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Abstract: The paper shares experience gained in application of dynamic Bayesian
approach to control problems in the field of metal rolling. The contribution
introduces basic notions of theory applied and provides the algorithmic as well
as application-oriented solutions developed. Specifically, the consistent use of the
approach resulted in an advanced decision support system for operators of a

reversing cold rolling mill.
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1. INTRODUCTION

For several decades rolling mill control problems
belong to traditional areas of interest for the con-
trol community. This paper shows that the con-
sistent Bayesian approach spreading from system
identification (Peterka, 1981) to the decision mak-
ing theory (DeGroot, 1970; Berger, 1985) provides
a room for significant improvements even in this
well established application domain.

Bayesian concept of probability forms a firm
counterpart to the standard statistics. It became
rather popular during past decades especially in
connection with development of algorithms of de-
cision trees, data mining, etc. The article con-
tributes positively to the disputation between
Bayesians and their opponents by providing a
long-term practical experience with the utilization
of the approach.

Theoretical background and principal algorithmic
solutions have been adopted from the academia.
Considerable work has been done to implement

these solutions on real process and to make them
work on-line. Although the application domain of
rolling mills is narrowed here to cold reversing
ones, the most of conclusions concern the whole
domain in general.

Section 2 introduces necessary basics of the
Bayesian theory, which are further elaborated.
Section 3 concerns numerical and software as-
pects. Sections 4 and 5 summarize implementation
experience while Section 6 outlines open prob-
lems. Conclusions 7 provide with overall results.

2. NECESSARY FACTS FROM THE THEORY

Bayes’ theorem as a statement about conditional
probabilities can be written as:
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where a, b, ¢ stand for random variables, f(a|b)
denotes probability density function (pdf) of a



conditioned by b and f(a,b) denotes joint prob-
ability distribution of a and b.

Complemented by main principles of calculus with
pdfs (Peterka, 1981; Hartigan, 1983), this theorem
forms a cornerstone for consequent methods of
handling of uncertainty.

2.1 System model and its identification

A stochastic system with data dy = (ug,ye),
consisting of directly manipulated input w; and
indirectly affected output y;, observed at discrete
time instants ¢ = 1,2,... is considered. The
sequence of historical data observed on the system
up to time ¢ is denoted by d(t) = (di1,da, ..., d;).

Within the accepted framework, the dependence
of the system output y; on the historical data
d(t—1) is generally described via conditional prob-
ability density function (pdf) f(y:|us, d(t—1),0),
parameterized by an unknown time invariant pa-
rameter ©.

Interpretation of © as a random variable allows
exploiting (1) for the description of uncertainty
about © after observing data d(t). The corre-
sponding conditional pdf is:
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where f(y;|ue, d(t — 1)) =

:/f(yt|ut7d(t— 1),0)f(6d(t —1))dO. (3)

Slow changes of © are allowed when adopting
adaptation techniques mentioned in Section 3.

2.2 Selection among set of possibilities

Applying (1) to the discrete set {H;}? ; of hy-
potheses H; about some properties of the in-
spected system, the Bayes formula gets the form:
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Similarly to (2), the probability of i-th hypothesis
after observing data d(¢) becomes:
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where f;(y¢|us, d(t — 1)) is the conditional pdf of
the system output defined by hypothesis H;.

The technique is used for estimation of the model
structure (model order) and for selection of pro-
cess model among pre-specified set of models.

2.8 Approzimation by probabilistic miztures

Joint pdf f(d(t)|©) of historical data is used
for selection of the approximate description of
the closed control loop. The chain rule for pdfs
allows to express f(d(¢)|©) through the models
f(d¢]d(t — 1),©). Physical nature of the process
implies that current data record d; is influenced
only by a recent part of the whole process history,
¢i—1 = (di—1,...,di—;) given by some finite .
This motivates an approximation of the joint
distribution of data by:

F(d#)10) = [T f(dil¢-1,©). (6)
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Considering process data describe multiple modes,
the particular models f(d¢|¢:—1,0) are chosen to
be multi-modal. As a probabilistic multi-modal
model can be approximated by a finite mixture of
uni-modal models, so-called components (Kérny,
at al., 2003), the following approximation by
Gaussian dynamic mixtures is accepted:
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where Ny(m,r) is Gaussian pdf of d having mean
m and covariance ;' denotes transposition; ¢ € c*
are pointers to particular Gaussian pdfs (compo-
nents) forming the mixture; . is probability with
which c-th component is chosen; 6. is the ma-
trix of unknown coefficients determining expected
value @/,¢;_1 of the c-th component. © collects all
unknown parameters of the mixture model, i.e.
O ={0.7c, e, c €}

The mixture model (7) describes flexibly a wide
range of behaviors of closed control loop. This
flexibility is paid by impossibility to apply the
exact Bayesian estimation. However, a simple,
recursively applicable, quasi-Bayesian estimation
(Kérny, at al., 2003) copes well with exponentially
increasing complexity of the posterior pdf. Thus, a
good estimate of the mixture parameter © can be
obtained. Consequently, the design of an advisory
mixture, discussed below, can take © as known
one and omit it formally from conditions of pdfs.

