and
Chapter 4.3.5.

Accumulate the component log-likelihoods 1°. Here the vector 1° has its each individual
entries lg, p=2,---,n.+ 1, defined by (7.4) or (7.5).

Accumulate, if required, the mizture log-likelihoods defined by (7.6) or (7.7).
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e Swap the vertices so that the vertex with the highest component likelihood is labelled as CY.

Iterative phase

Do while stopping rule is not met, set j := j + 1.
1. Reflection

e Define n. reflected vertices
05:20{_1_0;5_17 p=2,-,nc.+1L

o Specify the C-parameters of the n. + 1 components in the used mizture by the above
reflected vertices and the current best vertex CY -1

Specify the corresponding a priori pdf on the ARX part as the flattened posterior pdf
from the previous iteration.
e Perform iterative MARMAX-QB/ARMMAX-QB estimation, see Chapters 6.2 and 4.5.5.

Accumulate the component log-likelihoods I for the mixture determined by the reflec-
tion. Here the vector I" has its each individual entries l,, p=2,---,n.+1, defined

by (7.4) or (7.5).
Accumulate, if required, the mizture log-likelihoods defined by (7.6) or (7.7).

e Determine the components having the highest log-likelihood

m, = arg ;%%1( Ly
here m, € p*, p*=1,---,n.+ 1.
e Go to the step 2, if m, > 1. Otherwise, go to the step 3.

2. FExpansion

e Define n. expanded vertices
CIJ)}e _ C{'—l + X(C{_l . Cg—l)’ p=2,--+,m.+ 1.

o Specify the C-parameters of n. + 1 components in the used mizture by the above
expanded vertices and the current best vertex CJ ",

Specify the corresponding a priori pdf on the ARX part as the flattened posterior pdf
from the previous iteration.
e Perform iterative MARMAX-QB/ARMMAX-QB estimation, see Chapters 6.2 and 4.5.5.

Accumulate the component log-likelihoods ¢ for the mixture determined by the expan-
sion. Here the vector I° has its each individual entries I5, p=2,---,n.+1, defined

by (7.4) or (7.5).
Accumulate, if required, the mizture log-likelihoods defined by (7.6) or (7.7).
e Determine the components having the highest log-likelihood

me = arg max [

e
pEp* p’

here me € p*, p*=1,---,n.+ 1.
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o Accept the expansion, if I, > I, , by replacing Cg by the expanded vertices Cp, for
p = 2---.,n4+ 1. Otherwise accept the reflection by replacing CIZ by the reflected
vertices Cp, forp=2,---,n.+ 1.

e Go to step 4.
3. Contraction

e Define n. contracted vertices
e — i 4 (0t _ il
P 1 + {( 1 D )

and accept them by replacing C’g by the contracted points Cy, forp =2,---,n+ 1.

o Specify the C-parameters of n. + 1 components in the used mizture by the expanded
vertices and the current best vertex C{fl.
Specify the corresponding a priori pdf on the ARX part as the flattened posterior pdf
from the previous iteration.

e Perform iterative MARMAX-QB/ARMMAX-QB estimation, see Chapters 6.2 and 4.5.5.

Accumulate the component log-likelihoods 1€ for the mixture determined by the expan-
sion. Here the vector I° has its each individual entries Iy, p=2,---,n.+1, defined
by (7.4) or (7.5).

Accumulate, if required, the mizture log-likelihoods defined by (7.6) or (7.7).

e Determine the components having the highest log-likelihood

_ c
me = arg ggﬁ( Ly,

here me € p*, p*=1,---,n.+ 1.
e (o to the step 4 if me > 1, otherwise go to the step 1.

4. Swap

Swap the vertices so that a (new) best point is labelled as C’{ according to the components
likelihoods of the accepted mizture.

Remarks 7.1.1
It may be advantageous sometimes to use batch MARMAX-QB/ARMMAX-QB estimation in a
way similarly to Chapter 4.3.5.

7.1.4 Implementation Aspects

As a coupling of the MARMAX-QB/ARMMAX-QB estimation with the optimization of the MDS,
the MAQ/MMQ estimation has to take both these two sides into accounts in the implementation.

Firstly, the issue of construction of prior pdfs involved in the MARMAX-QB/ARMMAX-QB
estimations is briefly considered.

Then, we discuss the general issues of the implementation in multidirectional search, such as
initial simplex, scaling factors and stopping criteria. We mainly follow the rules of the standard
MDS procedure and further specify some of them to fit our parameter estimation setting. The
options listed serve us mainly for references as they are used in the illustrative examples of the
next chapter.
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Prior and Flattening

The good choice of a priori pdf is critical for the estimation of MARMAX-QB/ARMMAX-QB. It is
solved in the following way:

e In the very initial iteration of the MDS, a priori pdf is chosen by incorporating a priori
knowledge on the ARX parts, see [34].

e In its other generic iterations, a posteriori pdf from the previous iteration on ARX parts
is used as a priori one of the current iteration after a flattening.

e Note that iterative (batch) MARMAX-QB/ARMMAX-QB estimation is almost always used in
practice. Thus, within each iterative (batch) estimation, a priori pdf is constructed in an
iterative way Chapter 4.3.4 and 4.3.5.

Initial Simplex
As a simplex-based method, multi-directional search begins by choosing an initial simplex. Given
the order n. of the C-polynomials and the initial guess

CY =1 enals (7.8)

7 N,

then the n. new points can be generated

C]? = [Ccl),pv"'acgzc,pL p= 27"'7nc+ 1 (79)

to form an n. + 1-vertex simplex
<Y 00 L > (7.10)

General multi-directional search algorithm requires only that the initial simplex to be non-
degenerated so that the n. edges adjacent to any given vertex in the simplex spans the space
R?. Otherwise, with a degenerate simplex, the algorithm can only optimize over the subspace
spanned by the degenerate simplex.

Shape, Size and Orientation

As we mentioned in Chapter 2.3, regular simplex and right-angled simplex are the most often
used two types of simplex. In addition, some other shape non-degenerate simplex could also be
used, for instance, the simplex defined in Matlab toolbox for the routine of the NM simplex.

Although the shape of simplex may not influence the MMQ/MAQ procedure significantly, the
use of right-angled simplex may be more recommendable for our problem, since the C-parameters
are scale dependent.

