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EVOLUTIONARY PROBLEMS IN NON-REFLEXIVE SPACES

Martin Kruž́ık1, 2 and Johannes Zimmer3

Abstract. Rate-independent problems are considered, where the stored energy density is a function
of the gradient. The stored energy density may not be quasiconvex and is assumed to grow linearly.
Moreover, arbitrary behaviour at infinity is allowed. In particular, the stored energy density is not
required to coincide at infinity with a positively 1-homogeneous function. The existence of a rate-
independent process is shown in the so-called energetic formulation.
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1. Introduction

The elastic-plastic behaviour of crystalline materials poses a challenge for mathematical analysis on the
microscopic, mesoscopic and microscopic scale. Here, we study a rate-independent mesoscopic model with
linear growth of the stored energy density at infinity. Such growth occurs, for instance, in the deformation
theory of plasticity.

Before sketching the setting of the deformation theory of plasticity, we wish to describe the context of this
study. A common and successful approach to the analysis of crystalline materials is via energy minimisation.
This is manifest for elastic crystals, even for those with the potential of undergoing phase transitions [3]. For
plastically deformed crystals, Ortiz and Repetto [19] list evidence that a variational approach is appropriate,
and give a formulation in which dislocation structures can be understood as a nonconvex minimisation problem.
The nature of this variational model is incremental, to reflect the inelastic and irreversible nature of plastic
deformations [19]. We account for these phenomena with a phenomenological dissipation functional.

The applicability of variational methods has been broadened to include rate-independent evolution. A wealth
of literature is available on this subject, and we refer the reader to the recent survey by Mielke [16]. Typically,
these models are characterised by energy minimisation of a functional including macroscopic quantities such as
the macroscopic deformation gradient as well as a dissipation functional.

Mielke and Roub́ıček [17] have combined this approach with the idea of describing micro-structured materials
via Young measures. The application studied there is the rate-independent hysteretic evolution of shape-memory
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alloys under suitable external forcing. Here, we present an extension of this analysis to a setting where Young
measures are not sufficient to describe the evolution.

It is known that Young measures are an appropriate tool to deal with oscillations, such as those arising in
the description of microstructures. See Section 1.2 for a brief review. For problems with an energy that grows
linearly in the argument at infinity, concentration effects may occur, which cannot be recorded with Young
measures. DiPerna-Majda measures [7] can deal with such a situation; see Section 1.3 for a brief synopsis.

The use of DiPerna-Majda measures requires us to consider fine extensions of the Sobolev space W 1,1(Ω).
An extension developed by Souček [22] turns out to be useful. Some relevant facts on this extension space,
which might be of independent interest, are collected in Section 1.4.

The mathematical aim of this article is to establish a framework of rate-independent problems with energies of
linear growth at infinity, and to prove the existence of the corresponding evolution of DiPerna-Majda measures.
Energies with linear growth appear in a macroscopic (relaxed) model for single-crystal plasticity in the case
of infinite latent hardening in the framework of the deformation theory of plasticity [4]. We recall that the
deformation theory of plasticity is obtained when all material points follow certain optimal paths; this casts
plasticity in a variational setting akin to elasticity [4]. For monotone proportional loading, this provides an
appropriate description of plastic solids. We thus study the evolution of a material body under a (sufficiently
small) load. For infinite latent hardening and linearised kinematics in the framework of the deformation theory
of plasticity, it can be shown that the relaxation via convexification of a natural energy density is linear on
the space of traceless symmetric matrices, and quadratic on the trace [4], Lemma 3.1. The linear growth is of
particular interest, since it originates in a linear growth along the slip orbits of the unrelaxed functional. We
thus restrict our attention to an energy of linear growth.

To the best of our knowledge, there is only one other study, by Dal Maso et al. of rate-independent evolu-
tionary processes with linear or sublinear growth in the functional [5]. Though problems in plasticity are the
motivation there as well as here, the models and consequently their analysis are rather different. Dal Maso and
coworkers consider plasticity with softening, so that the sublinear growth is in the internal variable, rather than
in the elastic-type energy, as is the case here. This difference is significant, as we consider a linearly growing
energy, which depends on the deformation gradient; this differential constraint rules out the use of tools of
convex analysis, which is the underlying thinking for many arguments of [5]. However, to prove existence, we
have to employ a spatial regularisation, while the vanishing viscosity approach [5] allows Dal Maso et al. to
prove the existence of a rate-independent evolution without regularisation.

Let us point out that we prove the existence of a rate-independent evolution directly via time discretisation
and passage to the limit. In a recent interesting contribution, Dal Maso et al. develop a theory of time-
dependent DiPerna-Majda measures [6] and prove Helly’s theorem for these measures. Though we do not make
use of these results, it is possible that they provide an alternative route to the argument proving the existence
of an evolutionary process.

This article is organised as follows. Some basic definitions are introduced in Section 1.1. Young measures
respectively DiPerna-Majda measures are reviewed in Sections 1.2 and 1.3 respectively; Appendix 4 contains
some relevant information regarding compactifications. The static problem is investigated in Section 2, while the
incremental problem is discussed in Section 3, and Section 4 describes the limit passage as the time discretisation
goes to zero.

1.1. Basic notation

In this article, Ω ⊂ Rn is always a bounded domain with smooth boundary. We denote the space of continuous
functions f : Ω → R by C(Ω), while C0(Ω) stands for the space of continuous functions f : Ω → R such that{
x ∈ Ω

∣∣ |f(x)| ≥ ε
}

is compact for every ε > 0.
Further, W 1,1 (Ω; Rm) is as usual the space of measurable mappings which are integrable together with their

first (distributional) derivatives; W k,p (Ω; Rm) is defined analogously. We write w-lim for the weak limit. If ΓD

is a part of the boundary ∂Ω with positive n − 1-dimensional Hausdorff measure, W 1,1
uD

(Ω; Rm) stands for the
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set of functions u ∈ W 1,1 (Ω; Rm) with u = uD on ΓD. Weak convergence respectively weak-* convergence is
expressed as uk ⇀ u respectively uk

!
⇀ u, while un → u denotes strong convergence.

