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ABSTRACT 
 
An improvement of mathematical model predictions of envi-
ronmental pollution can be achieved on basis of assimilation 
of model simulations with real observations incoming from 
terrain.  In this article we pay attention to development and 
investigation of applicability of one simple empirical method 
of objective analysis based on least square approach. Output 
background fields of resulting potentially dangerous end-
points are modified by measurements in such a way, that re-
sulting respond surface is fitted towards measurements 
through the iterative adjustment of a certain selected set of 
model input parameters. In spite of a certain  limitations this 
approach has occurred to be applicable for the first preproc-
essing of the model predictions and simulated measurements. 
It can support robustness of decision making and can con-
tribute to early detection of possible fatal decision maker er-
rors due to misinterpretation of input parameters of an acci-
dental release scenario.  
 
ASSESSMENT OF ACCIDENT CONSEQUENCES 

Potential failures occurred in man-made processes can cause 
dangerous phenomena resulted in accidental releases of 
harmful substances into the living environment. Hazard 
evaluation and decision-making focused on early warning 
and protection of population has the highest priority. Reliable 
and up to date information represents basic inevitable condi-
tions for effective management of intervention operations 
targeted on consequence mitigation during emergency situa-
tions. This appeared to be a basic lesson for further progress 
of emergency preparedness procedures, which has arisen 
from Chernobyl accident where lack of reliable information 
has shown to be the main reason of poor effectiveness of 
countermeasures. Decision making has to be supported by 
proper user-friendly simulation software tool complied with 
advanced theoretical methodology with access to all neces-
sary relevant latest data. Crisis management should come out 
from reliable simulation of space and time of accident evolu-
tion, which should take into account all available information 
including physical knowledge of problem, expert judgement 
of input data, online measurements from terrain and others. 
The subject of investigation concerns evaluation of conse-
quences of radioactivity propagation after an accidental re-
lease from nuclear facility. Transport of radioactivity is simu-
lated by mathematical models from initial atmospheric 

propagation, deposition of radionuclides on the ground 
and spreading through food chains towards human body. 
In the final step a hazard estimation based on doses of ir-
radiation is integrated into the software system HARP. 
Our access is mentioned in (Pecha et al. 2007).  
 
FROM DETERMINISTIC TO PROBABILISTIC 
APPROACH AND DATA ASSIMILATON 

Recent trends in risk assessment methodology insist in 
transition from deterministic procedures to probabilistic 
approach which enables generate more informative prob-
abilistic answers on assessment questions. Corresponding 
analysis should involve uncertainties due to stochastic 
character of input data, insufficient description of real 
physical processes by parametrisation, incomplete knowl-
edge of submodel parameters, uncertain release scenario, 
simplifications in computational procedure etc. Simulation 
of uncertainty propagation through the model brings data 
not only for the probabilistic assessment mentioned above 
(Pecha et al. 2005) but also for another main task of analy-
sis called assimilation of model predictions with real 
measurements incoming from terrain. Data assimilation 
represents the way from model to reality and can substan-
tially improve the model predictions. 
There are several important sources of information that 
can enter the assimilation procedures. Basic physical 
knowledge is included in prior fields (resulted vectors) 
predicted by simulation model. Assumptions related to the 
random characteristics of model inputs are supported by 
some kind of expert judgements (Goosens 2001). Substan-
tial benefit can result from accessibility of data incoming 
from terrain. Merging of all these contending resources is 
a principle of assimilation and had shown to be very prom-
ising in many branches of contemporary Earth sciences 
(e.g. Drécourt 2004).  Each such resource can be known 
on a certain degree of details (e.g. dense or rare measure-
ments in space and time, complete or only partial knowl-
edge of model error covariance structure, cases with indi-
rect observations etc). Available information determines 
the option of suitable assimilation technique. We are con-
sidering the assimilation techniques in broader sense 
(Hofman 2007) from simple interpolation (poor model 
predictions, but dense and precise observed data) up to ad-
vanced statistical methods when full description of error 
covariance structure is needed - e.g. in (Kalnay 2003). 
 