With a given initial guess C) (7.8), specifying the definition of right-angled simplex (2.26)
to our case means to determine the n. vertices (7.9) by some fixed distance (3, in each of n.
coordinate directions from the initial guess C}

Cl=CY+Bply, p=2,-+,mc+1, (7.11)

where 1, denotes the unit coordinate vector.
Now let us inspect how to determine the non-zero scalars 3,, p = 2,---,n.+1. The stability
requirements on the C-polynomial implies a loose condition we could exploit to determined a
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rough scaling of the C-parameters C = [c1,---,¢p | its i-th entry element ¢; in magnitude
cannot exceed the combination number,

lei| < ( Tz,c>,i:1,...,nc

where n. is the order of MA part.
Therefore we can define 3, as follows

IBP:ih<1;C>7 p=1--,nc (712)

with its magnitude |By| = h 7;0 determining the size of the simplex. The positive scalar h

becomes the only tuning parameter to control the size of the simplex as the order n. is fixed.
A proper choice of h is important in practice. Although if the initial simplex is either too small
or too big, the MDS method can rescale accordingly with the operations of the expansion and
contraction, it may cost a significant number of iterations to expand or contract simplex before
any real progress can be made, particularly in the case of too big initial simplex.

The signs of 3, determine the important orientation of the initial simplex. There is no
universal rule how to select them. Thus, whenever possible, it makes sense to try several initial
options differing just in orientation.

Scaling Factors and Termination

Here we shall go for the usual choices on the scaling factors [15]:
x=2 §=1/2

for expansion and contraction operations respectively, with unit reflection factor.
For termination, standard stopping rules are adopted and enriched by a specific one:

e To inspect the relative size of simpler, by measure the length of longest edge adjacent to
the best vertex CY

s [0l = cf]| s e, ec o), (7.13)

where A = max (1, ‘C{H) and € is a pre-selected tolerance. Instead of ¢ = le — 008,

approximately the square root of machine zero, expensive function evaluations in our
estimation context enforces us to set this tolerance around le — 004.

e To limit the number of iterations j by a total bound J.

The appropriate value of the bound J can be determined by the affordable computational
time. Here, we benefit from the fact that the QB estimations have fixed a priori known
computational demands.

e To check the increments of the global log-likelihood of the mizture.

Availability of the global log-likelihood of mixture £ = £(d(t),O.), (7.6) or (7.7), allows
us to add another possible rule to stop the evaluation when the increment among iteration
steps is smaller than a pre-specified threshold 7,

LI — ri-1

Iz <n, n€(0,1) (7.14)
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7.2 PEB Method

To improve Bayesian estimation of ARMA(X) models, another natural idea worth to be inspected
is to make use of the existing point estimation methods, such as PE, ELS, since only a point
estimate of the C-parameters is sought for.

Here we consider the most popular PE method [1] or [2] for this task and combine it with
Bayesian method for the rest of estimation. Similarly to the last section, the trick behind is to
use a hybrid, which leads to a so-call PEB method,

e point estimation on C-parameters is provided by the PE method.

e the rest of estimation is provided as Bayesian solution. It is based on the extended LD
filter for prewhitening.

With the nice properties of the PE method, the hybrid PEB method is able to deal efficiently
with the unknown C-parameters in high dimension (> 2). However, this method has potential
difficulties in the stability on the C-polynomial. As pointed out by Peterka, it is often a rule
rather than an exception that the C-polynomial of an ARMA(X) model has its roots lying close
to/on the unit circle, especially in case of fast sampling. Thus being free from potential diffi-
culties in the stability on the C-polynomial, MMQ and MAQ approaches may appear to be more
favorable than PEB in practice.

Remarks 7.2.1

1. Note that PEB estimation imposes restrictive constraint on the stability of the C-polynomial,
since estimates of C-parameters is returned from the PE method. Thus in the context of
PEB estimation, the extended LD filter makes no differences from some other types of filter
in this aspect.

2. A routine is available in system identification toolboz of Matlab [38] for the implementation
of PE estimation and detailed discussion on the issue can be found in [1] or [2].



Chapter 8

Illustrative Examples

After the theoretical study in the previous chapters, we present some illustrative experiments in
this chapter to verify the practical properties of the theory and to inspect the performance of the
proposed algorithms. The focus is put on the performance of the proposed MMQ and MAQ algo-
rithms for the estimation of ARMA(X) models. They indicate the efficiency of the MARMAX-QB
and ARMMAX-QB algorithms and confirm the underlying theory such as approximated paral-
lelism of ARMMAX and MARMAX as well.

Essentially three groups of experiments were designed with the aims:

e to examine the basic properties of the MAQ and MMQ algorithm by estimating a simulated
ARMA and a simulated OE (output error model), respectively;

e to provide the comparisons of the methods among the MMQ estimation, the MAQ estimation
and the PEB estimation;

e to illustrate the performance of the three methods using real data.

In addition, some sensitivity tests are carried out with the varying implementation options,
namely

e starting point of the MDS search;

e size and orientation of the initial simplex;

8.1 Preliminaries

8.1.1 Software Aspects

This subsection gives a few comments on the software implementations.

e For the PEB estimation, we use the routine in system identification toolbox of Matlab [38]
for PE point estimation of C-parameters and the rest of estimation relies on the use of the
extended LD filter. Therefore the estimation has a two-layer software architecture:

Recall that the main idea of the PEB estimation is to apply standard PE estimation for
point estimation of unknown C-parameters and use it in the rest of Bayesian estimation.
Therefore, the first layer is a routine of standard PE estimation. In the next layer, (itera-
tive) Bayesian estimation of the resulting filtered regression is based on the extended LD
filter.
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standard PE estimation

Extended LD filter Bayesian estimation of filtered regression

Software architecture of the PEB estimation algorithm

e For the MMQ and MAQ estimations, a software package is developed as m-files of Matlab.