1.1.1. Measure theory
Let us start with some basic definitions. If statements for a measure µ hold except for a set N of measure

zero, µ(N) = 0, this is abbreviated as µ-almost all or µ-a.e. If X ⊂ Rn is open and µ is the n-dimensional
Lebesgue measure, then µ is omitted in the notation. For a measurable space (X,M, µ), the usual Lebesgue
space is denoted by L1(X, µ). Again, we suppress µ from the notation if it is the Lebesgue measure.

We denote the (signed) Radon measures with finite mass on a locally compact Hausdorff space X by M(X);
the cone of non-negative Radon measures with finite mass is denoted M+(X), and Prob(X) is the set of
probability measures. The Jordan decomposition for signed measures µ = µ+ − µ− gives rise to the total
variation |µ|, which is the measure |µ| := µ+ + µ−. Endowed with the total variation ‖µ‖ := |µ| (X) as a norm,
M(X) is a Banach space. By the Riesz representation theorem, (M(X), ‖·‖) is isometrically isomorphic to the
dual of (C0(X), ‖·‖∞) via the pairing

〈f, µ〉 :=
∫

Ω
f(x)µ(dx).

The weak-* topology on M(X) is defined by this duality. For X ⊂ Rn, the singular part and the density
of a Radon measure µ (given by the Lebesgue-Radon-Nikodym decomposition with respect to the Lebesgue
measure) are denoted by µs and µd, respectively.

The space of Radon measures with compact support on Ω̄ is denoted
(
M

(
Ω̄

)
, ‖·‖

)
. We recall that the support

of a Borel measure µ is the complement of the largest open set N with µ(N) = 0.
We follow the convention of writing C for a generic constant, whose value may change from line to line.

1.2. Young measures

We briefly recall the concept of Young measures. Young measures describe the limit of a sequence {uk}k∈N
of functions uk : Ω → Rd which converges weakly in Lp

(
Ω; Rd

)
for 1 ≤ p < ∞ or weakly∗ if p = ∞. The precise

concept is as follows. A Young measure on a bounded domain Ω ⊂ Rn is a weakly* measurable mapping

Ω → Prob(Rd), x ,→ νx,

with values in the probability measures. We recall that a mapping with values in the Radon measures is weakly*
measurable if for any f ∈ C0

(
Rd

)
, the mapping

Ω → R, x ,→ 〈f, νx〉 :=
∫

Rd

f(s)νx(ds)

is measurable in the usual sense. We denote the set of all Young measures by Y
(
Ω; Rd

)
. The analogous

definition holds if Rd is replaced by a locally compact Hausdorff space X .
It is known that Y

(
Ω; Rd

)
is a convex subset of L∞

w

(
Ω; M

(
Rd

)) ∼= L1
(
Ω; C0

(
Rd

))∗, where L∞
w

(
Ω; M

(
Rd

))

is the space of weakly* measurable bounded functions. The parametrised Young measure theorem [23], The-
orem 5, states that for every sequence {uk}k∈N which is bounded in L∞ (

Ω; Rd
)
, there exists a subsequence

(denoted by the same indices for notational simplicity) and a Young measure ν = {νx}x∈Ω ∈ Y
(
Ω; Rd

)
such

that for every continuous function f : Rd → R,

f(uk) !
⇀ x ,→ 〈f, νx〉 weakly* in L∞(Ω), (1.1)

with

〈f, νx〉 :=
∫

Rd

f(s)νx(ds) (1.2)
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being the expectation of f . Let Y∞ (
Ω; Rd

)
denote set of all Young measures which are generated by taking all

bounded sequences {uk}k∈N in L∞ (
Ω; Rd

)
.

The above concept is applicable if {uk}k∈N is uniformly bounded in L∞ (
Ω; Rd

)
. If in addition to the uniform

bound in L∞ (
Ω; Rd

)
, uk ⇀ u in Lp

(
Ω; Rd

)
with 1 ≤ p < ∞, then uk → u if and only if the corresponding

Young measure is a Dirac mass, νx = δu(x). Non-Dirac Young measures thus record possible oscillations in the
limit process.

The assumption that {uk}k∈N is bounded in L∞ (
Ω; Rd

)
can be relaxed to the assumption of such a bound

in Lp
(
Ω; Rd

)
with 1 < p < ∞. The parametrised Young measure theorem is then valid under stronger growth

conditions on the nonlinearity f . The precise formulation has been given by Schonbek [21], Theorem 2.2 (see
also [2] for a general formulation of the parametrised Young measure theorem). Namely, for every sequence
{uk}k∈N which is uniformly bounded in Lp

(
Ω; Rd

)
for some p with 1 < p < ∞, there exists a subsequence, still

indexed by k for notational convenience, and a Young measure ν = {νx}x∈Ω ∈ Y
(
Ω; Rd

)
such that for every

f ∈ C
(
Rd

)
with

f(x) = o (|x|p) for |x| → ∞, (1.3)
the following holds in L1

(
Ω; Rd

)
:

f(uk)⇀ x ,→ 〈f, νx〉. (1.4)
We say that {uk}k∈N generates ν if (1.4) holds; we denote the set of all Young measures obtained as limits of
bounded sequences in Lp

(
Ω; Rd

)
by Yp

(
Ω; Rd

)
.