DATA ASSIMILATION (DA) USING 
MINIMISATION TECHNIQUE  (MT) 
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In this article we are introducing one simple particular 
method based on nonlinear optimisation technique. During 
assimilation we assume precise measurements and thus the 
procedure cannot be presented as pure statistical DA. On the 
other hand it requires proper environmental model which is 
able to describe uncertainty propagation (Pecha et al. 2005). 
Our model is based on segmented Gaussian plume model 
(SGPM) approach that can account approximately for dy-
namics of released discharges and short-term forecast of 
hourly changes of meteorological conditions. For near area 
from the source and constant meteorological conditions can 
be used also simplified version of Gaussian straight-line 
plume model (GPM). Implemented numerical difference 
scheme enables simulate approximately formation of impor-
tant parent-daughter pairs.  
The objective multi-dimensional function F of N variables 
(subjected to bounds) is minimised starting at initial estimate. 
Commonly used Nelder-Mead direct search or Powell mini-
misation methods are tested here for elementary scenarios of 
accidental harmful discharges. Applicability bounds are ex-
amined for which satisfactory results at acceptable time of 
computation are achieved.  
 
PRINCIPLES OF APPLICATION WITHIN 
ATMOSPHERIC DISPERSION MODELLING 

Even for the simplest formulation of atmospheric dispersion 
and deposition in terms of Gaussian straight-line propagation 
the model M is nonlinear. In the following paragraphs we 
shall concentrate on accidental radioactivity release into at-
mosphere and its further deposition on terrain. Approxima-
tion in terms of source depletion scheme accounts for re-
moval mechanisms of admixtures from the plume due to ra-
dioactive decay and dry and wet deposition on terrain (Pecha 
et al. 2007). Let us proceed directly to the examination of the 
resulting fields of radioactivity deposition of a certain nu-
clide on terrain. The output is assumed to be represented by 
vector Z  having dimension equal to the number N of total 
calculating points in the polar grid (in our case N= 2800, 
what means 80 radial sections and 35 concentric radial zones 
up to 100 km from the source of pollution). General expres-
sion for dependency of  Z on model input parameters Θ1, Θ2, 
, …, ΘK can be formally written as  

Z  =  M (θ1 ,  θ2 ,  …. , θK )                          (1) 

Let there are R receptor points on terrain where the respec-
tive values are measured. Generally, the number of receptors 
is much lower then N and we meet the problem with rare 
measurements expressed by observation vector Y ≡ (y1, y2, 
…., yR). Positions of sensors generally differ from the points 
of calculation grid.  We shall use terminology from data as-
similation for introduction of observation operator H, spe-
cially for its linear observation matrix H. H is R × N matrix 
and transforms vectors Z from model space (having length 
N) into corresponding vector Ż in observation space (having 
length R) according to matrix notation Ż = H ⋅ Z.  Compo-
nents żr of vector Ż represent model predictions interpolated 
at the positions of simulated observations r =1, … , R. Inno-
vation vector D = Y - H ⋅ Z is defined.   

 
Figure 1: “Manipulations” with Resulting Straight-line 

Gaussian Shape 
Number K of input parameters is rather high (several 
tenth) and then for practical purposes only S of them are 
treated as random. Rest of them are assumed to be less 
important from viewpoint of uncertainty propagation 
through the model and we assign them their best estimated 
values. Equation (1) is then simplified to the form Z  =  M 
(θ1 ,  θ2 ,  …. , θS, θb

S+1, … , θb
K ). In other words a certain 

number S of selected problem-dependent optimisation pa-
rameters Θ1, Θ2, , …, ΘS are considered to be uncertain 
and subjected to fluctuations within some range. The func-
tion F is constructed as a sum of squares in the measure-
ment points between the values of model predictions and 
values observed in terrain: 

( )
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S1rrS1 ),....,(zy),....,(F ∑

=

=

θθ−=θθ &         (2) 

Minimisation algorithm searches a minimum of scalar 
function F of S parameters starting at an initial “best esti-
mate”. In brief glance, the test points [θ1 ,  θ2 ,  …. , θS] of 
the objective function F are arranged as a S-dimensional 
simplex and the algorithm tries to replace iteratively indi-
vidual points with aim to shrink the simplex towards the 
best points. Model predictions can be interpreted as Gaus-
sian surface (or superposition of partial Gaussian extents) 
over the terrain. Our objective is to take into account both 
model predictions and available measurements incoming 
from the terrain and to improve spatial distribution of de-
posited radioactivity. We can imagine the iterative process 
of minimisation of function F such consecutive adjustment 
of the resulting respond surface, always according to the 
new evaluation of the parameters [θ1 ,  θ2 ,  …. , θS]. Thus, 
the predicted respond surface of results is gradually “de-
formed by permissible manipulations” directly driven by 
changes of problem-dependent optimisation parameters θs 
. MT algorithm controls the procedure until the best fit of 
modified surface with observation values is reached. Im-
portant feature of the method insists in preservation of 
physical knowledge, because the new set of parameters [θ1 
,  θ2 ,  …. , θS] evaluated by minimisation algorithm al-
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ways re-enters the entire nonlinear environmental model M 
according to Equation (1).  
 