It is based on Mixtools [39], a toolbox has been developed in UTIA to provide Bayesian
estimation and prediction of finite mixtures, mainly Markov and ARX types. Using its
algorithmic basis, the MMQ/MAQ estimation is developed with a four-layer software archi-

tecture:

MDS search

Tterative MARMAX-QB/ARMMAX-QB estimation

Visualizing mixture structure Data management

Extended LD filters

Bayesian estimation of filtered regression components

Software architecture of the MMQ/MAQ estimation algorithm

Recall that the main idea of the MMQ/MAQ estimation is to apply the MDS procedure to
search for unknown C-parameters and exploit the mixture estimation algorithms for its
function evaluations. Therefore, the first layer is a routine of the MDS search fitting to the
estimation settings. In the next layer, iterative mixture estimations are then called within
the MDS routine. The MMQ/MAQ algorithm described in the last chapter shows how these
two layers interact to each other.
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To be able to implement the mixture estimation, software representation of mixture struc-
ture and data management have to be considered as an intermediate layer to build a bridge
with the estimation theory. As showed in Chapter 6 and Chapter 7, the mixture estima-
tion relies on running several extended LD filters in parallel and Bayesian estimation of
the corresponding filtered regression components. They serve as the basic layer of the
procedure.

Note that sometimes it may be advantageous to use a batch mixture estimation instead
in the second layer, see Chapter 4.3.5.

8.1.2 Measures of Performance

This subsection presents some measures which help us to judge performance of the methods.

Criterions of Estimation Quality

As hybrid methods, the MMQ, MAQ and PEB estimations provide a point estimation of the C-
parameters for an ARMA(X) model and Bayesian estimation for the AR(X) part. To access and
compare the quality of the estimations, we present all point estimates of unknown characteristics
of the models studied.

In the simulation studies, it may be also useful to inspect the ratio

f <[O]97 [O]r)
f(6.7)
as another criterion. Here f( [olg, Mr) is the posterior pdf of the true regression coefficients [0

and the true noise variance [y, while f (é, 7) give the resulting posterior pdf of the estimates.
Numerically, we evaluate

Ryqr = exp {ln F(llg, ey —1n f(é,f)} (8.2)

instead. According to the form of GiW pdf in Chapter 4.2.2, (8.2) can then be specified as
follows

Rpar = (8.1)

e o (- 83

N/ R
[0] el — ) =1 (llg — @) + D
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Generally, 0 < R,qr < 1. Obviously, the larger R, is, the better quality the estimation achieve,
or in another words, the closer to the true values the estimates are. Meanwhile the closer to
zero Ryqr is, the sharper the pdf f(6,r) of parameters is shaped.

Criterions of prediction Quality

On-step-ahead prediction is used to capture the dynamics. To judge the quality of the prediction,
besides histogram prediction errors, we inspect the relative standard deviation of prediction

€rTors
i 2
1€
Spp = \l % (8.4)
D1 (yr — 7)?
Where é; = yr — Gt defines prediction error, ¢ is conditional expectation of output y;. 7 =

%Zf&:l y; is sample mean of y; and # is the number of data samples.
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Other used criterions

The MMQ/MAQ algorithm may be relatively slow in some cases. Therefore, the time needed
for estimations and the number of iterations used (for MMQ and MAQ) are also measured and
compared during experiments.

8.2 Basic Properties of MMQ and MAQ

This section aims at examining the basic properties of the proposed MMQ and MAQ algorithms
together with their sensitivity to some implementation options. They are demonstrated by
estimating a simulated ARMA model and a simulated output error model OE, respectively.

8.2.1 Estimating Simulated ARMA

Our first example uses MMQ and MAQ to estimate a simulated time series ARMA(2,2) with
output part and MA part having orders n, = 2 and n. = 2, respectively. We also want to
examine the influence of a starting point. Thus, several estimations are performed differing just
in the starting points.

Simulated Process

The data d(t) of the length £ = 2000 were simulated by the following SO ARMA process
yr = 1.5y—1 — 0.Ty—o + e — 0.8e4—1 + 0.6e4_2. (85)

The variance r = 0.1 of the driving white Gaussian noise e; was chosen. The plot of the outputs
is given in Figure 8.1.(a).

Estimated Model and Implementation

The estimated model is selected as an ARMA(2,2) with the correct structure
Yt = a1Yt—1 + a2Yi—2 + € + c1ei—1 + C2€4—2, (8.6)

where e; is a white noise sequence with zero mean and unknown variance r. Thus, regression
coefficients are 6 = [a1, ag])’ and C-parameters vector is C' = [¢1, c2],

Firstly, the MAQ method has been used for its estimation. This implies that ARMMA mixture
structure is used in function evaluations. Since the order of the MA term is n. = 2, a two-
dimensional optimization problem is under consideration in the search of the C-parameters.
Consequently, n. + 1-vertex evolving simplex of the MDS search and n. + 1-component ARMMA
mixtures are used.

Then, the MMQ method has been used for its estimation by making use of n.+ 1-component
MARMA mixture structure.

To test the sensitivity to starting points, 5 different representative starting points were
selected. Therefore 5 estimations were performed for both methods, respectively. The tuning
factors of the algorithms are specified as follows:

e Starting points

1 1 1 1 1 1 1
C?=(0 0), C.(T)I:<2 2>, C?H:(_z 2), C?v:(3 —3), C{O/:(—?) — =
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e The option # = [-0.2 —0.1] with A = 0.1 is used for all of the ten experiments to generate
the corresponding ten right-angle initial simplex according to (7.11)—(7.12).

e For stopping, we measure the relative size of simplex (7.13) with tolerance e = le — 004.
No limitations on the number of iterations and the likelihood of mixture were imposed in
order to illustrate convergence properties of the algorithms.

Results and Analysis

With one row describing the true parameters, the remaining 10 rows of Table 8.1 reflect the
estimation and prediction results of the methods for the considered starting points. Since the
different starting points lead to the similar results, we give histogram of prediction errors only
for one of them. Figure 8.1 shows the histograms of the cases with the starting point (0 0)
together with the plot of outputs.