1.3. DiPerna-Majda measures

In the situation under consideration, no bound in L∞ (
Ω; Rd

)
is available, and even the extension to bounds

in Lp
(
Ω; Rd

)
for 1 < p < ∞ is not sufficient. Namely, the energy density W will be a test function f in the

sense of (1.1). Obviously, a linearly growing energy density does not satisfy (1.3) even for p = 1, and it is not
hard to see that the bound (1.3) on the growth of the nonlinearity f is sharp [21], Example 2.1. DiPerna-Majda
measures are an extension of Young measures to describe concentration effects, which may occur due to the
non-reflexivity of L1

(
Ω; Rd

)
. That is, let f be a function Rd → R with p-growth at infinity. DiPerna-Majda

measures then describe the limit of a sequence {f(uk)}k∈N, where the functions uk : Ω → Rd converge weakly
in Lp

(
Ω; Rd

)
for 1 ≤ p < ∞, but are not uniformly bounded in L∞ (

Ω; Rd
)
.

The definition of DiPerna-Majda measures involves a compactification; we refer to Appendix 4 for details
and some intuition. There, we consider the motivation as to why we examine a completely regular subalgebra F
of the space of bounded continuous functions BC

(
Rd

)
; in the application, we will set d := mn.

We consider compactifications βFRd by a sphere or finer. That is, F contains all functions f̃ for which the
radial limit limr→∞ f̃(rs) exists for arbitrary s ∈ Rd. We note that F also may contain functions f̃ which have
no well-defined radial limits. To deal with functions f with linear growth at infinity in a convenient manner,
we set f̃(s) := f(s)

1+|s| , with f̃ ∈ F .
The motivation for the construction of DiPerna-Majda measures can be described as follows. We are given a

sequence {uk}k∈N, uniformly bounded in Lp
(
Ω, Rd

)
. For the application discussed below, it suffices to consider

the case p = 1. The goal is to describe the weak limit

lim
k→∞

∫

Ω
φ(x)f(uk(x)) dx,

with φ ∈ C0(Ω) and f(s) := f̃(s) (1 + |s|), where f̃ ∈ BC
(
Rd

)
. A canonical norm for f of this form is

|f |∞ := maxs∈Rd f̃(s) =
∣∣∣f̃

∣∣∣
∞

.
DiPerna and Majda have shown the following results for open domains Ω and test functions φ ∈ C0(Ω). We

state the results for Ω̄ and test functions φ ∈ C
(
Ω̄

)
. The proofs remain the same, except that the isomorphism

between the dual space of (C0 (Ω) , ‖·‖) and the space (M(Ω), ‖·‖) of Radon measures with finite mass has
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to be replaced by the isomorphism of
(
C

(
Ω̄

)
, ‖·‖

)
and the space of Radon measures with compact support(

M
(
Ω̄

)
, ‖·‖

)
.

For a bounded sequence {uk}k∈N in L1
(
Ω̄; Rd

)
, there exists a non-negative Radon measure σ ∈ M+(Ω̄) such

that
(1 + |uk(x)|) dx

!
⇀ σ in M

(
Ω̄

)
; (1.5)

see [7], Theorem 4.1. Furthermore, for a separable completely regular subalgebra F of BC
(
Rd

)
, there exist a

σ-measurable map ν̂ : Ω → Prob
(
βFRd

)
, x ,→ ν̂x, and a subsequence of {uk}k∈N (not relabeled) such that for

every f̃ ∈ F
lim

k→∞

∫

Ω̄
φ(x)f(uk(x)) dx =

∫

Ω̄
φ(x)

∫

βFRd

f̃(s)ν̂x(ds)σ(dx) (1.6)

holds for every φ ∈ C
(
Ω̄

)
[7], Theorem 4.3. We say that {uk}∈N generates the pair (σ, ν̂) if equation (1.6)

holds. A pair (σ, ν̂) ∈ M+(Ω̄) × L∞
w

(
Ω̄, σ; Prob

(
βFRd

))
attainable by sequences in L1

(
Ω; Rd

)
is called a

DiPerna-Majda measure. The set of all DiPerna-Majda measures is denoted DMF
(
Ω; Rd

)
.

The explicit description of the elements of DMF
(
Ω; Rd

)
for unconstrained sequences is given in [14], Theo-

rem 2. The characterisation of DiPerna-Majda measures generated by gradients of Sobolev maps in W 1,p (Ω; Rm)
for p > 1 can be found in [13].

It is sometimes convenient to consider an alternative representation of DiPerna-Majda measures. Specifically,
in analogy to the proof of Theorem 4.1 in [7], we will consider measures in M

(
Ω̄ × βFRd

)
. We say that

{uk}k∈N ⊂ L1
(
Ω̄; Rd

)
generates the measure η ∈ M

(
Ω̄ × βFRd

)
if, for every h̃ ∈ C

(
Ω̄ × βFRd

)
,

lim
k→∞

∫

Ω̄
h̃(x, uk(x)) (1 + |uk(x)|) dx =

∫

Ω̄×βFRd

h̃(x, s)η(ds dx) (1.7)

holds. The set of all measures generated in this way will be denoted DMF
(
Ω; Rd

)
. Since φ(x)f̃ (y) with

φ ∈ C
(
Ω̄

)
and f̃ ∈ BC

(
βFRd

)
is dense in C

(
Ω̄ × βFRd

)
, one can say that η ∼= (σ, ν̂) for η ∈ DMF

(
Ω; Rd

)

and (σ, ν̂) ∈ DMF
(
Ω; Rd

)
if

〈h̃, η〉 :=
∫

Ω̄×βFRd

h̃(x, s)η(dxds) =
∫

Ω̄

∫

βFRd

h̃(x, s)ν̂x(ds)σ(dx)

for any h̃ ∈ C
(
Ω̄ × βFRd

)
. Consequently, the elements of DMF

(
Ω; Rd

)
will be addressed as DiPerna-Majda

measures as well.
It is known [20], Chapter 3, that DMF

(
Ω; Rd

)
is a closed, convex, non-compact but locally compact and

locally sequentially compact subset of the locally convex space M
(
Ω̄ × βFRd

)
considered in its weak* topology.

