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Abstract— Exploitation of the data assimilation methodology
in the field of radiation protection is studied. When radioactive
pollutants are released into the atmosphere, a radioactive plume
is passing over the terrain. The released radioactive material
causes pathway-specific irradiation which has detrimental ef-
fects on population health. In order to ensure efficiency of in-
troduced countermeasures, it is necessary to predict spatial and
temporal distribution of radioactive pollution. The predictions
are made by the means of numerical dispersion models with
many inputs. A group of the most significant input parameters
affecting the dispersion process was selected using available
sensitivity and uncertainty studies performed on dispersion
models. Exact values of these parameters are uncertain due to
the stochastic nature of atmospheric dispersion, hence the pa-
rameters are modeled as random quantities. Data assimilation
algorithm based on the sequential Monte Carlo methods for on–
line estimation of these parameters is presented. Performance
is demonstrated on artificial release scenario.

I. INTRODUCTION

Potential failures occurred in man–made processes can
cause dangerous phenomena resulting in an accidental re-
lease of harmful substances into the living environment.
Hazard evaluation and the decision–making focused on the
early warning and population protection has the highest
priority. Reliable and up to date information represents the
basic inevitable conditions for effective management of the
intervention operations targeted on consequence mitigation
during the emergency situations. Former accidents on nuclear
facilities revealed unsatisfactory level of the decision sup-
port, both in hardware equipment (reliable communication
channels, computation techniques) and the lack of advanced
decision support software tools. During the last years, there
have arisen demands of responsible authorities for improve-
ment of the safety preparedness for case of a reactor accident
in a nuclear power plant. Great attention to this topic is
paid since the Chernobyl disaster. It revealed, that the basic
requirements given by the law could not be satisfactory and
there are tendencies for their further improvement. Various
decision support systems (DSS) have became the part of
the crisis management. Their task is to be launched in
case of an accident and predict possible consequences with
regards to the introduced countermeasures. Predictions can
help to avert radiation exposure and decrease the population
radiation burden [10], [13], [14]. Substantial improvement of
these predictions in both the early and the late phase of a
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radiation accident can be achieved by involving of the data
assimilation.

Data assimilation results from the methods of objective
analysis and it is widely applied in the different branches
of the “earth sciences” like meteorology and oceanogra-
phy [1], [8]. It the early phase of a radiation accident
(when a radioactive cloud is passing over the terrain), the
data assimilation can improve predictions and thus better
identify the affected areas. Predictions of further evolution
of the deposited material on terrain in the late phase can
be made more reliable using objective analysis [5]. This
paper studies exploitation of data assimilation in the early
phase. Data assimilation is the optimal way how to exploit
information from both the measured data and expert–selected
prior knowledge to obtain reliable estimates of the inputs to
dispersion models. Early identification (estimation) of the
input parameters is essential for reduction of uncertainty of
the radiation situation predictions. In presented approach,
sampling–importance–resampling algorithm (particle filter)
is used to evaluate posterior distribution of estimated param-
eters and improve their estimates on–line as the plume is
passing over the stationary measuring sites. The algorithm is
tested on an artificial scenario with simulated measurements.
These measurements are simulated by the means of so
called twin experiment – the measurements are simulated
via the same model (simple Gaussian puff model) as is used
for predictions. Topology of the simulated measurements is
identical to the real topology of the Czech National radiation
protection network maintained by the responsible authorities.

The outline of this paper is as follows. Section II briefly
discusses particle filter and puts it in the scope of the
Bayesian filtering. Sampling–importance–resampling algo-
rithm is described here. In Section III, the solved assimilation
scenario is presented and the applied approach is described.
Gaussian puff model is also briefly described here. Numerical
experiment with simulated measurements is demonstrated in
Section IV. In Section V, experimental results are discussed
and the conclusion is given in Section VI.

II. SEQUENTIAL MONTE CARLO ASSIMILATION
METHODS

Let the Markovian dynamic model describing our system
is defined by discrete–time state–space transition equation
(1) and observation equation (2).

xt = g(xt−1) + bt (1)

yt = h(xt) + εt (2)



Here, t is the time index, xt is unobservable system state
vector, bt is additive dynamic noise vector. Vector yt is
a vector of sequentially observed data which provides us
indirect information about the system state and εt is its noise.
Both the densities of noise terms are assumed to be inde-
pendent and known. Functions g(·) and h(·) are generally
non–linear. State transition function g(·) propagates the prior
state to the current one. Forward observation operator h(·)
transforms vectors from the state–space to the measurement
space, thus constitutes relation of the actual measurements to
the current system state. The model formulated above covers
a broad class of real life problems.