2.4 Advisory mixtures

Process operator can be taken as a part of the
closed-loop and his actions are expressed by his-
torical data (at least implicitly). His activities
(changing set points and modes, etc.) within
the process closed-loop can be viewed as actions
of a special kind of controller. Advisory system
(Kérny, at al., 2004) tries to improve closed-loop
behaviour by providing advices to the operator
who can either accept or reject them. Advising,



followed by the operator, can be interpreted as
replacing the current operator strategy by an op-
timized one, which should make the closed-loop
behavior closer to the desired one.

Generally, advising supposes the following steps:

(1) Recognition of the part of the closed-loop
mixture model describing the operator’s strat-
egy,

(2) Mapping of operation (control) aims on the
optimality criterion,

(3) Computation of the optimized recommended
strategy,

(4) Presentation of the optimization results to
the operator in a suitable form.

The detailed description of the approach and the
essence of the solution are given by (Kdrny, at
al., 2004) and (Kdrny, at al., 2003), respectively.

ad (1) Generally, the operator can influence
closed-loop behaviour in two ways, by: i) changing
the frequency with which the process behavior
stays at different operation modes described by
mixture components (7); ii) direct selecting values
of some entries within the data record d; (typically
set points). Formally, in the first case, the operator
modifies the estimated probabilities {c., } of ran-
dom pointers ¢; to active components to another
distribution { Yo, }:
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In the second case, the data, influenced by the
operator, play role of system input u; from the op-
erator’s perspective. Using the same perspective,
the remaining entries of d; form system output y;.
Thus, the second way can be formally written as
replacement:
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The estimated parameters 6., r. define the pa-
rameters 9., W¥r., 0., "r, via the chain rule
applied to multivariate Gaussian distribution.

Thus, within the adopted terminology, any chang-
ing the operator’s strategy means modifications of
the type (8) and (9) that can be performed either
sequentially or simultaneously.

ad (2) Considering closed-loop behaviour de-
scribed in terms of distributions (7), it makes
natural to have operation (control) aims expressed
in terms of distribution (namely target distribu-
tion) as well. The design of the advisory system is
then formulated as minimization of the Kullback-
Leibler divergence (Kullback and Leibler, 1951)
of distribution, describing closed-loop behaviour,

from the target distribution. The minimization is
performed over the optional l-elements in (8)
and/or (9). This fully probabilistic design was
developed in (Kéarny, at al., 2003; Kéarny, at
al., 2004). For Gaussian mixtures and Gaussian
target distributions, it is approximately solvable.
The resulting algorithms operates on kernels of
quadratic forms in a way similar to discrete Ric-
cati equation extended to mixtures and quadratic
criteria (B6hm and Karny, 2001).

ad (3, 4) Inserting of the obtained minimizing
distribution into the closed-loop description gives
advisory mizture, which supposes the fully coop-
erating operator. Graphical presentation of the
marginal distributions of optional variables should
stimulate operator’s actions. Understanding the
probabilistic nature of advising is not required for
the operator, as he gets rather simple instruction:
Try to reach the highest hill of those displayed.

In complex situations, it is reasonable to measure
divergence of the current closed-loop description
from the target permanently and alert the oper-
ator only when some threshold is crossed. Also it
is necessary to select the most critical variables to
be modified under the given situation. It can be
done using a slight extension of the methodology
sketched above (Kérny, at al., 2004).

3. MAKING IT FUNCTIONAL

The accumulated experience showed that ade-
quacy of the underlying models, reliability of the
resulting algorithms and implementation ease are
the dominant aspects determining usability of
“academic” solutions. These aspects are touched
here.

Formulas outlined in the previous sections pro-
duce usable solutions for Gaussian pdfs and their
mixtures (7). Locally linear models in (7) are
sufficient, if changes of their parameters, caused
by aging and by shifts of working range, can be
tracked. This adaptation is reached by consider-
ing standard forgetting of obsolete information.
The stabilized forgetting technique (Kulhavy and
Zarrop, 1993) is used as the most reliable one.