We denote by GDMF (Ω; Rm×n) the subset of DMF (Ω; Rm×n) of those measures which are generated by
gradients of mappings in W 1,1 (Ω; Rm). Expressed differently, (σ, ν̂) ∈ GDMF (Ω; Rm×n) if there is {uk}k∈N ⊂
W 1,1 (Ω; Rm) such that for all φ ∈ C

(
Ω̄

)
and all f̃ ∈ F

lim
k→∞

∫

Ω̄
φ(x)f(∇uk(x)) dx =

∫

Ω̄

∫

βFRm×n

φ(x)f̃ (s)ν̂x(ds)σ(dx). (1.8)

Similarly we write η ∈ GDMF (Ω; Rm×n) if η ∈ DMF (Ω; Rm×n) is generated by gradients. Finally,
GDMuD

F (Ω; Rm×n) denotes elements (σ, ν̂) ∈ GDMF (Ω; Rm×n) with the property that (σ, ν̂) is generated
by {uk}k∈N ⊂ W 1,1

uD
(Ω; Rm), with uD ∈ W 1,1 (Ω; Rm).

1.4. Fine extensions of W 1,1 (Ω; Rm)

As W 1,1 (Ω; Rm) is not a reflexive space, we shall work with a weak* compact extension. We mention
two extensions. The first one is the space of functions with bounded variation BV (Ω; Rm) (see, e.g., [1,10]).
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The space BV (Ω; Rm) is the linear subspace of L1 (Ω; Rm) containing maps with bounded variation in Ω. That
is, u ∈ BV (Ω; Rm) if

‖u‖BV (Ω;Rm) := ‖u‖L1(Ω;Rm) + ‖Du‖M(Ω;Rm×n) < ∞,

where, with Φ :=
{
ϕ ∈ C1

0 (Ω; Rm×n)
∣∣ |ϕ| ≤ 1

}
,

‖Du‖M(Ω;Rm×n) := sup
ϕ∈Φ

∫

Ω
u · divϕdx.

It is easy to see that ‖·‖BV (Ω;Rm) defines the norm on BV (Ω; Rm).
We use weak*-convergence in BV (Ω; Rm). A sequence {uk}k∈N ⊂ BV (Ω; Rm) is said to converge weakly*

in BV (Ω; Rm) to u if uk → u in L1 (Ω; Rm) and Duk → Du weakly* in the sense of measures as k → ∞, i.e.,

lim
k→∞

∫

Ω
φ(x)Duk(dx) =

∫

Ω
φ(x)Du(dx) (1.9)

for every φ ∈ C0(Ω) [1], Definition 3.11.
Finally, if ∂Ω is Lipschitz then there is a bounded linear mapping T : BV (Ω; Rm) → L1 (∂Ω; Rm) such that

(here and in the following, ν is the unit outer normal to ∂Ω ⊂ Rn)
∫

∂Ω
(ϕ · ν)Tuj(dA) =

∫

Ω
uj(x) div ϕ(x) dx +

∫

Ω
ϕ · [Duj](dx) (1.10)

for all ϕ ∈ C1 (Rn; Rn) and all 1 ≤ j ≤ m [10], Theorem 5.3.1. The measure T̄ u =
(
T̄ u1, . . . , T̄ um

)
is called the

trace of u ∈ BV (Ω; Rm).
The second extension was developed by Souček [22]; we denote it by W 1,µ(Ω̄; Rm). This extension consists

of functions in L1 (Ω; Rm) whose gradient is a measure on Ω̄. More precisely,

W 1,µ (Ω; Rm) =
{(

u, D̄u
)
∈ L1 (Ω; Rm) × M

(
Ω̄

)
; there exists {uk}k∈N ⊂ W 1,1 (Ω; Rm) such that

uk → u in L1 (Ω; Rm) and ∇uk → D̄u weakly* in M
(
Ω̄; Rm×n

)}
.

It is known [22] that W 1,µ (Ω; Rm) is a Banach space if it is normed by
∥∥(

u, D̄u
)∥∥

W 1,µ(Ω;Rm)
= ‖u‖L1(Ω;Rm) +

∥∥D̄u
∥∥

M(Ω̄;Rm×n) .

The weak* convergence in W 1,µ (Ω; Rm) is defined analogously to BV (Ω; Rm). The precise formulation is
that (1.9) has to hold with D̄u instead of Du for any φ ∈ C

(
Ω̄

)
. Moreover, as shown in [22], Theorem 1 (iii),

if (u, Du) ∈ W 1,µ (Ω; Rm), then there is a unique measure T̄
(
u, D̄u

)
∈ M(∂Ω; Rm) such that

∫

∂Ω
(ϕ · ν)

[
T̄

(
uj, D̄uj

)]
(dA) =

∫

Ω
uj(x) div ϕ(x) dx +

∫

Ω̄
ϕ · [D̄uj ](dx) (1.11)

for all ϕ ∈ C1
(
Ω̄; Rn

)
and all 1 ≤ j ≤ m. The measure T̄

(
u, D̄u

)
=

(
T̄

(
u1, D̄u1

)
, . . . , T̄

(
um, D̄um

))
is

called the trace of
(
u, D̄u

)
. Here, the measure D̄uj denotes the jth row of the matrix-valued measure D̄u. The

operator W 1,µ (Ω; Rm) → M (∂Ω; Rm) given by (u, Du) ,→ T̄ u is (weak*, weak*) continuous [22], Theorem 2 (ii).
Finally, balls in W 1,µ (Ω; Rm) are weakly* compact [22], Theorem 6.