] | 0 | ] c | N[ T(min) | Ry | srs |
True — 15 -0.7 0.1 0.8 06 — — - —
MAQ | 0 0 | 1.4703 -0.6769 | 0.1035 | -0.7674 0.6043 | 31 | 19.6017 | 0.0289 | 0.3953
vag | L+ L 14703 -0.6769 | 0.1035 | -0.7674 0.6043 | 26 | 15.6338 | 0.0289 | 0.3953
vaq | 5t L | 14703 -0.6769 | 0.1035 | -0.7674 0.6043 | 31 | 19.3175 | 0.0289 | 0.3953
vaq | L 5P| 14704 -0.6770 | 0.1035 | -0.7674 0.6043 | 30 | 19.5815 | 0.0293 | 0.3953
vAQ | 5 b | 14703 -0.6768 | 0.1035 | -0.7672 0.6042 | 27 | 16.9677 | 0.0288 | 0.3953
mMq | O 0 | 1.4721 -0.6815 | 0.1036 | -0.7799  0.6206 | 23 | 14.2308 | 0.0262 | 0.3955
wMq | 2 L [ 14746 -0.6812 | 0.1035 | -0.7741 0.6066 | 37 | 25.7372 | 0.0545 | 0.3953
uMg | 5t L [ 14724 06817 | 0.1036 | -0.7799  0.6199 | 24 | 14.7896 | 0.0282 | 0.3955
waq | 2 L[ 14719 06814 | 0.1036 | -0.7799  0.6209 | 39 | 24.9709 | 0.0251 | 0.3955
wMq | 52 S| 14729 -0.6819 | 0.1036 | -0.7798 0.6188 | 23 | 14.4872 | 0.0315 | 0.3954

Table 8.1: MAQ and MMQ estimations and predictions of ARMA (2,2) with the different starting
point CP. C denotes the best vertex of the final simplex, i.e., the estimates of the C-parameters.
0 = E[f|d(t)] and # = E[r|d(t)] denote the estimates of the rest parameters. N is the number of
iterations used. T'(min.) is the time needed in estimations. Rpq is the ratio (8.3). Spg is the
relative standard deviation of prediction errors (8.4).

These results illustrate the promising properties and efficiency of the MAQ method and the
MMQ method. Here, the results of the two methods are similar. However, the differences
may become more obvious sometimes, we shall show one of such samples in the next group of
experiments.

They also demonstrate that the convergence of the procedure is not significantly sensitive to
the starting point and suggest that a good choice on the starting point may substantially speed
up the search.
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Plot of outputs of ARMA(2,2) Histogram of prediction error by MAQ Histogram of prediction error by MMQ
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Figure 8.1: (a) Plot of outputs of the ARMA(2,2) process. (b) Histogram of prediction errors
of MMQ estimation on ARMA(2,2) starting at (0 0). (c) Histogram of prediction errors of MAQ
estimation on ARMA(2,2) starting at (0 0).
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8.2.2 Estimating Simulated OE

This section applies the MMQ and MAQ estimations on an output error (OE) model. At the
same time, we intend to examine the influence that the size of initial simplex may bring. Thus,
two experiments are performed for each method with the size of the initial simplex varying.

Simulated OE process

2000 simulated data samples are available from the process
Yt = 1.4yt—1 - 0.49yt_2 + 0.9Ut_1 + 0.7Ut_2 + e — 1-4615—1 -+ 0-49€t—27 (87)

where ¢e; is a Gaussian white noise sequence with zero mean and variance r = 0.1. The input wu;
is modelled as a Gaussian white noise with variance r, = 1. The plot of the outputs is shown
in Figure 8.2.(a).

Estimated Model and Implementation

An ARMAX model with the correct structure is used in the estimation
Yt = a1Yi—1 + a2yi—2 + brug—1 + bauy—o + €4 + crei—1 + caei—2, (8.8)

where e; is a white noise sequence with zero mean and unknown variance r. It means that
regression coefficients are 6 = [ay, b1, az, ba]" and C-parameters vector is C' = [c1, ¢2],

MAQ and MMQ were used to estimate its parameters, respectively. With the order of the MA
n. = 2, the number of vertices of simplex is therefore n. + 1 = 3 and the number of components
of the mixture used is n.+1 = 3 as well. The tuning factors of the algorithms in the experiments
were set as follows

e All experiments start at C° = (0 0);

e For each method, different initial right-angle simplices with different size are created ac-
cording to (7.11)—(7.12).

One is generated by 5 = [1 0.5] with h = 0.5, while the other smaller one is generated by
£ =104 0.2] with h =0.2.
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e Stopping is based on measuring the relative size of simplex (7.13) with tolerances € =
le — 004, without limitations on the number of iterations and likelihood of mixture.

Result and Analysis

Tables 8.2 and 8.3 display the estimation and prediction results for the OE process (8.7) by the
MAQ estimations and MMQ estimations. In the MMQ estimation with h = 0.5, the estimates of
C-parameters actually returned are C' = [—1.8986 0.7881]. In Table 8.2, the stable reflection
[—1.3909 0.4769] are listed instead to facility the comparisons. Again for simplicity, only
the histograms of prediction errors for both estimation with h = 0.5 are showed in Figure 8.2
together with the plot of outputs..

] | ¢ | n | 0 7 18,
True | — — [ 1.4000 -0.4900 0.9000 0.7000 | 0.1000 | -1.4000 0.4900
MaQ | O 0| 05 | 14005 -0.4905 0.9041 0.6957 | 0.0942 | -1.3901 0.4805
MAQ | O 0| 0.2 | 14005 -0.4905 0.9042 0.6956 | 0.0942 | -1.3914 0.4818
MvQ | 0 0| 05 | 1.4005 -0.4905 0.9043 0.6955 | 0.0943 | -1.3909 0.4769
MvQ | 0 0| 0.2 | 1.4005 -0.4905 0.9042 0.6956 | 0.0953 | -1.3927 0.4834

Table 8.2: Estimates of OE by MAQ and MMQ methods with the size of the initial simplex varying.
The size is tuned by h. All estimations start from the point C° = (0 0). C denotes the best
vertex of the final simplex, i.e., the estimates of C-parameters. § = E[0|d(t)] and # = E[r|d(t)]
denote the estimates of regression coefficients and noise variance.

] | h | N | Tmin) [ R Spe
MAQ 0.5 73 49.9124 0.0360 0.1323
MAQ 0.2 52 32.5655 0.0358 0.1323
MMQ 0.5 203 119.6252 0.0364 0.1323
MMQ 0.2 60 37.6186 0.0356 0.1323

Table 8.3: Other MAQ and MMQ estimation and prediction results on OE with the size of the
initial simplex varying. The size is determined by h. N is the number of iterations used. T'(min.)
is the time needed in estimations. R is the ratio (8.3). Spg is the relative standard deviation
of prediction errors (8.4).

This example shows that the MMQ and MAQ methods behave well on the estimations of the
above OE model. It also demonstrates that the size of the initial simplex may directly affect
the speed of the search. For example, Table 8.2 shows that the MMQ estimation with A = 0.5
consumed the time which is around three times longer than the others do.