Quasi-Bayesian estimation with Gaussian mix-
tures reduces to manipulations with positive def-
inite, extended information matrices. They are
recursively updated similarly as in the well estab-
lished LG area (Linear model, Gaussian probabil-
ity distributions).

Numerical problems arising from number repre-
sentation and limited precision in real comput-
ers have been overcome by updating the lower-
triangular-diagonal decompositions of these infor-
mation matrices (Bierman, 1977).



The fully probabilistic design in Gaussian-mixture
setting is rather close to the well known LQG
control design (LG model with quadratic design
criterion) and the similar numerical problems as in
the learning are faced. Again, the use of factorized
kernels of quadratic forms, making the essence of
the design (Kdrny, at al., 2003), is the “must”
guaranteeing the reliable solution.

Implementation ease is strongly influenced by the
transfer of algorithmic solutions. At the beginning
of cooperation, the academic algorithms had to be
re-coded completely. This way is adequate for very
particular cases only. More complex solutions have
to exploit convergence of the software platforms
involved and has to be supported by well specified
programming rules as well as specific software
tools allowing the transfer with minimum re-

coding (Nedoma and Andrysek, 2003).

During two decades of continuous development
particular modules of the presented approach have
been implemented on several hardware platforms
(former Intel’s Multibus system, Skoda propri-
etary system and the industrial PC) and under
various operating systems ranging from former In-
tel’s iIRMX to RT Linux for real-time applications
and several versions of MS Windows and Linux
for the others.

4. VERIFIED SOLUTIONS
4.1 Structure estimation

Selection of the proper process model proved to be
basic task when the idea to utilize the approach
for the adaptive thickness control arose in the
middle of 1980s. Model had to be simple enough
to allow real time estimation on computers indus-
trially available. It strongly limited the number of
parameters estimated on-line. At the same time,
the model had to be descriptive enough: the trans-
port delay, which is characteristic of the thickness
measuring system does not allow fast changes
of parameter estimates. Therefore, a substantial
effort had been devoted to proper choice of the
most significant parameters.

Utilized computer-aided model selector coming
from academia was based on testing of hypotheses
(2.2). It had to be boosted by signal reliability
analysis and by experience from the field.

Several settled model versions are available nowa-
days differing according to the type and param-
eters of a given rolling mill. All proven models
have an absolute term modelling non-zero offset.
Their data vectors include some of the key process
variables or their combinations: input and output
thickness deviations, tensions and speeds, screw-

down or hydraulic actuator position, rolling forces
and the speed ratio.

Classification techniques has been used occasion-
ally to contribute to other solutions such as mill
stretch compensation and control of the roll-
positioning system. In the latter case, the ap-
proach helped to reject the model based control
in favor of a modified PID control.

4.2 Parameter estimation

Considering a rolling mill, parameter estimation
serves mainly to model-based thickness controller.
After structure estimation of the process model
for the particular mill, initial values of parame-
ter estimates and their admissible ranges had to
be stated. Flat prior pdfs with the mean in the
middle of the range proved to be good initials
as the process is excited enough to cause fast
convergence of the estimation. Cautious controller
is used, so that both initial moments (mean and
variance) of parameters are being used for its eval-
uation. Several “details” have made the solution
work properly:

e The coefficients of the adaptive controller
start to be recalculated after stabilization of
the estimates. This guarantees smooth start.

e The estimated model offset is not used for
control design. The output of a robust feed-
back controller is being used instead.

e Exceeding of given limits for parameter esti-
mates causes reset of the estimation.

e The estimation is being switched off in cases
when its outputs could be deteriorated, e.g.
for welded strip sections.

Recursive estimation algorithm is being triggered
by the strip movement, for each about 50 mm of
the strip length. The exact value of the triggering
distance depends on the particular mill.

Starting with the first application in 1986 (Ettler,
1986), the Bayes-based thickness controller has
been installed standardly for various types of 20-
high and four-high reversing cold rolling mills with
very good long term performance.

5. NOVEL SOLUTION

A qualitative advance on utilization of the the-
ory has been made by implementation of a de-
cision support system (DSS) for operators of a
fine rolling mill. The advisory system outlined in
Sections 2.3 and 2.4 which forms kernel of the
DSS was brought to practical application in the
framework of the project ProDaCTool and it was
commissioned in 2002 (Quinn, et al., 2003).