PRACTICAL IMPLEMENTATION AND RESULTS 
 
Investigation of applicability of minimisation assimilation 
technique was tested on so called “twin experiment”. Lack of 
real observations is simulated by artificial generation of  
measurements. Moreover, if we use for this generation the 
same environmental model (e.g. for a fix one set of disturbed 
input parameters) we can examine the problem convergence 
issues. In application part of the paper the results of two 
simulation experiments TWIN1 and TWIN2 are illustrated. 
TWIN1 relates to release of nuclide 131I. Its further straight-
line propagation and deposition on terrain is simulated ac-
cording to simple scheme of straight-line Gaussian plume 
model. TWIN2 experiment deals with the problem of evolu-
tion of 137Cs deposition on terrain during the plume phase. 
Minimisation search is applied with more complicated but 
more realistic segmented model SGPM.  
 
MT applied to simple Gaussian straight-line model  

Accidental one-hour release of radionuclide 131I with total 
radioactivity 1.28 E+11 Bq discharged into atmosphere from 
nuclear facility is analysed. Release height is 100 m, propa-
gation continues under constant meteorological conditions 
(straight-line propagation in direction North-East, mean 
plume velocity 1.6 m.s-1, Pasquill category D of atmospheric 
stability, no rain). Atmospheric dispersion coefficients are 
calculated according to KFK-Jülich semi-empirical formulas. 

In the first step all input parameters are assumed to be repre-
sented by their best estimate values denoted by θi

b and then 
the corresponding output vector Zb presents deterministic 
solution of deposited activity of selected nuclide on terrain. 
At the same time Zb represents initial estimate for starting of 
minimization iterative search.  In the second step we shall 
further reduce the number of parameters S from equation (2) 
to four parameters. Corresponding four uncertainties c1, c2, 
c3, c4 are introduced into the model according to scheme θi = 
ci · θi

b  or  θi = θi
b + ci · f(θi

b).  Specifically, their meaning, 
usage in the environmental code and real choice is given in 
Table 1.  

The function F(θ1 ,θ2 , …. ,θS) from  (2) now has form F(c1 
,c2, c3 ,c4) and  minimisation algorithm handles with 4-
dimensional simplex. For purposes of construction of func-
tion F we have used slight modification of probabilistic ver-
sion of existing environmental model HARP (Pecha et al. 
2007) where original random inputs c1, c2, c3, c4 now play 
more general role of uncertainties characterized only by 
their range of possible fluctuations (see column 4 in Table 
1). Minimisation algorithm uses this constraints such lower 
and upper bounds for permissible manipulations with values 
of variables c1 ,c2 , c3 ,c4 (see arrows in Figure 1). During 
TWIN experiments the observation vector Y ≡ (y1, y2, …., 
yR) is  simulated artificially, the simplest way is utilization 
of the same environmental model M. 

Table 1.  Introduction of Uncertainties for Four Important 
Input Model Parameters 

parameter Unit uncertainty 
inside code 

uncertainty 
bounds 

θ1: Source   
release rate 

[Bq.s-1] Q =  c1⋅ Qb c1∈ 
<0.1;2.9> 

θ2 : horizont.    
dispersion 

[m] σy (x) = c2 * 
σy (x)b

 

c2∈ 
<0.1;3.1> 

θ3 : Wind 
direction 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c3*2π/80 

c3∈ 
<-5.0;5.0> 

θ4 : Dry depo 
velocity 

[m.s-1] vg =c4 *vgb
 c4∈ 

<0.1;4.0> 

 Deterministic best estimate distribution Zb generated on 
the polar calculation grid in original wind direction Sorig 
(North-East) is drawn in figure 2 as TRACE I . It corre-
sponds to the best estimate values { c1 ,c2 , c3 ,c4}best ≡ { 
1.0 ,1.0 , 0.0 ,1.0}. Selected positions of observations are 
labelled by red circles. For simulation of measurements in 
this red points we have selected a certain fixed quartet  { 
c1 ,c2 , c3 ,c4}obs ≡ {1.73, 1.51, +4.00, 1.98} . Artificially 
simulated measurements were generated using vector  Zobs 
=  M ({ c1 ,c2 , c3 ,c4}obs). Then the values are transformed 
into observation positions according to Żobs = H ⋅ Zobs. Fi-
nal simulated observation vector is obtained by assign-
ment  Y ≡ Żobs. 