It is easy to see that W 1,µ (Ω; Rm) is a finer extension of W 1,1 (Ω; Rm) than BV (Ω; Rm). Namely, Du is the
restriction of D̄u on Ω. Hence, one can define a projection P : W 1,µ (Ω; Rm) → BV (Ω; Rm) by P

(
u, D̄u

)
=

(u, Du), with Du = D̄u|Ω.
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A comparison of (1.11) with (1.10) reveals that for all ϕ ∈ C1 (Rn; Rn)
∫

∂Ω
(ϕ · ν)

([
T̄

(
uj, D̄uj

)]
(dA) − TujdA

)
=

∫

∂Ω
ϕ ·

[
D̄uj

]
(dx), (1.12)

i.e., if D̄ui does not concentrate on ∂Ω, then the BV notion of trace coincides with the one in the Souček space
W 1,µ (Ω; Rm).

Consider (u, D̄u) ∈ W 1,µ (Ω; Rm) and define a measure D̄y on Ω̄ as follows: D̄y := D̄u on ∂Ω and D̄y = 0
on Ω. Finally, define D̄z := D̄u − D̄y. Then

(
u, D̄z

)
,
(
0, D̄y

)
∈ W 1,µ (Ω; Rm) [22], Theorem 8. Hence,

(
u, D̄u

)
=

(
u, D̄z

)
+

(
0, D̄y

)
.

As D̄z does not concentrate on ∂Ω, it follows from (1.12) that

T̄
(
u, D̄u

)
= Tu + T̄

(
0, D̄y

)
.

We have the following Poincaré-type inequality.

Lemma 1.1. Let Ω ⊂ Rn a be bounded domain, with ∂Ω belonging to class C1. Let ΓD ⊂ ∂Ω be open and of
positive n − 1-dimensional Lebesgue measure; suppose further that z ∈ M (ΓD; Rm). Then there is C > 0 such
that the estimate

‖u‖L1(Ω;Rm) ≤ C
(∥∥D̄u

∥∥
M(Ω̄;Rm×n) + ‖z‖M(ΓD ;Rm)

)
(1.13)

holds for all
(
u, D̄u

)
∈ W 1,µ (Ω; Rm) with T̄

(
u, D̄u

)
= z on ΓD.

Proof. Suppose that (1.13) does not hold. This means that for all k ∈ N there is
(
uk, D̄uk

)
∈ W 1,µ (Ω; Rm)

with T̄
(
uk, D̄uk

)
= z on ΓD such that

‖uk‖L1(Ω;Rm) > k
(∥∥D̄uk

∥∥
M(Ω̄;Rm×n) + ‖z‖M(ΓD ;Rm)

)
.

Let us put vk := uk
‖uk‖L1(Ω;Rm)

and D̄vk := D̄uk
‖uk‖L1(Ω;Rm)

. Then the last inequality implies

1 > k
(∥∥D̄vk

∥∥
M(Ω̄;Rm×n) + ‖uk‖−1

L1(Ω;Rm) ‖z‖M(ΓD ;Rm)

)
.

In particular, we have ‖vk‖L1(Ω;Rm) = 1 and
∥∥D̄vk

∥∥
M(Ω̄) ≤ 1

k . Consequently, for all k ∈ N,
∥∥(

vk, D̄vk

)∥∥
W 1,µ(Ω;Rm)

≤ 2. The weak* compactness of balls in W 1,µ (Ω; Rm) implies that there is
(
v, D̄v

)
∈

W 1,µ (Ω; Rm) such that for a subsequence (not relabeled) w*-limk→∞
(
vk, D̄vk

)
=

(
v, D̄v

)
. Moreover,

‖v‖L1(Ω;Rm) = 1 and D̄v = 0. Finally, the weak* continuity of the trace operator and the fact that ‖uk‖L1(Ω;Rm) →
∞ imply that T̄

(
v, D̄v

)
= 0 on ΓD. As D̄v = 0, we have that v is constant and furthermore v ∈ W 1,1 (Ω; Rm).

On the other hand, T̄
(
v, D̄v

)
= 0, i.e., v = 0. This, however, contradicts the fact that ‖v‖L1(Ω;Rm) = 1. !

Remark 1.2. For the validity of Lemma 1.1, it is important that ΓD is open in ∂Ω. Namely, the weak*
continuity of T̄ implies that T̄

(
vk, D̄vk

)
→ T̄

(
v, D̄v

)
weakly* in M (∂Ω; Rm). Clearly, this does not necessarily

imply that T̄
(
vk, D̄vk

)
→ T̄

(
v, D̄v

)
weakly* in M (ΓD; Rm) for ΓD not open in ∂Ω.

Finally, we would like to mentioned that W 1,µ (Ω; Rm) is compactly embedded into Lq (Ω; Rm) for all 1 ≤
q < n

n−1 [22], Theorem 5.
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1.5. Existence of a rate-independent process

The aim of this article is to prove the existence of a rate-independent process for a suitable relaxation of a
problem involving a stored energy that grows linearly in the argument of the gradient. We wish to state the
result before embarking on the lengthy proof. To do so, we need to state some definitions.