The goal of the data assimilation is to produce so called
analysis – an estimate of the future state taking into account
available data [6]. Advanced assimilation algorithms are
based on methods of the Bayesian filtering [4], [7]. Bayesian
approach to filtering is applicable to all linear and non–linear
stochastic systems. In Bayesian context, the model given
by (1) and (2) defines at each time t the state transition
probability density function (pdf)

p(xt|xt−1) (3)

and the observation pdf

p(yt|xt). (4)

Hence, the analysis is represented by the means of the
marginal posterior pdf

p(xt|Y t), (5)

where Y t = {Y t−1,yt} are available data.
The procedure of Bayesian filtering consists of two recur-

sively repeated steps. The first step evaluates (3). This step
is called the time update (6). In the second step called data
update (7), the information provided by actual measurements
yt is included into the current state estimate given by the pdf
p(xt|Y t−1).

p(xt|Y t−1) =
∫
p(xt|xt−1)p(xt−1|Y t−1)dxt−1 (6)

p(xt|Y t) =
p(yt|xt)p(xt|Y t−1)∫
p(yt|xt)p(xt|Y t−1)dxt

, (7)

The assimilation process is initialized by a pdf p(x0|Y −1) =
p(x0) representing all the prior information related to the
problem. This density is often called background–field or
just the prior.

Our aim is to recursively in time estimate posterior pdf
and the expectations

I(f) := Ep(xt,Y t)[f(xt)] =
∫
f(xt)p(xt|Y t)dxt (8)

for some functions f(·) of random variables xt integrable
with respect to p(xt|Y t).

Evaluation of (6) and (7) generally involves integration
over complex spaces and often it is computationally infeasi-
ble. Analytical solution is permitted only very limited class
of problems (e.g. Gaussian–linear). Sequential Monte Carlo

methods (SMCM), also known as particle filters, provide an
efficient way how find good approximation of the integrals.
SMCM sequentially update Monte Carlo approximation of
the posterior (5). This posterior is represented by a discrete
sample of points and weights [3].

Let {x(i)
t ; i = 1, . . . ,M} is a set of samples from posterior

density p(xt|Y t). An empirical estimate of this distribution
is given by

pM (xt|Y t) =
1
M

M∑
i=1

δ(xt − x(i)
t ), (9)

where δ(·) is the Dirac δ-function. Function (8) can be then
approximated as

IM (f) =
∫
f(xt)pM (xt|Y t)dxt =

1
M

M∑
i=1

f(x(i)
t ) (10)

This estimate is unbiased. From the strong law of large
numbers follows that

IM (f) a.s.→ I(f), as M → +∞, (11)

where a.s. denotes almost sure convergence [3].
The advantage of this perfect sampling Monte Carlo

method is that from the random samples {x(i)
t ; i = 1 . . .M}

can be easily estimated any quantity I(f) and the rate of
convergence of this estimate is independent of the dimension
of the integrand. Nevertheless, in real problems we are not
usually able to sample directly from p(xt|Y t). To overcome
this obstacle we use a method called importance sampling.
Provided that the support of p(xt|Y t) is included in support
of a pdf q(xt|Y t), we can draw independent samples x(i)

t

from q(xt|Y t) and use them for approximating of p(xt|Y t).
The known pdf q(xt|Y t) we choose is called importance
sampling pdf.