8.3 Comparisons of MMQ, MAQ and PEB Methods 87
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1200

output values

the number of elements in bins

the number of elements in bins

EY 05 0 o EY ~05 o 05
the range of prediction error the range of prediction error

(a) (b) (c)

Figure 8.2: (a) Plot of outputs. (b) Histograms of prediction errors of OE by MAQ estimation.
(c) Histograms of prediction errors of OE by MMQ estimation.
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8.3 Comparisons of MMQ, MAQ and PEB Methods

The example of this section considers a simulated SO ARMAX(3,3,3) with all roots of the C-
polynomial lying on the unit circle.

The purpose here is to demonstrate the modelling properties of MARMAX models and AR-
MMAX models in their ability to provide the parallelism and compare the efficiency of their
corresponding estimations with the PEB method.

8.3.1 Simulated ARMAX Process

The data samples d(t) of the length ¢ = 2000 were simulated by the following SO ARMAX(3,3,3)
process,

Yy = —1.8y—1 +1.5y—20 — 0.5y;—3 +up—1 + 0.7us—2 + 0.4uy_3 + ey — 3e,—1 + 3e4—o — ley—_3. (89)

The variance r = 0.1 of the driving white Gaussian noise e; was chosen. All three roots of its
cC-polynomial are located at the stability boundary. Figure 8.3 shows the plot of its outputs.

Plot of outputs of ARMA(3,3,3)
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Figure 8.3: Plot of the output of the simulated ARMAX(3,3,3) process.
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8.3.2 Estimated Model and Implementation

The following ARMAX model with the correct structure
Yt = a1yi—1 + a2Yi—2 + azyi—3 + brug—1 + bous—o + baus_3 + e; + creg—1 + coes—a + czei—3 (8.10)

is used in all estimations of this section.
For implementation of the MMQ and MMQ estimations, simplex with n. + 1 = 4 vertices and
mixtures with n. + 1 = 4 components are defined. The tuning factors are specified as follows:

e Both estimations start at the point C° = (0 0 0);

e For both cases, the option 5 = [1.5 1.5 0.5] with A = 0.5 is used to generate a right-angle
4-vertex initial simplex, according to (7.11) — (7.12).

e Stopping is based on measuring the relative size of simplex (7.13) with tolerances € =
le — 004, without the limitations on the number of iterations and likelihood of mixture.

while for implementation of the PEB estimation

e the routine arma.m in Matlab system identification toolbox of is used to perform PE
estimation of C-parameters,

e the default initial parameter values constructed in a special four stage LS-IV algorithm
are used.

e iterative Bayesian estimation method is used for the rest estimation based on the extended
LD filter.

8.3.3 Result and Analysis

The estimates are listed in Table 8.4, whilst the rest estimation and prediction results are de-
picted in Table 8.5 and Figure 8.4. In the MAQ estimation, the estimates of C-parameters actually
returned are C' = [—3.5625 3.9375 —1.3754], we list its stable reflection [—2.3206 1.7462 —
0.4254] instead to facility the comparisons.

] | Initial C° 0 ] C
True - 1.8000 -1.5000 0.5000 1.0000 0.7000 0.4000 | 0.1 3 3 1
MAQ | 0 0 1.7922 -1.4946 0.4992 0.9975 0.7070 0.4291 | 0.1486 | -2.3206 1.7462 -0.4254
MMQ 0 17982 -1.4989 0.5001 0.9976 0.7079 0.4021 | 0.0940 | -3.0000 3.0000 -1.0000
PEB — 17924 -1.4947 0.4988 0.9990 0.7006 0.4355 | 0.1930 | -2.1525 1.6504 -0.4470

Table 8.4: Estimates of ARMAX(3,3,3) by the MMQ, MAQ and PEB methods. Both MMQ and MAQ
methods start from the point CY = (0 0 0). C denotes the best vertex of the final simplex,
i.e., the estimates of C-parameters. 0 = E[f|d(t)] and # = E[r|d(t)] denote the estimates of
regression coefficients and noise variance.
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[~ ] T | P e
MAQ 24 38.6873 (min.) 2.8360e-074 0.1605
MMQ 20 33.0786 (min.) 4.6015e-004 0.1300
PEB - 22.8569 (sec.) 3.1017e-189 0.1823

Table 8.5: Other estimation and prediction results of MMQ, MAQ and PEB methods on AR-
MAX(3,3,3). N is the number of iterations used. T is the time needed in estimations. Rpq is
the ratio (8.3). Spg is the relative standard deviation of prediction errors (8.4).

Histogram of prediction error by MAQ Histogram of prediction error by MMQ Histogram of prediction error by PE
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Figure 8.4: Histograms of prediction errors of MMQ, MAQ and PEB methods on ARMAX(3,3,3).

These results further confirm good properties of the MMQ estimation and reveal the limita-
tion of the MAQ estimation. It reflects the influence of the joint updating in the ARMMAX-QB
estimation and indicates that the stable replacement operation may be not efficient enough.

This example also shows the limitation of the PEB method on the stability boundary and
illustrates the slowness of the MMQ and MAQ as well. However, it has to be stressed here that
the software used for implementation of the MMQ is currently in m-files of Matlab, the memory
and speed of the computation is therefore limited. A significant improvement in this aspect can
be expected when using mex-files instead.

In addition, the extremely small values of the radio R4 (8.3) indicate that the pdf f(6,r)
is sharply shaped with its maximum f (6, 7) sitting at a quite high value. For instance, the MMQ
estimation leads to In f (é, 7) = 1.5649¢ 4+ 003. Thus it is not surprising than such a small radio
as Ryqr = 2.8360e — 074 is obtained.

8.4 Transportation Problem

The performance of MMQ, MAQ and PEB methods using real data is illustrated in this example.
With an increasing number of cars, the traffic transportation problem become urgent. The
process under analysis here is the density of a traffic flow of city crossroads.
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8.4.1 Data Description

The data are measured by detectors under the road surface. Each detector gives information
about time periods when it is occupied by cars and periods when it is free. Using the information
provided by a detector and an average length of cars, the number of cars per kilometer of the
traffic flow, i.e., density p, can be computed. This variable describes the traffic state at the
detector position and will finally be used in traffic control for a better utilization of the available
traffic lights.

Outlier filtration, normalization to zero mean and standard deviation one were applied on
the source data. Figure 8.5 displays preprocessing data samples p of the length 2000, which are
measured along the traffic lanes of the Strahov tunnel in Prague.