5.1 Mixture estimation

Off-line mixture estimation of huge amounts of
process data describing the good rolling was ac-
complished. Resulting 30 mixture sets approxi-
mately describe process behavior for various work-
ing conditions and material types. Static mixtures
were employed for the given case. Fig. 1 shows an
example of 10-dimensional mixture and its com-
position formed by Gaussian components, both
projected into two-dimensional space.

Fig. 1. Composition of a static mixture formed
by Gaussian components — two dimensional
projection for data channels d; and ds.

Estimated mixtures are employed within the on-
line DSS according to working conditions and
material being processed. Learning ability was
introduced into the system by an independent
on-line run of quasi-Bayesian algorithm, which
modifies the estimates by incoming actual data.
When the coil of the same material is processed
later on, the updated mixture estimate, often
connected to the specific coil pass, is used for
advising and also as an initial estimate in a new
independent learning, see Fig. 2.

Archive data Identified mixtures

% :> Identification :>
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i : j/\ update
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Off-line

—

Visualization
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Fig. 2. Diagram of the DSS. Symbol M means an
identified mixture. M, is the updated mixture
which will be used for the next relevant pass.

5.2 Decision support

For a given rolling mill, the aim of the imple-
mentation was to stabilize the highest possible
product quality and to allow better utilization of
possible rolling speed range. Concerning product
quality it had been more difficult to tune strip
tensions for higher speeds therefore lower speeds
had been preferred.

Ten key data channels were selected for process-
ing while three of them (rolling speed, input and
output tensions) allowed direct influencing of the
process. Target pdf specifying the optimality cri-
terion was derived from the main quality marker
— deviation of the output strip thickness (Ettler
P., at al., 2000).

Depending on particular working conditions, an
appropriate estimate from the set of the off-line
results is loaded at the beginning of operation.
Incoming data are then being used for calculation
of advices. Fig. 3 shows an example of the 2-
dimensional projection of the advisory mixture
originated from the off-line estimate and condi-
tioned by current data.

Original mixture Advisory mixture

Fig. 3. An advisory mixture made from the orig-
inal mixture using actual data — two dimen-
sional projection for data channels d3 and dy.
Symbol O stands for the actual working point
which should be moved to the location of .

Generation of advices is based on evaluation of the
distance between the optimal and actual working
points within the multidimensional space. Recom-
mendations are provided for the operator through
a traffic light-like indicator together with a simple
text such as: “Increase input tension to x”, where
x means the recommended value. Smoothly ani-
mated graphical representation of the situation is
provided at the same time.

For the assessment of the project achievements,
production data from the period of 12 months
before installation were compared with the period
of 3 months of the full operation. The system
helped to find the optimal combinations of ad-
justed values. Results indicated that the quality
markers were stabilized and improved by about
7% in average and the rolling speed being chosen



by operators increased by 17 — 30% depending on
particular working conditions.

6. CHALLENGING PROBLEMS

A potential utilization of hypothesis testing ap-
proach, Section 2.2, arises for the elimination of
roll eccentricity. In this case, typical terms in the
model equation are represented by goniometric
functions. As the ranges of possible disturbance
frequencies, made by the eccentricity, are rela-
tively narrow and deducible from diameters of
rolls, the set to be classified is endurably small.
Under these prerequisites, the compensator, based
on Bayesian model selection, should be able to
compete with a typical fast-Fourier-transform ap-
proach to this problem (Rath, 2000). It was veri-
fied by a case study but it was not implemented
yet.

Fully probabilistic description of the process is
intended to improve prediction of the outgoing
strip thickness within the rolling gap to revitalize
one of the classical thickness control principle.

Concerning the decision support area, the running
research is devoted to dynamic aspects, multiple
criteria and distributed solutions. Moreover, much
is to be done to make application of the theory
really straightforward.

7. CONCLUSIONS

The paper scans results of a long term cooper-
ation of academic and application teams related
to various applications of Bayesian paradigm to
reversing rolling mills. Specifically:

On-line estimation of process model parameters
is being applied for two decades for the thickness
control. The adaptive controller turned out to
cope well with diversity of working conditions and
types of material being processed.

Testing of hypotheses is being utilized off-line to
the proper model selection for particular control
problems.

Novel utilization of the approach is represented
by the decision support tool for process operators.
The on-line advisory system was applied for the
20-high cold rolling mill with satisfactory results.

The results are important on their own but they
also emphasize importance of the chain
theory—algorithm—software—implementation.
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