The function I(f) can be evaluated as

I(f) =
∫
f(xt)w(xt)q(xt|Y t)dxt∫
w(xt)q(xt|Y t)dxt

, (12)

where w(xt) is called importance weight defined as

w(xt) =
p(xt|Y t)
q(xt|Y t)

(13)

Assuming the set of M i.i.d. particles {x(i)
t ; i = 1, . . . ,M}

from q(xt|Y t), substitution of (10) into (12) yields Monte
Carlo estimate ÎM (f) of I(f)

ÎM (f) =
1
M

∑M
i=1 f(x(i)

t )w(x(i)
t )

1
M

∑M
i=1 w(x(i)

t )
=

M∑
i=1

f(x(i)
t )w̃(x(i)

t ),

(14)
where w̃(x(i)

t ) is normalized importance weight given by

w̃(x(i)
t ) =

w(x(i)
t )∑M

j=1 w(x(j)
t )

. (15)

For M finite, ÎM (f) is biased but asymptotically holds true

ÎM (f) a.s.→ I(f), as M → +∞. (16)



SIR ALGORITHM

1) Initialization:
For i ∈ {1, . . . ,M} draw samples x(i)

t from pro-
posal distribution q(x(i)

t |x
(i)
t−1,Y t)

2) Normalized weights evaluation:
For i ∈ {1, . . . ,M} evaluate:

w
(i)
t = w̃

(i)
t−1

p(yt|x
(i)
t )p(x(i)

t |x
(i)
t−1)

q(x(i)
t |x

(i)
t−1,Y t)

.

It simplifies to

w
(i)
t = w̃

(i)
t−1p(yt|x

(i)
t )

when used q(x(i)
t |x

(i)
t−1,Y t) = p(x(i)

t |x
(i)
t−1).

3) For i ∈ {1, . . . ,M} normalization of weights

w̃
(i)
t =

w
(i)
t∑M

j=1 w
(j)
t

.

4) Compute an estimate of the effective number of
particles as

N̂eff t =
1∑M

i=1(w̃(i)
t )2

.

.
If (N̂eff t < Nthr) GOTO 5) and resample, else
iterate from step 1) with t := t+ 1.

5) Resampling:
a) Draw M particles from the current particle

set with probabilities proportional to their
weights. Replace the current particle set with
this new one.

b) For i ∈ {1, . . . ,M} set w(i)
t = 1

M .
6) Iterate from step 1) with t := t+ 1

Integration method can be interpreted as a sampling
method where the posterior distribution p(xt|Y t) is approx-
imated by

p̂M (xt|Y t) =
M∑
i=1

w̃(x(i)
t )δ(xt − x(i)

t ) (17)

and ÎM (f) is then the function f(·) integrated with respect
to the empirical measure p̂M (xt|Y t)

ÎM (f) =
∫
f(xt)p̂M (xt|Y t)dxt. (18)

Recursive form of described Monte Carlo integration
algorithm is called sampling–importance–sampling (SIS).
Recursive formula for evaluation of importance weights is

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x
(i)
t )p(x(i)

t |x
(i)
t−1)

q(x(i)
t |x

(i)
t−1,Y t)

. (19)

It is beneficial to choose prior pdf from the current step as an
importance function. Recursive formula (19) then simplifies
to

w̃
(i)
t ∝ w̃

(i)
t−1p(yt|x

(i)
t ) (20)

The SIS algorithm suffers from degeneracy problem, so
we have to implement a resampling algorithm. Degeneracy
of the sample means, that the algorithm becomes unstable
as t increase due to the growing discrepancy between the
weights. The most of particles will have negligible weights.
Resampling should eliminate particles with small weights
and multiply particles with large weights. After resampling,
all the weights are equally set to 1

M . If we perform re-
sampling in each step, the weights can be computed as
w̃

(i)
t = p(yt|x

(i)
t ). To stabilize the algorithm it is necessary

to perform resampling sufficiently often. A suitable measure
of degeneracy of the algorithm is the effective sample size
Neff . Its estimate N̂eff can be obtained as

N̂eff t =
1∑M

i=1(w̃(i)
t )2

. (21)

Estimate of effective sample size can be evaluated each
step. Resampling is performed if N̂eff exceeds an a priori
given threshold Nthr. The modification of SIS algorithm
with resampling is known sampling–importance–resampling
(SIR), see the box ALGORITHM. More on resampling can
be found in [2].

