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Abstract: The probabilistic mixtures with constant weights provide a universal approxi-
mation of almost any probabilistic density function and thus can be successfully used in
modelling of complex systems and are applicable to real live problems. Nevertheless, there
are cases, where the mixtures with constant weights do not provide good results. This pa-
per improves the probabilistic mixture model with introducing data dependent component
weights. Parameters of the improved model are estimated with a modification of the PB
estimation algorithm.
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1. INTRODUCTION

The choice of a suitable model is one of the most important tasks when dealing with complex
systems. A good system model is a necessary condition for consequent control or decision-
making tasks on any application domain. Complexity of real-life problems, however, makes
often detailed system modelling unfeasible. This orients us to the use of simplified black-box
models, which learn their parameters to match the measured data.

From a wide range of possible probabilistic models, we selected the probabilistic mixtures as
they provide a universal approximation of almost any probability density function
(Titterington et al., 1985) and their form allows relatively simple use in consequent control or
decision-making tasks. The mixture model is a convex combination of simpler models called
components, the coefficients of the convex combination are called component weights. If the
components model dependency of the samples, we speak about dynamic components, oth-
erwise, we speak about static components. Similarly, if the component weights depends on
historical data, they are called dynamic, otherwise, they are called static.

We adopted the Bayesian methodology (Peterka, 1981) as a general framework for the model
learning. It provides compact theoretical solution of all tasks related to model learning. Unfor-
tunately, these theoretical results are directly applicable only in limited class of models. The
probabilistic mixtures are completely out of this class. Hence, approximations of Bayesian
learning must be used (Andrýsek, 2004b).

In the currently used dynamic mixture model (Kárný et al., 2005), the individual components
are dynamic, but the component weights remain static. Although this model doesn’t exactly
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describe all dynamic probability distributions, it was proven that it is correct at least asymptot-
ically (Kárný et al., 2005). Practical applications, e.g: (Ettler et al., 2005; Heřmanská et al.,
2004) verify this approach, but in difficult dynamic cases a need for improvement arises.

This leads to the need for mixtures with both dynamic components and dynamic weights. We
can expect that models with dynamic weights will give better results, but their estimation is
much more difficult. This paper deals with algorithms for estimation of parameters of dynamic
probabilistic mixture model with data-dependent component weights.

2. NOTIONS AND NOTATIONS

dt - data record at discrete time t, finite dimensional vector

φt−1 - state vector formed from relevant historical values, e.g.: φt−1 ≡ (dt−1, dt−2)

Θ - unknown parameter, finite dimensional vector

f, π, ρ, h - letters reserved for probability density functions (pdf)

f(dt|φt−1, Θ) - parameterized model of the system

π(Θ|Gt) - approximated posterior pdf determined by finite dimensional statistic Gt

3. PROBLEM FORMULATION

In this section, the mixture model with dynamic weights is defined and the main estimation
task based on Projection Based (PB) estimation (Andrýsek, 2004a) is formulated.

3.1 Dynamic Probabilistic Mixture

The parameterized mixture model with dynamic weights is defined as follows:

f(dt|φt−1, Θ) ≡
c̊∑

c=1

αc(φt−1|Ω)fc(dt|φt−1, Θc), c̊ < ∞, where (1)

c̊ ≡ number of components,
fc(dt|φt−1, Θc) ≡ c-th component given by the component parameters Θc,

αc(φt−1|Ω) ≡ c-th component weighting function (cwf ) given by the parameter Ω,

αc(φt−1|Ω) ≥ 0,
c̊∑

c=1

αc(φt−1|Ω) = 1, ∀φt−1, ∀c

Θ ≡ {Θ1, · · · , Θc̊, Ω} is unknown parameter.