Let Q be the set of admissible configurations; this is defined precisely in (3.5). Then we define the Gibbs
stored energy as

Γ(t, q) :=
∫

Ω̄×βFRm×n

W̃ (x, s)η(ds dx) + + ‖λ(x)‖W 1,2(Ω;RL) −
∫

Ω
f(x, t) · u(x) dx (1.14)

(Γ(t, q) is set to be ∞ for non-admissible states as well as some states with a lack of regularity, see Eq. (3.10)).
Here, W̃ (x, s) := W (x,s)

1+|s| , and W itself satisfies the linear bounds (2.1) at infinity. Furthermore, + ‖λ(x)‖W 1,2(Ω;RL)

is a regularisation discussed in Section 3.
We restrict ourselves to an external loading that depends continuously on time, f ∈ W 1,1 ([0, T ]; Lp (Ω; Rm)),

with p > n. For an admissible state q, we shall write

F (t, q) :=
∫

Ω
f(x, t) · u(x) dx

for the contribution of the external load to the Gibbs energy (u is one component of q).
We follow the conventional procedure of introducing a phenomenological dissipation distance D; the assump-

tions on D are listed in Definition 3.1 (see also Eq. (3.6)); furthermore, (4.1) imposes one more condition on
the dissipation. Finally, for a process q : [0, T ] → Q and a given time interval [t1, t2] ⊂ [0, T ], the temporal
dissipation is given by

Diss (q, [t1, t2]) := sup
L∈N

{
L∑

l=1

D (η(τl−1), η(τl))
∣∣ t1 = τ0 < τ2 < · · · < τL = t2

}
· (1.15)

The notion of a solutions to energetic models can be stated as follows (see [17,18]).

Definition 1.3. Given q0 ∈ Q we say that the process q : [0, T ] → Q will be a solution if the following conditions
hold:

(1)
(
u, D̄u

)
∈ L∞ (

0, T ; W 1,µ (Ω; Rm)
)
.

(2) λ ∈ BV
(
0, T ; L1

(
Ω; RL

))
, where equation (3.3) gives the precise definition of λ (we initially work with

λ ∈ BV
(
0, T ; M

(
Ω̄; RL

))
; see the discussion before Def. 3.3 for more details).

(3) Global stability: For every t ∈ [0, T ], we have

Γ(t, q(t)) ≤ Γ(t, q̃) + D (q(t), q̃) for every q̃ ∈ Q. (1.16)

(4) Energy inequality: For every 0 ≤ t1 ≤ t2 ≤ T , we have

Γ(t1, q(t1)) + Diss(q, [t1, t2]) ≤ Γ(t2, q(t2)) −
∫ t2

t1

Ḟ (t, q(t)) dt. (1.17)

(5) Initial condition: q(0) = q0.

The main result of this article can now be stated as follows.

Theorem 1.4. Under the assumptions listed in this subsection, for sufficiently small forcing f (see Prop. 4.2 for
the precise formulation), there exists a rate-independent process which is a solution in the sense of Definition 1.3.
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The proof of this theorem is broken into a string of arguments, investigating first the static situation in Sec-
tion 2, then a time-discretisation in Section 3, and finally the passage to the limit of vanishing time discretisation
in Section 4.

2. Static problem

We now focus on a static problem with a linearly growing energy in the variational formulation. The setting
is as follows. We are given a continuous function W : Ω̄×Rn×m → R such that there exist constants β ≥ α > 0
with

α |s| − β ≤ W (x, s) ≤ β (1 + |s|) for every x ∈ Ω̄. (2.1)
Further, the analysis includes a forcing term

f ∈ Lp (Ω; Rm) (2.2)

with p > n; precise assumptions on the smallness of this forcing are stated later in this section.
Then, the variational problem consists of finding

Minimise I(u) :=
∫

Ω
W (x,∇u(x)) dx −

∫

Ω
f(x) · u(x) dx among u ∈ W 1,1

uD
(Ω; Rm) . (2.3)

We recall that W 1,1
uD

(Ω; Rm) is the set of functions u ∈ W 1,1 (Ω; Rm) with u = uD on ΓD in the sense of traces.
We do not assume that W is quasiconvex in s and thus have to resort to a relaxed formulation of (2.3) in the

space of DiPerna-Majda measures. Yet, we point out that even for convex W (x, ·), there may be no solution.
This is demonstrated in the following example.

Example 2.1. Take m = n = 1, Ω = (0, 1), f = 0, W (x, s) =
(
x − 1

2

)2 |s|, u(0) = 0 and u(1) = 1. Then
inf I = 0. Indeed, an infimising sequence may look as follows

uk(x) =






0 if x ∈
(
0, 1

2 − 1
2k

]

kx − k
2 + 1

2 if x ∈
(

1
2 − 1

2k , 1
2 + 1

2k

)

1 if x ∈
(

1
2 + 1

2k , 1
]
.

(2.4)

It is immediate that limk→∞ I(uk) = 0, but min I does not exist.

Before stating the relaxed version of the static problem (2.3), we have to collect an auxiliary statement that
permits us to recover information regarding a function u whose measure derivative, Du, is the first moment of
a gradient DiPerna-Majda measure.

Lemma 2.2. Let {uk}k∈N ⊂ W 1,1
uD

(Ω; Rm) be such that {∇uk}k∈N generates (σ, ν̂) ∈ GDMuD
F (Ω; Rm×n). Then

there is
(
u, D̄u

)
∈ W 1,µ (Ω; Rm) and a subsequence (not relabeled) such that uk → u in L1 (Ω; Rm). Furthermore,(

u, D̄u
)

satisfies T̄
(
u, D̄u

)
= uD on ΓD, and u is a unique solution to
∫

Ω̄
φ(x)D̄u dx =

∫

Ω̄
φ(x)

∫

βFRm×n

s

1 + |s| ν̂x(ds)σ(dx) (2.5)

for every φ ∈ C(Ω̄), i.e., D̄u =
∫
βFRm×n

s
1+|s| ν̂x(ds) in the sense of measures on Ω̄.