A. Combined filtering on parameters and state variables

Depending on the physical background of the solved prob-
lem, some elements of the state vector x can be constant it
time. These states can be viewed as fixed model parameters.
The original state vector xt is then factorized as

xt = {xt,θ}, (22)

where θ are fixed model parameters and xt is a vector of
dynamic states. The state transition pdf (3) becomes

p(xt|xt−1,θ) (23)

and the observation density (4) has the form

p(yt|xt,θ). (24)

Measurement vectors yt are assumed to be conditionally in-
dependent of past states and measurements given the current
state xt and the parameter vector θ. The goal becomes to
get posterior density p(xt,θ|Y t) given as

p(xt,θ|Y t) ∝ p(Y t|xt,θ)p(xt,θ)
∝ p(Y t|xt,θ)p(xt|θ)p(θ). (25)

The problem is solved as combined filtering on parameters
and state variables. A zero–mean normal noise is added to
parameters during each resampling. This step constitutes the
time evolution of parameters.

θt+1 = θt + εt+1, εt+1 ∼ N(0,Σ), (26)

where N(0,Σ) is multidimensional normal distribution with
zero mean and a covariance matrix Σ. The “artificial”
evolution prevents degeneracy because of the reduction of
the sample diversity [3]. It simply increases the variance
of the sample. The algorithm can be then considered as
an algorithm for simultaneous estimation of both the fixed
model parameters and the state variables.



Fig. 1. Configuration of stationary measuring sites (the source of pollution
is placed in the centre).

III. ASSIMILATION SCENARIO

Assimilation scenario studied in this paper is as follows.
Assume a reactor accident in a nuclear power plant. After
some time, there is a radioactive cloud passing over the ter-
rain. The evolution and the movement of the cloud is usually
modeled by the means of numerical dispersion models. Phys-
ical effects taking place in the dispersion process are in these
models parametrize via semi–empirical formulas having tun-
ing parameters. A group of the most significant parameters
θ affecting the dispersion process (including parametrization
of meteorological forecast) was selected using available
sensitivity and uncertainty studies performed on dispersion
models [12]. Exact values of these parameters are uncertain
due to the stochastic nature of atmospheric dispersion, hence
the parameters are modeled as random quantities. Wrong
initial setting of these parameters can introduce huge errors
into the predictions of radiation situation and thus forbid to
introduce effective countermeasures in the actually affected
areas. Reliability of predictions can be significantly improved
using data assimilation. The task is to on–line estimate
parameters θ in order to increase correspondence of modeled
prediction with the physical reality. These parameters are
consequently used for prediction of future radiation situation
(in terms of a radiological quantity).

Due to the deposition processes is the radioactive puff de-
pleted. Time integrated deposition is the radiological quantity
modeled in this scenario.

The problems fits into the family of Markovian models
described in Section II. Realization of the process at time t
contains all the information about the past, which is neces-
sary in order to calculate the prediction of future evolution.

A. Dispersion Model

Gaussian puff model is an approximative solution of
three dimensional advection–diffusion equation. Since it is

a basic statistical approximation of the solution of the three
dimensional advection–diffusion equation, its simplicity and
transparency allow for better insight. Equation (27) is the
basic equation describing concentration of the pollutant re-
leased from an instantaneous source in an arbitrary spatial
location and time t > 0 given the appropriate inputs.

C(r, t) =
Q

(2π)
3
2 σ2

xyσz

exp

{
−

1

2

[(
x− ut
σxy

)2

+
y2

σ2
xy

+
z2

σ2
z

]}
,

(27)
where r = (x, y, z) is a vector of spatial coordinates and t
is time index. The parameter σxy stands for the horizontal
dispersion which is assumed to be identical in both the x-axis
and y-axis direction.

The model is able to take into account meteorological fore-
cast provided by the Czech Hydrometeorological Institute.
From the concentration given by (27) can be evaluated time
integrated concentration (TIC). TIC is the fundamental radio-
logical quantity in these types of emergency calculations and
it can be used for evaluation of radiological quantities being
subject to the regulatory guides. From near ground TIC can
be easily calculated time integrated deposition (TID) [11]
which is the output of the developed model.