Verbally: The dynamic probabilistic mixture is a convex combination of several dynamic pdfs
called components. The actual weights depends on the state vector φt−1. Mixture parameter Θ
is formed by the component parameters {Θ1, · · · , Θc̊} and by the parameter Ω determining the
behavior of component weighting functions. The parameter Θ represents our only uncertainty
about the system model, i.e. we assume to know the functional form of the components fc and
component weighting functions αc.
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3.2 Class of the Posterior Pdfs

According to the general rules of PB estimation (Andrýsek, 2004a), we need to choose well
manipulable class of posterior pdfs. This motivates us to select this simple class formed by
product of pdfs:

π(Θ|Gt) ≡ ρ(Ω|Ht)
c̊∏

c=1

πc(Θc|Sc;t), where (2)

ρ(Ω|Ht) is pdf on cwf parameter Ω determined by the finite-dimensional statistic Ht,
πc(Θc|Sc;t) are pdfs on factor parameters Θc;t determined by the statistics Sc;t,

Gt ≡ (Ht,S•;t).

Verbally: The parameters Θc, c ∈ {1, · · · , c̊}, of the individual parameterized components
are considered to be conditionally independent, and also, independent of the parameter Ω of
component weighting functions. The posterior statistic Gt is formed by the statistic Ht deter-
mining the pdf of the parameter of cwfs and by the statistics {Sc;t}c̊

c=1 determining the pdf of
parameters of particular components.

3.3 Addressed Problem

Now, it is time to exactly define the problem addressed. We apply the PB approximation
(Andrýsek, 2004a) to the introduced mixture model (1) and selected class of approximate pos-
terior pdfs (2) and get the following problem:

Find the statistic Gt, which minimizes KL divergence D
(
π̂t(Θ)

∣∣∣
∣∣∣ π(Θ|Gt)

)
, where

π̂t(Θ) ≡ f(dt|φt−1, Θ)π(Θ|Gt−1)∫
f(dt|φt−1, Θ)π(Θ|Gt−1)dΘ

,

π(Θ|Gt−1) ≡ ρ(Ω|Ht−1)
c̊∏

c=1

πc(Θc|Sc;t−1),

f(dt|φt−1, Θ) ≡
c̊∑

c=1

α(φt−1|Ω)fc(dt|φt−1, Θc).

In other words, we are looking for Gt ≡ (Ht,S•;t), knowing Gt−1 ≡ (Ht−1,S•;t−1) and dt, φt−1.

4. PROBLEM SOLUTION

Because the results for statistics Sc;t determining posterior pdfs on component parameters Θc

are the same as in the case with static component weights, presented in (Andrýsek, 2004a), we
can focus on results of optimization of statistics Ht related to cwf parameters.

4.1 General Minimization

For Ht solving the addressed problem it holds:

Ht ∈ Arg min
Ht

D
(
h(Ω)

∣∣∣
∣∣∣ ρ(Ω|Ht)

)
, where
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h(Ω) ≡ ρ(Ω|Ht−1)
∑c̊

c=1
wc;t

α̂c;t−1
αc(φt−1|Ω), wc;t ≡ α̂c;t−1βc;t∑c̊

c̃=1
α̂c̃;t−1βc̃;t

,

α̂c;t−1 ≡ ∫
αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ, βc;t ≡ ∫

fc(dt|φc;t, Θc)πc(Θc|Sc;t−1)dΘc.

The presented result describes the condition that must be met by optimal statistic Ht, but it
does not provide any rule how the minima can be found. The rest of this section is focused on
finding such rules by making some assumptions on the parameter Ω and by selecting suitable
class of approximate posterior pdfs on Ω. The constants βc are evaluated in the same way as in
the case with static component weights, hence we will not deal with them here.

4.2 Class of Posterior Pdfs

Let us assume that Ω consists of n conditionally independent vectors Ω ≡ (θ1, · · · , θn). Then,
the class of posterior pdfs on Ω can be selected as a product of simpler pdfs. Here, for simplic-
ity, we assume that the product is formed by Gaussian pdfs only. Results for posterior class in a
form of product of Gaussian and Gauss-inverse Wishart pdfs can be found in (Andrýsek, 2005).