 

TRACE I   

TRACE  II 

Figure 2: 131I  Deposition Levels [Bq.m-2] Related to the 
End of Plume Progression.  TWIN I experiment using 
Gaussian straight-line model. TRACE I and TRACE II 
are initial best estimate and resulting assimilation with 

simulated measurements (at red circles) 

Minimisation algorithm in successive iterations j brings 
newly generated quartets  { c1 ,c2 , c3 ,c4}j closer and 
closer to the { c1 ,c2 , c3 ,c4}obs. Fast convergence of as-
similated model predictions towards simulated observa-
tions has been found. 220 iterations are calculated during 
about 6 minutes and the following values has been found: 
{ c1 ,c2 , c3 ,c4}j=220

 = {1.731, 1.514, +4.003, 1.982}. It 
demonstrates very good consent with “simulated” obser-
vations generated by { c1 ,c2 , c3 ,c4}obs. The results are 
illustrated in Figure 2 as TRACE II isolines.  

Original best estimate deposition on terrain (and at the 
same time initial guess entering MT) is labelled as 
TRACE I. Deposition after 220 iterations is calculated as 
Zj=220 =  M ({ c1 ,c2 , c3 ,c4}j=220) and its isolines illus-
trates TRACE II. The assimilated respond surface 
TRACE II is at the same time practically identical with 
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Zobs generated according to M ({ c1 ,c2 , c3 ,c4}obs) originally 
used for artificial simulations of measurements. The shapes 
of TRACE I and TRACE II reflect imposed changes in val-
ues of c1

best to c1
obs (higher nuclide discharge), c2

best to 
c2

obs(higher peripheral dispersion), c3
best to c3

obs(twist by 
18°), c4

best to c4
obs(more intensive dry deposition causing 

steeper longitudinal gradient). 

Direct search algorithm connected with Gaussian straight-
line propagation model has proved fast convergence pro-
vided that the measurements are well positioned. Its applica-
bility depends on validity and limitations of model itself 
(more e.g. in (Irwing 2004) ). However, the TWIN 1 results 
support an idea of MT application for preliminary fleeting 
estimation in near distances and during constant meteoro-
logical conditions.  
 
MT with more realistic SGPM environmental model 

TWIN2 scenario is formulated in connection with segmented 
Gaussian plume scheme (model SGPM marked as MSGPM), 
which is much more complicated then straight-line spreading 
(our approach described in (Pecha et al. 2007) ). The model 
synchronizes segmentation of release dynamics with hourly 
meteorological forecasts. The first two consecutive release 
segments of 137Cs discharge (each with 1 hour duration) with 
released amount 2.0 E+17 Bq and 1.0 E+17 Bq has character 
of severe LOCA accident with partial fuel cladding rupture 
and fuel melting. Short-term meteorological forecast for the 
next 48 hours is provided by the Czech meteorological ser-
vice. Then, for each hour since the release initiation there are 
available predictions of wind direction and speed, category 
of atmospheric stability according to Pasquill classification 
and rain precipitation. Omitting other details, the TWIN II 
scenario covers period of the first 3 hours from the release 
start and we are declaring  the following plan: 

i)   Each of the two segments is modelled up to third hour 
after the release start taking into account short-term hourly 
meteorological forecast. The situation just after 3 hours is 
given by superposition of both segments in their successive 
meteorological hourly phases (5 phases in total). Resulting 
best estimate fields are calculated in analogy with Equation 
(1) according to scheme Zb

3hour = MSGPM ({ c1 ,c2 , c31, c32, 
c33,  ,c4, c51, c52, c53 }best) and is illustrated in Figure 3a as 
TRACE I.   

ii)   Number of uncertainties is increased from four to five as 
c1, c2, c3, c4, c5. c5 stands for fluctuation of mean wind veloc-
ity. If we suppose wind direction and velocity fluctuations to 
be independent between hourly phases, then c3 and c5 split to 
6 independent uncertainties c31, c32, c33 (for wind direction 
predicted for hours 1, 2 ,3) and c51, c52, c53 (for wind velocity 
predicted for hours 1, 2 ,3).  

iii) We have simulated artificially fictive “observation sur-
face” according to Zobs

3hour =  MSGPM ({ c1 ,c2 , c31, c32, c33 
,c4, c51, c52, c53}obs). Vector of simulated measurements at ob-
servation positions (see black filled squares in Figure 3b) are 
calculated by help of linear observation operator as Y3hour ≡ 
H Zobs

3hour . Their incoming is supposed at one stroke just at 
hour 3 after the accident start. Let us state beforehand that 
assimilated TRACE II from Fig. 3b nearly corresponds with 
the “observation surface”. 

iv)   The main goal is to accomplish assimilation of the 
model predictions Zb

3hour in compliance with measure-
ments Y3hour in analogy with equation (2) using BCPOL 
procedure of minimisation.  
    