Proof. As {∇uk}k∈N generates (σ, ν̂) ∈ GDMuD
F (Ω; Rm×n), it is bounded in L1(Ω, Rm×n). The Dirichlet

boundary condition on ΓD permits an application of the Poincaré inequality in the form
∫

Ω
|uk(x)| dx ≤ C

(∫

Ω
|∇uk(x)| dx +

∣∣∣∣

∫

ΓD

uD dS

∣∣∣∣

)
(2.6)
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and thus yields that {uk}k∈N is bounded in W 1,1
uD

(Ω; Rm) and therefore in W 1,µ (Ω; Rm). Hence, there is a
subsequence (not relabeled) converging weakly* in W 1,µ (Ω; Rm) to some u ∈ W 1,µ (Ω; Rm) [22], Theorem 6. By
definition of weak* convergence in W 1,µ (Ω; Rm), this means that uk → u strongly in L1 (Ω; Rm) and ∇uk → D̄u
weakly* in M

(
Ω̄; Rm×n

)
. Formula (2.5) then follows by comparing (1.9) (with the obvious modification of using

D̄u rather than Du, and allowing for test functions φ ∈ C
(
Ω̄

)
) and (1.6) component-wise for s = {sjk}, with

1 ≤ j ≤ m and 1 ≤ k ≤ n. The fact that u = uD on ΓD follows from the weak* continuity of the trace
operator T̄ [22], Theorem 2 (ii). !

Now let us discuss a suitable relaxation of the problem (2.3). We take a subalgebra F of bounded continuous
functions on Rm×n such that

W̃ (x, ·) ∈ F ; (2.7)
we recall that F contains all functions where all radial limits exist, as a compactification by a sphere or finer
is considered. We extend the previous notation slightly to accommodate for spatially inhomogeneous functions
by writing W̃ (x, s) := W (x,s)

1+|s| .
The relaxed problem then reads as follows:

minimise Ī
(
u, D̄u, σ, ν̂

)
:=

∫

Ω̄

∫

βFRm×n

W̃ (x, s)ν̂x(ds)σ(dx) −
∫

Ω
f(x) · u(x) dx (2.8)

among
(
u, D̄u

)
∈ W 1,µ (Ω; Rm), T̄

(
u, D̄u

)
= uD on ΓD,

and (σ, ν̂) ∈ GDMuD
F (Ω; Rm×n), D̄u satisfies (2.5).

Proposition 2.3. There is a constant C = C(Ω) > 0 depending on the domain Ω such that if

‖f‖Ln(Ω;Rm) < C(Ω), (2.9)

then a minimiser of (2.8) exists. Furthermore, the minimum of (2.8) equals the infimum of (2.3). If {uk}k∈N ⊂
W 1,1

uD
(Ω; Rm) is an infimising sequence of (2.3), then a subsequence generates (in the sense (1.8)) a minimiser

of (2.8). Moreover, any minimiser of (2.8) is generated by an infimising sequence of (2.3).

Proof. We first show that inf I ≥ inf Ī. Let {uk}k∈N ⊂ W 1,1
uD

(Ω; Rm) be an infimising sequence of (2.3).
Obviously inf I < ∞. Thus, there exists K > 0 so that the following estimate holds (we employ the coercivity
assumption (2.1) on W together with Young’s inequality with q := n

n−1 in the second inequality and the Sobolev
embedding [9], Thm. 5.6.2, in the third inequality, with C1 = C1(Ω)).

K >

∫

Ω
W (x,∇uk(x)) dx −

∫

Ω
f(x) · uk(x) dx

≥ α
∫

Ω
|∇uk(x)| dx − α |Ω| − ‖uk‖Lq(Ω;Rm) ‖f‖Ln(Ω;Rm)

≥ α
∫

Ω
|∇uk(x)| dx − α |Ω| − C1 ‖uk‖W 1,1(Ω;Rm) ‖f‖Ln(Ω;Rm) .

Finally, using the Poincaré inequality (2.6) for the first term on the right, we obtain that
(
C(Ω) − ‖f‖Ln(Ω;Rm)

)

‖uk‖W 1,1(Ω;Rm) is bounded from above, where C(Ω) is the quotient of the Poincaré embedding constant and C1
α .

Thus, since the force is bounded by (2.9), it follows that supk∈N ‖uk‖W 1,1(Ω;Rm) < ∞. By the DiPerna-Majda
result (1.6), {∇uk}k∈N then generates (up to a subsequence) (σ, ν̂) ∈ GDMuD

F (Ω; Rm×n). At the same time
we may suppose that uk → u strongly in L1 (Ω; Rm) by compact embedding. Since {uk}k∈N is an infimising
sequence, and the map u ,→

∫
Ω f(x)·u(x) dx is sequentially continuous, (1.6) shows that inf I = limk→∞ I(uk) =

Ī
(
u, D̄u, σ, ν̂

)
. To prove that inf I ≥ inf Ī, it remains to show that

(
u, D̄u, σ, ν̂

)
is admissible for (2.8).
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The sequence {uk}k∈N does not only converge strongly in L1(Ω; Rm) to u, but is also bounded in W 1,µ (Ω; Rm).
Thus, it converges weakly* to

(
u, D̄u

)
in W 1,µ (Ω; Rm) [22], Theorem 6. In particular, for every φ ∈ C

(
Ω̄

)
,

lim
k→∞

∫

Ω̄
φ(x)∇uk(x) dx =

∫

Ω̄
φ(x)D̄u(dx).