ρ(Ω|Ht) =
n∏

k=1

Nθk
(Mk;t, Rk;t) , Ht ≡ (M1;t, R1;t, · · · ,Mn;t, Rn;t) (3)

4.3 Optimization Result

For the selected class of posterior pdfs on Ω (3), the solution can be found in terms of moments
of marginal pdfs h(θk) of h(Ω):

Mk;t ≡ E [θk] =
∫

θkh(θk)dθk =
∫

θkh(Ω)dΩ,

Rk;t ≡ cov [θk] =
∫

θkθ
′
kh(θk)dθk −Mk;tM

′
k;t.

These results are very important, because they converted the problem of minimization and
divergence evaluation into the evaluation of moments ”only”. Unfortunately, these moments
can be rarely evaluated analytically.

4.4 Approximation

Our ability to obtain feasible algorithms depends on the ability to approximate the integrals

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ and
∫

θkh(Ω)dΩ and
∫

θkθ
′
kh(Ω)dΩ.

The simplest and universal approximation of the mentioned integrals is Monte-Carlo integra-
tion. Hence it was used on the examined cases. In future research, other approximations of the
integrals have to be used.

Let us generate N samples from ρ(Ω|Ht−1) and denote them (Ω1, · · ·ΩN). Then, the mentioned
integrals can be approximated as follows:

α̂c;t−1 ≡
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ ≈ 1

N

N∑

l=1

αc(φc;t−1|Ωl),
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∫
θkh(Ω)dΩ ≈ 1

N

N∑

l=1

θl
k

(
c̊∑

c=1

wc;t

α̂c;t

αc(φc;t−1|Ωl)

)
,

∫
θkθ

′
kh(Ω)dΩ ≈ 1

N

N∑

l=1

θl
kθ

l
k

′
(

c̊∑

c=1

wc;t

α̂c;t

αc(φc;t−1|Ωl)

)
.

To apply this approximation, we only need to be able to take efficiently samples from ρ(Ω|Ht−1)
and to evaluate αc(φt−1|Ω) for given φt−1 and Ω. Because the posterior ρ(Ω|Ht−1) is a product
of Gaussian pdfs, the sampling is very easy.

5. EXAMPLE

Simple example of the presented algorithm is displayed here. The description of the example
is incomplete, because we focused on the parts corresponding to component weights. Data are
scalar valued, mixture has 2 components (̊c ≡ 2), state of the model consists of one historical
value (φt−1 ≡ (dt−1)). Very simple type of cwfs parameterized with a scalar Ω is considered
here:

α1(φt−1|Ω) ≡ α1(dt−1|Ω) =

{
0 if dt−1 > Ω
1 if dt−1 ≤ Ω

(1st cwf)

α2(φt−1|Ω) ≡ α2(dt−1|Ω) =

{
1 φt−1 > Ω
0 φt−1 ≤ Ω

(2nd cwf)

According to the assumptions from subsection 4.2, the posterior pdf on Ω is selected in the
following form: ρ(Ω|Ht) ≡ ρ(Ω|Mt, Rt) ≡ NΩ (Mt, Rt). Initial values of statistic was set to:
M0 ≡ −2.000, R0 ≡ 40.000.

We simulated 500 data records with Ωtrue = −0.108. Figure 1 shows evolution of statistics
Mt and Rt during the estimation. Because Mt is in fact a point estimate of the unknown cwf
parameter Ω, we can simply see that the point estimate approaches the true value. Because
the statistic Rt is in fact variance of point estimate Mt, the decreasing trend of Rt indicates
increasing quality of the point estimate.

Fig. 1: Evolution of statistics Mt and Rt
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6. CONCLUSIONS

Dynamic probabilistic mixture model with dynamic weights was defined as a generalization of
the current dynamic mixture with static weights. General algorithm for recursive estimation of
the generalized model was elaborated. Problem of minimization of KL divergence was con-
verted into a simpler task of evaluation of moments of involved pdfs for special, but important
class of posterior pdfs. Monte-Carlo integration was successfully used for evaluating these
moments in low-dimensional cases.

Future research will focus on another approximations of the integrals, so that the mixtures with
dynamic weights can be estimated also for high-dimensional component weighting functions.

REFERENCES
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