A remark on the local Lipschitz continuity of vector
hysteresis operators
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Abstract. It is known that the vector stop operator with a convex closed characteristic Z of
class C' is locally Lipschitz in the space of absolutely continuous functions if the unit outward
normal mapping n is Lipschitz on the boundary 0Z of Z. We prove that in the regular case,
this condition is also necessary.
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1 Introduction

Mathematical models of multidimensional hysteresis phenomena in elastoplasticity or fer-
romagnetism are often based on the variational inequality (see e. g. [Al, Be, Bro, BK,

DL, K1, NH, V])
(u(t) —a(t),z(t) —¢) 20 Vo€ Z,
(1.1) x(t) e Z vVt € (0,77,
z(0)=2"€ Z,
where u € WH(0,T; X) is a given function, X a Hilbert space endowed with a scalar

product (-,-), Z C X is a convex closed set, ¢t € [0,7] is the time variable and the dot
denotes the derivative with respect to ¢.

The existence of a unique solution x € W11(0,T; X) to problem (1.1) is a special case of
classical results for evolution variational inequalities, cf. e. g. [Bre, DL].

In stochastics, inequality (1.1) is known as a special case of the Skorokhod problem ([DI,
DN]). In the theory of hysteresis operators, the solution mapping
(1.2) S: ZxWh0,T; X) — Wh(0,T; X) : (2% u) — =

is called the stop operator with characteristic Z and its properties have been systemati-
cally studied (see [KP, V, K1, K2]) together with its extension to the space C([0,77]; X)
of continuous functions. The dynamics described by the operator S is a special case of a
sweeping process, see [M].

Analytical properties of the stop in the space W(0,T; X) endowed with the norm

(13) s = [u(0) +/OT\u(t)\dt
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depend substantially on the geometry of the characteristic Z. The operator & : Z X
Wh(0,T; X) — WHH0,T; X) is always continuous, see Theorem 1.3.12 of [K1]. Tt was
conjectured without proof in [KP| that this mapping is Lipschitz if Z is a polyhedron
and locally Lipschitz if the boundary 0Z of Z is smooth. These statements have been
rigorously proved only recently in [DT] and [D], respectively. In [D], it was shown that
the Lipschitz continuity of the mapping

(1.4) n: 0Z — 9B, (0)

(by B,(z) we denote the ball centered at z € X with radius » > 0), which with each
x € 0Z associates the unit outward normal n(z) to Z at the point z, is sufficient for
the local Lipschitz continuity of the stop. Another proof which also yields an explicit
upper bound for the Lipschitz coefficient (optimal if Z is a ball) can be found in [K2] as
a generalization of the technique used in [BK] for the ball.

Example 3.2 of [D] shows that the stop is not necessarily locally Lipschitz if the mapping
n is only 1/2-Holder continuous. The aim of this paper is to fill the gap and to prove
that the local Lipschitz continuity cannot be expected if 07 is of class C! and the ratio
In(z) —n(y)|/|x —y|, z,y € 0Z, is unbounded.

Let us note that this is not just an academic question. A precise upper bound for the
Lipschitz coefficient of the stop has been substantially exploited in [BK] for proving the
well-posedness of constitutive laws of elastoplasticity with nonlinear kinematic hardening.

2 Main result

We consider the simplest case X = R? and fix a convex closed set Z C X of class C! in
such a way that there exists a point x* € 9Z for which we have

(2.1) lim_[n(2) = n(a")|/ |z — 2| = +oo.

€07

By shifting and rotating the coordinate system we may assume that z* = 0 and that
there exists € > 0 such that

(2.2) z0 ([-e.ef) = {( Z ) € [~e,e?; b> G(a)} ,

where G : [—¢,e] — RT is a convex function, G(0) = 0, and its derivative g = G’ is
continuous, increasing, ¢(0) = 0 and lim, o4+ g(a)/a = +oo (see Fig. 1).

We make the following simplifying assumptions.

Hypothesis 2.1

(i) G:[~¢,¢] = R is convex and even, G(0) =0,

(ii) g = G" is increasing and concave in [0,e], g(0) =0, ¢'(0+) = +o0.
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The rest of this paper is devoted to the proof of the following result.

Theorem 2.2 Let Z C R? be a convex closed set satisfying condition (2.2) and Hy-
pothesis 2.1. Then for every R > 0 there exists a function u € WH1(0,1;R?) such
that |uly1 < 1, and initial conditions z°,y° € Z such that the functions x = S(2°,u),

y =S, u), where S is the stop operator (1.2), satisfy the inequality

(2.3) /01 #(0) — g(0)] de = RJ2® — ]

bA

Y

Figure 1: The convex characteristic Z

3 Proof of Theorem 2.2

We follow the construction from Example 3.2 of [D]. Taking a smaller £ > 0 if necessary,

we may assume that
1 1
3.1 eE< ——, g) < —.
1) s 90<
We fix some ag €]0,¢[ (arbitrary, for the moment) and construct a sequence {ay; k €
NuU{0}} by induction in the following way. Let ag > a; > ... > a; > 0 be already given

and let us consider the differential equation

1— g(a'k - t) g(?"k;) T’k(O)