Plot of density p
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Figure 8.5: Plot of traffic density p.

8.4.2 Estimated Model and Implementation
An ARMA(1,1) model
Yt = a1yt—1 t+ et 161 (8.11)

is used in the estimations by means of MMQ method, MAQ method and PEB method, respectively.
The MMQ and MAQ estimations are implemented as follows

e start at the point C% = 0;
e using simplex with n. + 1 = 2 vertices and mixtures with n. + 1 = 2 components.

e The option 8 = 0.2 with h = 0.2 is used to generate a right-angle 2-vertex initial simplex
according to (7.11) — (7.12) for each method, respectively.

e Stopping is based on measuring the relative size of simplex (7.13) with tolerances e =
le — 004, without the limitations on the number of iterations and likelihood of mixture.

While for implementation of the PEB estimation

e theroutine arma.m in the Matlab toolbox is used to perform PE estimation of C-parameters,

e the default initial parameter values constructed in a special four stage LS-IV algorithm
are used,

e iterative Bayesian estimation method is used for the remaining estimation based on the
extended LD filter.
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8.4.3 Results and Analysis

The estimation and prediction results of MMQ, MAQ and PEB methods are listed in Table 8.6,

whilst histograms of prediction errors are depicted in Figure 8.6.

] c N | T Spp
MAQ -0.6492 16 2.6663 min. 0.3583
MMQ -0.6749 16 2.5296 min. 0.3587
PEB -0.6502 — 11.9810 sec. 0.3583

Table 8.6: Estimation and prediction results of MMQ, MAQ and PEB methods on the real data.
C' is the point estimates of C-parameters. N is the number of iterations used. T' is the time
needed in estimations. Spg is relative standard deviation of prediction errors (8.4).
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Figure 8.6: Histograms of prediction errors of MMQ, MAQ and PEB methods on the real data.

The results of Table 8.6 show that the C-polynomial is well located within the stability area,
it is then not surprising that the three methods give similar results.

Remarks 8.4.1

Note that in the estimations we used the simplest first order ARMA(1,1) model, which was
found to be no worse than higher order ARMA models. However, the plot of prediction errors
shown in Figure 8.7 indicates that a richer model structure, such as mixture models, has a space

for further improvements.

8.5 Summary

In summary, our experiments of this chapter show that
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Figure 8.7: Plot of the prediction errors é; in the MAQ estimation.

e MMQ method performs well generally.
e MAQ method has the limitations with respect to its joint updating.

e PEB method has the limitations with respect to its stability requirement on C-parameters.
Both the MMQ and MAQ method perform better than PEB method does around the stability
boundary.

e MAQ and PEB methods, despite the limitations, still deserves attention with their certain
efficiency confirmed by the experiments.

e MMQ and MMQ methods are not significantly sensitive to initial simplex with respect to
convergence. However, a poor choice on the initial simplex may have a negative impact,
possibly significant, on their performance in terms of time and iteration number.



Chapter 9

Conclusions and Future Work

The thesis concerns dynamic mixture modelling and Bayesian estimation in the presence of
colored stochastic disturbances. Although some progress has been made in the past two decades,
Bayesian solution to ARMA(X) models remains a long standing open question. Consequently, the
use of ARMA(X) mixtures is hindered as well.

The thesis made further steps towards a Bayesian scheme covering ARMA(X) models and the
corresponding mixtures. It extends the established scheme of AR(X) models and AR(X) mixtures.

9.1 Main Results

Preliminary experimental results demonstrated and confirmed the promising and respectable
properties of the underlying theory and related algorithms. The success is due to the efforts in
theoretical and practical aspects as follows:

e A reexamination on Bayesian modelling from the view of probabilistic dynamic mixtures.

A restricted description of dynamic mixtures was introduced and interpreted. We showed
its feasibility and limitation.

All models considered in the thesis were then described within such a unifying mixture
modelling framework. In particular,

— We stressed how to understand relaxing stability on the MA part for an ARMA(X)
model in modelling.

— We not only considered MARMAX model as a natural mixture generalization of ARMAX
model but also introduced ARMMAX models as a novel system description tool.

e A reexamination on the LD type filters.

The idea of LD type filters is not new. However, the results of Peterka were mainly based
on a proper chosen state-space representation. For our purpose, we reexamined the results
based on regression form of ARMA(X) models and clarified a few related issues which are
important in the estimations of Chapter 6 and 7.

e An investigation on the MARMAX and ARMMAX models.

Efficient MARMAX-QB and ARMMAX-QB estimations have been developed to estimate these
two ARMAX mixtures when the C-parameters are given. Benefited from the extended LD
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filter, the estimations do not impose any constraint on the stability of the MA parts. Mean-
while, they require feasible computation load, which increases linearly with the number of
components and is close to several recursive least-squares estimations.

We also showed the flexibility and limitations of these two mixtures in system description,

— We proved an ARMMA(X) model is indeed richer than an ARMA(X) model.

— We showed their approximate parallelism, i.e., they provide a quantitative measure
of descriptive quality of ARMAX components in parallel. Preliminary analysis was
provided to justify this claim.

— The limited parallelism of ARMMAX models with its joint updating in the estimation
was revealed and the stable replacement operation was proposed as a possible solution.

e MMQ, MAQ and PEB methods were proposed to provide improved Bayesian estimation of
an ARMA(X) model. They preserve Bayesian estimation setting up to the ARX part of the
model and reduce the uncertainty of the MA part by searching for a point estimate of the
C-parameters.

In particular, due to the successful choices of the essential ingredients, namely MDS opti-
mization method and ARMA(X) mixtures, the MMQ and MAQ methods have several favor-
able properties:

— They are able to cope with C-polynomial with its roots even at stability boundary.
This property of the adopted extended LD filter makes them outperform the PEB
method at this aspect.

— They are able to cope with C-parameters even in high dimensions (> 2). The strong
convergence analysis of the adopted MDS search makes them outperform alternative
methods. For instance, they are more reliable than a method based on the NM
simplex search at this aspect.

— They enable parallel search acceptable on a single-processor machine by taking ad-
vantage of the approximate ”algorithmic” parallelism of the mixtures. Thus, they can
be considered as one of off-line applications of ARMAX mixtures. It actually opens
up a novel possible application of mixtures in parallel computing field as well.