As the radioactive cloud is passing over the stationary
measuring sites on terrain

IV. NUMERICAL EXPERIMENT

Performance of the algorithm is demonstrated on sim-
ulated release of I-131 from a nuclear facility. The time
horizon assumed in the example was from the release start
up to the 120 minutes. As the half–time of decay of the I-131
is approximately 8.1 days, it can be on chosen time horizon
neglected. TID is modeled on a rectangular grid 21 × 21
with the grid step 1km, where the source of pollution is
placed in the centre. Measurements are simulated via the
same dispersion model used for calculation of predictions
and perturbed with normal noise with the zero mean value.
The dispersion of this noise is proportional to the magni-
tude of “measurement” plus, there is a additive dispersion
avoiding production of absolute zeros causing singularities in
calculations. Assumed stationary measuring sites are subset
of the Radiation monitoring network of the Czech Republic.
The topology of measuring sites depicted in the figure 1 is
identical to the real topology of radiation monitoring network
in the surroundings of the nuclear power plant Temelin.
Parameters treated as random in this example and their
parameterizations are:

θ = (θ1, θ2) (28)

• Magnitude of the released activity Q is parametrizes
as

Q = θ1 ×Q0, (29)

where Q0 is initial activity given by responsible author-
ities and θ1 is multiplicative scaling factor with given
prior probability distribution.



• Wind direction (advection direction) φ is
parametrized as

φ = φ0 + ∆φ, (30)

where φ is initial wind direction given by the meteoro-
logical forecast and ∆φ = θ2× (2π/80) rad is additive
factor with given prior probability distribution.

Both the parameters are regarded as time–global. It means,
that their values are constant during the release. This has the
physical meaning, for example, the Time–global parameters
can be viewed as a fixed model parameters. Particle attrition
in resampling methods and weight degeneracy in reweight-
ening . It causes degradacy of approximation accuracy. This
issues are acute when we deal with fixed model parameters
(cite West 1993a,b). Using approach called artificial evolu-
tion of particles we can overcome this problem. Its principle
consists in adding of random disturbances (“roughening
penalties”) to sampled state vectors in an attempt to deal
with sample degeneracy.

Prior probability distributions assigned to unknown ran-
dom parameters are described in the table I. The priors are
chosen according to the expert studies performed in [9].

TABLE I
PRIOR PROBABILITY DISTRIBUTIONS OF ESTIMATED PARAMETERS.

Parameter PDF type PDF parameters
θ1 LogNormal α0.05 = 1.0; α0.95 = 10.0, 3σ truncated
θ2 Uniform min = -5.0; max = 5.0

The model developed for purposes of algorithm testing
allows for direct evaluation of the modeled radiological
quantity in a set of a priori given spatial locations, not just
in the points of the grid. Advantage of this approach is
that we don’t need to evaluate model in all the grid points.
Evaluation of TIC is the most “expensive” operation of the
algorithm. The time demands grows approximately liner with
the number of such a points.

V. RESULTS

In the figure 2 are prior distribution of θ given by the table
I. In the figure 3 are empirical distributions of parameters
θ produced by the algorithm after 11 data updates. The
estimates of parameters 11 data updates are θ̂ = (θ̂1, θ̂2) =
(1.6801,−2.1781). The values used in the twin experiment
for purposes of generating of perturbed measurements are
θ = (1.7,−2.1). The values found “on-line” during the puff
movement over the measuring sites are good approximations
of the values used for simulation of measurements. The
variance of both the estimated parameters stabilized after
some and remains approximately constant, it is the variance
artificially introduce in the resampling step by the particle
filter to maintain the diversity of the sample.

VI. CONCLUSION AND FUTURE WORKS

Algorithm demonstrated a good performance in this ar-
tificial scenario with measurements simulated via identical
model. As the experiment is pure theoretical, it is difficult

Fig. 2. Prior distribution of estimation parameters

Fig. 3. Posterior distribution of estimated parameters



to learn some details even about the availability of measure-
ments in case of the real reactor accident in a nuclear power
plant. The formulation of scenario used in the example has
arisen from consultation with experts from National Radia-
tion Protection Institute (NRPI) of the Czech Republic. The
chosen methodology consisting in exploitation of sequential
Monte Carlo methods for combined filtering on parameters
and state variables gives good results in this simple scenario.
Its performance in more complicated Primary objective of
the future work is testing of the assimilation algorithm
on more complex models (plume models or Lagrangian
particle models) end evaluate its performance on scenarios
with more estimated parameters. The limiting factor in this
experiments can be computational demands. The fact that in
the experiments is included the real topology of the radiation
monitoring network is valuable fwith respect to the future
cooperation with the NRPI.
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