3.2 Y = —0,
in the domain (t,r;) € Dy := [0, ag] x [0, ax]. The function
1— _
F- (t,rk) N g(ak t) g(rk)

1+ g%(ry)

is continuous in Dy and 0 < F(t,r;) < 1 whenever (¢t,7:) € Dy, 1, > 0. Moreover,
the function 7, +— F(t,rg) is decreasing in [0, a] for every t € [0, ax]; problem (3.2)
therefore admits in Dy a unique maximal solution 7 : [0, ax] — [0,ax], 0 < 7 (t) < 1 for
all t €]0, ay[. Putting

(3.3) a1 = re(ar)
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we thus have 0 < agy1 < ar and the induction step is complete. By construction, we
moreover have for every k € NU {0}

1_92(ak) 2
3.4 a > ap———= > aip (1 —2¢g7(ag)).
(3.4) k+1 2 k1+g2(ak)_ g ( g (ax))
For k € NU{0} put
(3.5) to:=0, tpi1:=1tr+ag, T::Zakgoo.
k=0

We choose two points 2°,y° € Z in the form

() 7=(2)

and define functions @, z, ¥ : [0,7[— R? by the formulas

(3.7) u(0):=0, z(0):=2°, #(0):=19°,
ﬂ(tj) + ( G(tj_H t__t)tj_ G(aj) ) for ¢ E]tj,tj+1], j even,
(3.8) a(t) := o
a(t]) + ( G(thrl _j t_) . G(aj) ) for t G]tj,tj+1] y j Odd7
z(t;) +u(t) —a(t;)  for telt;,tjs1], jeven,
(3.9) T(t) == —ri(t —t;) ,
( Glrilt — 1)) ) for telt;, t;41], Jjodd,
rilt =) ) or 1 | even
(3.10) g(t) = ( G(rj(t —t;)) for 1 €l tysal, 7 ever,
y(t;) +a(t) —u(t;)  for t €]ty tjp], jodd,

where 7, : [0,a;] — [0,a;11] is the solution of equation (3.2) for j € NU {0}.

Let us check by induction that we have
(3.11) T = 8@x%a), y=38@k’u) in [0,7T].

Assume that identities (3.11) hold for ¢ € [0,¢], and let for instance k be even, k > 0
(the case ‘k odd’ is analogous). For k > 2 we have

o at = (e ) = (e )
(3.13) y(ty) = yltg—1) + a(ty) — u(ty_1)
= (ot )~ (et ) = (6)
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for k =0 the above identities hold by the choice (3.6), (3.7) of initial conditions.
For t € |ty, ty+1] we have by definition

st 5010 (g 1 ) 90 (e )

In particular, both Z, g are absolutely continuous in [0, tx+1] and Z(t), 4(¢) belong to Z
for all t € [tg,txy1]. Since z(t) = u(t) for all t € ]ty txy1[, the function Z is automatically
a solution of problem (1.1) in [0, ¢x41]. The same argument applies to g provided we check
that the inequality

(3.14) (u(t) —y(t),9(t) —9) 20 VpeZ
holds in ]tk, tk—&-l[ .
Equation (3.2) yields

1 —g(tp — 1) glre(t — )

(3.15) et — ty) = T G20t — 1) for t € Jty, tesa[
hence (i — 1) + glre(t — 1))
ks = _ g k+1 — g T — bk n(ii

(3.16) (t) —u(?) \/1 apETEY P (y(t)),
where

oy 1 g(re(t —tr)) )
3.17 n(j(t)) =
347 i) \/1+92(7“k;(t—75k)) ( -1

is the unit outward normal to Z at the point y(¢) and inequality (3.14) follows from the
convexity of Z. We have thus proved that identities (3.11) are fulfilled.

An elementary computation yields for all j € NU {0}

(3.18) / ) ar - / T Pt — 1) dt
_ /Oaj md‘g < \/§aj,
tj+1 S 8 _ tivr g(tjp —t) + g(r;(t —t;))
(3.19) /tj (1) — ()] dt /tj Ve dt

1 rtiv 1
P — - = N
_ﬁésmﬂww 75 Gla)

The proof of Theorem 2.2 consists in choosing an appropriate value of ay in the above
construction and putting

(3.20) ult) ==

u(t) for t € [0,1,],
u(t,)  for t €lt,, 1],



with some n depending on ag such that ¢, < 1. More precisely, we choose n to be the
integer part of 1/(v/2 ao),

1
(3.21) n = [ml :
and, according to assumption (3.1), we have
(3.22) 1 < nay < i
212 V2
Definition (3.5) yields 1
— 1
tnzkzz:oak < nay < \/5 <1,

hence formula (3.20) is meaningful. Inequality (3.18) yields

(3.23) |u|11—/ la(t)| dt = Z/ |dt<\/_2ak<1

Let now R > 0 be given. The proof will be complete if we check that inequality (2.3)
holds for a suitable choice of ag.