— The richness of ARMAX mixtures may bring potential benefit to provide a valuable
model even if the search in the C-parameters space is stopped before it converges
finally. Stopping may be enforced by a slow terminal convergence of the MDS method
or by computational demands implied by the extensive data set processed.

e The thesis clarified the relationships among all models considered: AR(X), ARMA(X), mix-
ture of AR(X), MARMA(X) and ARMMA (X).
e Illustration and Experiments.

A significant amount of work was devoted to implement the proposed algorithms.

— A few implementation rules were proposed to complement the rules of the standard
MDS method in our parameter estimation setting.

— A software package was developed in the Matlab language.
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9.2 Future Work

The above discussion also highlights where further efforts should be made. We list some of them
below as the subjects of future work.

General Dynamic Mixture Modelling

Although our restricted description of dynamic mixtures (3.6) is acceptable, it is desirable to
remove its assumption on constant mixing weights for asymptotic goodness.
Consider all input-output data contained in the observed data vector ¥; = [y, 1;] as a whole

f(w,]0), 9.1)

and approximate it by a static mixture using the universal approximation property
p
f(\I’t|®) = Z apf(qlt|®pap)> (92)
p=1

with constant weights o, and static components f(¥;|0,,p).
Using chain rule (2.4), the following relation then holds

Z;ﬁl ap f (Yt|vpsts Op, p) f(1t|Op, p)

0) = 9.3
f(thm ) f(wt|@) ) ( )
If we denote

~ _ apf(¢t|@p>p)

O‘p(d}t) - f(¢t|@) ) (94)
then (9.3) can be rewritten in terms of data-dependent weights ay, (1))
Felon,©) = 3" () fYeldpse, Op, p)- (9.5)
p=1

Obviously, with the data-dependent weights a,(¢/;) and the dynamic components f(y;|¢p:t, Op, p),
(9.5) gives a description of dynamic mixtures. What’s more, such a modelling also opens up a
promising prospect to tackle the corresponding estimation.

Extended MMQ/MAQ Algorithm

In order to have the MMQ/MAQ algorithm fully ready for routine real applications, more elabo-
rated implementation and to further take advantage of the power of mixtures are needed.

The recent progress in optimization area could help use to improve the MDS method, for
example to used sequential multidirectional search or some hybrid methods.

By exploring the power of mixture, we mean to increase algorithmic parallelism by using
ARMAX mixtures with more than n. + 1 components. It is similar to the attempts to use all
available processors or scaling the algorithm to fit the properties of a given machine in parallel
optimization problems. In 1991, Denis [40] investigated how to generate algorithms which is able
to use any number of processors for direct search, in particular multidirectional search. The idea
there would throw light on our attempt to increase algorithmic parallelism of ARMMAX.
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However, a significant amount of work is then added in each iteration. For parallel processors,
it is distributed among the available processors, thus it speeds up the procedure and finally one
can benefit from reducing the execution time. In our case, we are doing parallel computing on
a single processor. Thus, if we want to employ the above idea to increase the parallel ability of
mixtures, it requires caution since we are not sure how much we can benefit in execution time.

Generally it would be more reasonable for our mixture to visit the proper number of points
instead of as many points as possible. For instance, we could use one 2n. + l-component
mixtures for the evaluation of likelihoods in both reflection and expansion steps instead of two
ne + 1-component mixtures for each step respectively.

Refining MAQ Estimation

Based on the preliminary analysis, the parallelism of ARMA(X) mixtures appears to be feasibly
successful in the experiments. However, the full theoretical analysis on their parallelism is still
lacking. Especially a more efficient way to deal with the influence of the joint updating in the
MAQ estimation is preferable.

Rather than the proposed stable replacement operation in Chapter 6.3, another potential
solution is to use a re-scaling as following:

As defined earlier, a partial covariance matrix S of an ARMA(X) model is

Ne
Stiti = Si= Y CiChoi, for 1=0,1,---,n, co=1
k=i

It can always be normalized so that its principal diagonal elements equal to unit, i.e.,
sop=1or S;; =1, i=1,---,t
using a scaling
S — S/so (9.6)
In effect, it amounts to a re-scaling in noise term, more exactly in noise variance re
Te — TS0 (9.7)

or re-scaling in the C-parameters C = [1,¢1,- -, ¢p.]

C — C/\/50 (9.8)

Note that, in the context of the multidirectional search, such a re-scaling may create danger
because it alerts the angles of the simplex during the searching in C-parameters Cartesian space.
Thus it destroys one of important features of MDS method that the shape (the angles) of the
simplex keeps unchanged during the moving.

To preserve this property, a polar transformation could be used here. The main idea is to
represent the C-parameters in the polar coordinates and perform the MDS search in the polar
coordinates space instead of the Cartesian space.

Recall that in multivariate integral analysis, see for example [37], any point z = [z1, -, Ty,
in a m-dimensional Cartesian space can be identified by its distance from the origin, p, to-
gether with the angles ¢1, -+, ¢,—1 as a polar representation (p, g1, -+, ¢m—1), according to the
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following relations:

T1 = pcos¢;
To = psing; cospg
Tm—1 = pPSin@Ccos@a---sin @p—_2 COS Prp—1
Ty = psin $1.CO8 G2 - - - i Py 2 COS Py 1,

where p >0, ¢; € (5, 5) fori=1,---,¢p2 and ¢p,—1 € (—7, 7).

With these relations, the above re-scaling can be equivalently expressed by polar representa-
tion, with only n. unknown angles ¢ needed to represent the n. + 1 dimensional vector C'/,/so,
since the norm is 1 such that p = 1. Thus we can perform the MDS search in the the space n.-
dimensional ¢ space instead of the n. 4+ 1-dimensional Cartesian space. In this way, we preserve
the shape of simplex unchanged.

The use of the polar representation can be easily embedded into the the procedure of MAQ
described in Chapter 7.1.3:

e Give an initial guess of C-parameters in terms of polar coordinates , i.e., the angles ¢° =

(P1, 5 Pm—1)-

e Create an initial simplex in terms of polar coordinates. It is then transformed into Carte-
sian coordinates according to the formula given above.

e Feed the simplex in Cartesian representation into the ARMMAX-QB estimation to make
function evaluations.

e Determine the best vertex according the component log-likelihoods.

e Generate new trial points, such like reflection, expansion, contraction points, in terms of
polar coordinates ¢", ¢¢, ¢°.

e Transform these trial points into the Cartesian coordinates according to the formula given
above and feed them into the ARMMAX-QB estimation to make function evaluations.

e Determine the best vertex according the results of estimation.
e Determine the best vertex according the component log-likelihoods.

e If the stopping rules are not satisfied, repeat the procedure.