 

TRACE  I 

Figure 3a :  Nominal Deposition of 137Cs (just  3 Hours 
after the Release Start) 

Deposition of 137Cs on terrain after 728 iterations is calcu-
lated as Zj=728

3hour =  MSGPM ({ c1, c2 , c31, c32, c33 ,c4, c51, 
c52, c53}j=728) and its isolines illustrates in Figure 3b a trail 
on terrain marked as TRACE II. The results represent a 
new distribution just at third hour after the release start, 
which is improved by observations. Minimisation algo-
rithm is initiated by the best estimate solution (TRACE I ) 
and gradually approaches to the simulated observations. In 
short numerical summary, TWIN2 experiment required to 
prepare in advance sets of parameters { c1 ,c2 , c31, c32, c33 
,c4, c51, c52, c53} for: 

best estimate:        { ….}b   =  1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 
0.0, 0.0, 0.0    (*)   
“measurements”: { ….}obs =  7.0, 2.0, -4.0, -5.0, -6.0, 
2.55, -0.5, -0.6, -0.7  (**) 

Here are examples for a particular iteration j :  

{ ….}j=728 =    7.18, 2.49, -3.94, -5.80, -6.34, 2.49, 0.21, -
0.28, -0.59  (***) 
{ ….}j=1201  =  7.25, 2.03, -4.14, -5.80, -6.39, 2.59, 0.27, -
0.36, -0.58 
(*)  TRACE I in Figure 3a,  (**) close to TRACE II  in Figure 3b, 
(***) TRACE II  in Figure 3b 

Meaning of the parameters c1 to c4 is the same as 
described in Table 1. c5 stands for uncertainty of the 
mean velocity of the plume. Further spliting to c5i, 
i=1,2,3 holds true for independent fluctuations of the 
mean velocity ūi forecasted for hours i. Uncertain ūi is 
then expressed according to ūi= ūi

best (1+0.35* c5i). c5i 

bounds are <-1; +1>. More detailed recommendations 
for uncertainty bounds arising from expert judgement can 
be found e.g. in (Goossens at al. 2001). 

TWIN II experiment took into consideration 9 optimisa-
tion parameters with constructive idea to discriminate ac-
cording to their global or local effect (introduced into the 
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wind vector). The computation procedure is time consum-
ing, but satisfactory convergence can be achieved. The 
question of real field measurements (e.g. Eleveld 2004) is 
so far opened.  

 

 

 

Figure 3b:  Assimilation of Predicted Deposition of  137Cs  
with Measurements just 3 Hours after the Release Start  (ar-

tificially simulated measurements  in black squares) 
 

CONCLUSION 

Advantage of utilisation of  SGPM output fields as a fitting 
surface insists in preservation of physical knowledge of the 
model. Presented experience related to applicability of 
minimisation techniques indicates that number of selected 
optimisation parameters ci should not be too high in order to 
avoid the poor convergence or even taking the wrong way 
(more sophisticated algorithms have to be tested). At this 
stage we recommend to consider five optimisation parame-
ters included in the TWIN II experiment (where wind veloc-
ity vector is global, it means no further splitting of c3 to 
further c3i and c5 to c5i ) and link the 6th parameter c6 rep-
resenting uncertainty in precipitation intensity forecast.   

Presented minimisation technique fits the model simulation 
results on a certain specific situation. Any resulting effect 
(e.g. peripheral plume dispersion) usually depends on many 
other input random parameters. Thus, in no case the pre-
sented fitting technique should not be confused with parame-
ter calibration. The problem of handling of real measure-
ments still remains opened, the first considerations for the 
Czech territory are discussed in (Kuca et al. 2008). Presented 
approach can play a specific role among empirical assimila-
tion techniques, especially as fast and efficient software tool 
for analysis of possible discrepancies between the model 
predictions and observations incoming from terrain. The 
method is incorporated into assimilation subsystem the 
HARP code (Hofman et al. 2007).      
Realistic prediction of evolution of radiation situation during 
emergency gives decision makers necessary time on judge-
ment and introduction of efficient urgent countermeasures on 
population protection. Reliable model predictions for the 
next hours in medium distances should account both for im-
plementation of spatial meteorological forecast and devel-
opment of new numerical techniques for time update of the 

trajectory models (e.g. how to propagate model for the 
next hours starting from assimilated results TRACE II in 
Figure 3b). Interventions introduced on the basis of non-
assimilated TRACE I could lead to fatal consequences on 
population health resulting from ill-anticipated impacted 
areas.  
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