Let us first estimate the integral [ |4(t) —9(t)| dt from below. We obviously have z = z,
y=1yin [0,t,], =9 =0 in |t,, 1], consequently

Ga1) [l - i)t = Z [ e — g ae > jﬁ z Glar)

according to inequality (3.19).

We define auxiliary functions

L
s o(r)

Then ¢ = —1/¢, ®(¢) = 0, ¢(0+) = +o0, ¢(0) = 0 and Hypothesis 2.1 (i) entails
lim,_o4 ¢'(s) = 0. Inequality (3.4) can be written in the form

(3.25) P(s) = 2s5g%(s), ®(s) := for s €]0,¢].

(3.26) ag+1 > ap — ¢lax),

which implies that

B2 W) 9@ = [ Jéjj) < Bt o ¢<¢£¢><>>

for k € NU{0}. Note that

G bl b)) _ 1
(3.28) sli%lJr B(s) n SLO‘F gb(s)/s ¢(5)¢( )d 0,



hence

O
529 B o6t

Consequently, we can put

(3.30) a = sup _9s) < 0

s€]0,e] ¢(S - ¢(8))

and from inequality (3.27) it follows that
(3.31) O(agyr) — Plar) < o Vee NU{0}.

Let ®~!:R" —]0,¢] be the inverse function to ®. Summing up the above inequalities
over k, we obtain

(3.32) ap > ® H®(ag) +ak)  VkeNuU{0}.
Combining relations (3.32) and (3.22), we have

n—1 n—1

(333) Y Gla) > Y G (&7 (@(ag) +ak)) > /

k=0 k=0 0

n

G ((I)‘l(<I>(a0) + aa:)) dx

> /OMIQQO G <<I>_1(<I>(a0) + ozx)) dx .

The estimates (3.33) and (3.24) together with the elementary inequality |2° — %] =
at + G?(ap) < v2ap show that Theorem 2.2 will be proved if

1

1

(3.34) limsup - [ > G (<I>’1(<I>(s) + aa:)) dr = oo,

s—0+ S Jo
that is,

1 poe)+? a
3.3 li = G (2 (y)) dy = ith g=—.
(3.35) msup = f ( (y)) y =oco  with f e
By Hypothesis 2.1 (ii), we have 2 G(z) > zg(z) and g(z) < g(s) for 0 < z < s < ¢, hence

1 o)+ L s G(z)

3.36 e w)ay = - d
(3:36) s Ja(s) ( (y)) Y 25 Jo-1(a(s)+2) 2g%(2) -

o (5 (204 7))

Let us define an auxiliary function ¢ (v) := 1/®*(v) for v > 0. Then ¥(0) = 1/e,
lim, ;o % (v) = +00, 1 is increasing in R and satisfies the differential equation

(3.37) W) = 20(0) ¢ ( w(lv)) .



By the change of variables s = 1/¢(v) we obtain

Lg By - vl
(3:3%) Lo (000 ) = st
According to the Mean Value Theorem, for all v > 0 we have
(3.39) VOB 4 g m(w))

h(v)
for some m(v) € [v, v+ (v)]. Using Eq. (3.37) and the fact that the function s +— g(s)/s
is decreasing, we obtain

(3.40) ML BD 1 apvtmo)s? (o)

> 1425 2(5255(1(};”)(1”))

> v
S L ) Y

In terms of s = 1/1(v), the above inequality reads

(3.42) i(I)‘l (CID(S) + 6) < (1 + <i +28 92(8)>1/2) h Vs €]0,¢],

S 2 S

and we conclude that for all s €]0, <] we have

(3.43) !](15)(1—}@—1 (¢<s>+f>> > 249 (;+<4 o)

Taking into account estimates (3.36) and (3.43), we see that relation (3.35) is fulfilled

provided

-2
1 1 ) 1/2

(3.44) lim sup 9(s) ( + (4 +2p3 gs(s)> = +00.

s—0+ S 2

Py 92(8)>1/2> -

We distinguish two cases.

A. 3y >0: limsup ¢*(s)/s > 7.
s—0+

-2
The function x +— x (1/2 +(1/4+ :L‘)l/2> is increasing for z > 0, hence

-2
2 1 1 2 1/2 1 1 1/2\ 2
limsupg<8) —+ f—l—Zﬁg(S) >y +<+25’y) > 0
s—0+ S 2 4 S 2 4

and 111(1)5r 1/g(s) = +oo, which yields the assertion.




B. lim ¢%(s)/s = 0.

s—0+
Then 72

(1 (1 g*(s)\ "

1 = —+28—= =1

ok (2+<4+ b=
and hI(I)l+ g(s)/s = +oo, with the same conclusion as above. Theorem 2.2 is
proved.
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