Dealing with Multivariate ARMAX Models

As remarked earlier, for the estimation of ARMAX models, when the assumption that the MA
part is known can be made, the majority results of Chapter 5 are directly applicable on its MO
extension, see [6]. When such an assumption cannot be made, the MO extension of Chapter
6 could be obtained by an approach studied in [16], where a MO linear system was described
by a collection of SO models and thereafter the identification was made based on such kind of
entry-wise predicting models.
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Generalized Use of ARMMAX Models

Another important issue is the generalized use of ARMMAX model. Although it is not required
by our definition of ARMMAX model, the study of ARMMAX models in the thesis has indeed been
mainly based on the Peterka filters to realize the temporal variations of the stochastic MA part.
Actually, the modelling power of ARMMAX and its gained algorithmic parallelism can be
extended further on. Different choices of the types of filters leaded to various filtering properties.
For instance, the Peterka filters can be partially or fully replaced by other types of filters [41]. It
opens a way to a wide set of novel adaptive filters dealing with outliers, with temporarily varying
measurement noise etc. Practical impact of such possibilities can hardly be over-stressed.



Appendix A

Mixtures at Factor Level

By chain rule, the distribution of data y(t) with multiple modes can be expressed as

f(y(f)‘@) = H f(yt|uta¢t—1a @)’ t = {1)27 75}

tet*

with finite parametric mixtures forming each individual parameterized models

f(yt‘utad)t—lv G)) = Z apf(yt|ut7¢p;t—17 @p7p)7 p* - {17 o 7np}7 np < o0, (A]-)

pEP*

where, o, >0, >« o =1, and

PED
I (yelue, bpit—1, Q’mp) (A.2)

describes the p-th component of the mixture. Here the state ¢p; is newly introduced and
recursively updated using new data d;

¢p;t = ®p(¢p;t—ladt)~ (A3)

The overall parameters © of the mixture are formed by the component weight o and the pa-
rameters of the individual components ©,

0= {a=lar ) {O5}2, ]

When multi-output are considered, the chain rule implies that the above component level
description of mixtures could be refined further. For a n,-dimensional output y;, each component
(A.2) can actually be further split as a product of pdfs predicting its individual entries,

f(yt|¢p§t*15 @p7p) = H f(yip;t’¢ip;ta @ipvp)a (A4)

ici*
where the pdfs, for p € p* = {1,...,n,}, i€i*={1,2,---,ny}
S Wipst|Vipit, Oip, p) (A.5)

are so-called parameterized factors. In particular, a factor occurring in several components
is called common parameterized factor. The additional subscript i of the parameter ©;, here
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indicates that only some entries of ©, may occur in i-th factor. Similarly, the vector v, is
generally a sub-vector of the vector

[y(i-i-l)p;t? y(i+2)p;t7 C s Ynypsts Ut (b;;t—l]/' (AG)

It is obvious that description of dynamic mixtures at factor level could bring some additional
freedom, namely

e to provide more flexibility in the parametric description,
e to open a way to use different models for different entries of output w;,
e to describe jointly continuous and discrete valued variables,

e to respect common dependencies reflected in several components.



Appendix B

QB Estimation at Factor Level

As a complement of Section 4.3.3, here we describe the corresponding QB estimation of mix-
tures at factor level. The more detailed discussion and the full treatment on the topic, see for
example [18].

Algorithm B.0.1 (QB estimation at factor level)

Initial (off line) mode

o Select the complete structure of the mizture, i.e. specify the number of components n, and
the ordered lists of factors allocated to the considered components. The structure of the
factor labelled by ip is determined by the structure of the corresponding data vector W;,.

e Select prior pdfs f(Oip), p € p* of the individual factors, ideally, in the conjugate form,
with respect to the parameterized factors f(Yipit|Vipyt, Oip, p).

e Select prior pdfs of component weights o in the form of Dirichlet,

fla) = Dia(k)
and specify the initial values kp0 > 0.
Sequential (on line) mode,
1. Evaluate the point estimates of the mizing weights oy, of previous time instant t — 1,

Kpit—1

Gpi—1 = Elopld(t)] = ="
pEP* "Vpit—

2. Acquire the data record dy.

3. Compute the values of the predictive pdfs for each individual factori € i* = {1,...,ny} in
all components p € p*

Z(d(t)lip)

Tt~ Dfip)” &Y

[ Wipst|ipse, d(t — 1), p) = /f(yip;twip;ta @ip)f(@ip‘d(t —1))dO;, =

using (2.21) and the data dy.

A trial updating of statistics with neither data weighting nor stability forgetting is performed
in the evaluation here. In the case of mormal, a partitioned L' DL decomposition of the
statistic Vp,y has to be used to counteract the numerical troubles.
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4. Compute values of the predictive pdfs for each individual component p € p*

felug, d(t — 1), p) = H S Wipst | Yipse, d(t — 1), p). (B.2)

S
5. Compute the probabilistic weights

Apit—1 [ Liei f(dip;twip;t’ d(t—1),p)
Zp‘ep* é‘ﬁ;t—l Hiez‘* f(diﬁ;twiﬁ;h d(t - 1)713)’

they assign the weights to the data, which are used in the updating the statistics for each
component.

Wpit =

(B.3)

6. Update a posteriori Dirrichlet pdf of mizing weights by the evolution of the scalars kp.y1
Kpt = Kpjt—1 + Wpit-

7. Update a posteriori pdfs f(Op|d(t+1)) of the parameters associated with individual factors
according to the weighted Bayes rule. Here two situations may encountered:

o When there are no common factors in components,
f(@zp‘d(t)) X [f(yip;t|¢ip;t; Gip7p)]wp;t f(@zp|d(t - 1)) (B4)
o When there are common factors in components,

F©upld(t)) o< [f(YipulYipst, Oip, ) f(Oipld(t — 1)), (B.5)

where Wipt = 3 5, W, with p; is the set of pointers, which label the components

containing the i-th factor.
8. Ewvaluate, if need be, the characteristics of f(O;p|d(t)) describing other parameters ©y,.

9. Repeat the sequential mode, when t < {.
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