A comparison with (1.6) yields
∫

Ω̄
φ(x) D̄u(dx) =

∫

Ω̄
φ(x)

∫

βFRm×n

s̃ν̂x(ds)σ(dx),

i.e., D̄u =
∫
βFRm×n s̃ν̂x(ds)σ. Thus, D̄u is indeed given by (2.5) as required. The limit u satisfies u = uD

on ΓD, since the trace operator W 1,µ (Ω; Rm) → M (∂Ω; Rm) is weak* continuous [22], Theorem 2 (ii). Thus,(
u, D̄u, σ, ν̂

)
is admissible for the minimisation problem (2.8), and we have shown that inf I = Ī

(
u, D̄u, σ, ν̂

)
≥

inf Ī.
We sketch the proof of the existence of a minimiser of Ī. To this end, let us consider a minimising sequence{(
uj , D̄uj, σj , ν̂j

)}
j∈N for Ī. The alternative approach to DiPerna-Majda measures described in Section 1.3

suggests to write ηj
∼= (σj , ν̂j) with ηj ∈ GDM uD

F (Ω; Rm×n) for any j ∈ N. A modification of the preceding
argument shows that generating sequences {∇uk

j }j,k∈N, say, of {ηj}j∈N are uniformly bounded in L1 (Ω; Rm×n).
Therefore {ηj}j∈N form a weakly* compact subset of M

(
Ω̄ × βFRm×n

)
, and we may suppose that ηj → η

weakly* in M
(
Ω̄ × βFRm×n

)
as j → ∞. Hence

lim
j→∞

lim
k→∞

∫

Ω̄
φ(x)f(∇uk

j (x)) dx =
∫

Ω̄×βFRm×n

φ(x)f̃ (s)η(ds, dx)

for any f̃ ∈ F and any φ ∈ C(Ω̄). Since C(Ω̄) and F are separable, a diagonalisation argument yields a bounded
sequence {wl}l∈N ⊂ W 1,1

uD
(Ω; Rm) such that

lim
l→∞

∫

Ω̄
φ(x)f(∇wl(x)) dx =

∫

Ω̄×βFRm×n

φ(x)f̃ (s)η(ds, dx).

Moreover, wk → u strongly in L1 (Ω; Rm) as k → ∞, and wk
!
⇀

(
u, D̄u

)
∈ W 1,µ (Ω; Rm). Altogether,

(u, D̄u, η) ∼= (u, D̄u, σ, ν̂) solves (2.8).
Finally, we need to show the agreement of the arguments of inf I and inf Ī. Suppose there is

(
v, D̄v, π, µ̂

)
∈

W 1,µ (Ω; Rm) × GDMuD
F (Ω; Rm×n) with D̄v =

∫
βFRm×n s̃µ̂x(ds)π and T̄

(
v, D̄v

)
= uD on ΓD such that

Ī
(
v, D̄v, π, µ̂

)
< inf I. Then, by the definition of GDMuD

F (Ω; Rm×n), we infer that there is {vk}k∈N ⊂
W 1,1

uD
(Ω; Rm) such that {∇vk}k∈N generates (π, µ̂). As before we can show that {vk}k∈N is uniformly bounded

in W 1,1
uD

(Ω; Rm) and we may suppose that vk
!
⇀

(
w, D̄w

)
∈ W 1,µ (Ω; Rm) and vk → w strongly in L1 (Ω; Rm).

Then we obtain D̄v = D̄w. From this and from the fact that T̄
(
v, D̄v

)
= T̄

(
w, D̄w

)
on ΓD we find that(

v, D̄v
)

=
(
w, D̄w

)
. Hence, we arrive at limk→∞ I(vk) = Ī

(
v, D̄v, π, µ̂

)
< inf I, i.e., for some k ∈ N, we find

I(vk) < inf I, a contradiction. !

3. Evolution

We now consider an arbitrary, but fixed time interval [0, T ] and investigate the evolution of the material
during this time. The evolution will be triggered by changes in the external force f . Energy may be dissipated
during the evolution. We follow Mielke and co-workers [15,17,18] in introducing a dissipation distance. At
present, a detailed understanding of the atomistic evolution, which leads to the dissipation, is lacking. We thus
adopt the common viewpoint that one has to resort to a scalar phenomenological model of the dissipation.
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It is then natural to define the (mesoscopic) dissipation distance between two DiPerna-Majda measures η1, η2 ∈
GDM uD

F (Ω; Rm×n), as these measure record the microstructure. Changing the overall state of the system from
η1 to η2 then costs the energy D(η1, η2). We recall that η ∼= (σ, ν̂). It turns out to be advantageous for the
rigorous analysis to have the dissipation D depend on ν̂ and on the absolutely continuous part of σ. This is
not a severe restriction, as the DiPerna-Majda measures with σ being absolutely continuous with respect to the
Lebesgue measure are dense in all DiPerna-Majda measures in the weak* topology.

For the Young measure part ν̂, inspired by [17], we assume that there is L ∈ N and a bounded mapping
Λ: Rm×n → RL which measures the contribution to the dissipation. Moreover, we use the following notation

Id • η :=
∫

βFRm×n

s

1 + |s| ν̂x(ds)σ. (3.1)

We summarise the assumptions on the dissipation.

Definition 3.1. The dissipation D has to satisfy the following conditions.
(1) The triangle inequality is valid for D. That is, for any three internal states η1, η2, η3, it holds that

D(η1, η3) ≤ D(η1, η2) + D(η2, η3). (3.2)

(2) We suppose that there is L ∈ N and a continuous bounded mapping Λ: Rm×n → RL such that Λj ∈ F
for 1 ≤ j ≤ L such that the mesoscopic order parameter λ associated with the system configuration
described by (u, D̄u, σ, ν̂) is given by the formula

λ :=
∫

βFRm×n

Λ(s)ν̂x(ds)σ, (3.3)

which means that λ ∈ M
(
Ω̄; RL

)
is a measure such that, for all g ∈ C

(
Ω̄

)
,

∫

Ω̄
g(x)λ(dx) =

∫

Ω̄

∫

βFRm×n

Λ(s)ν̂x(ds)g(x)σ(dx).

Specifically, we write
D(η1, η2) = ‖λ1 − λ2‖M(Ω̄;RL). (3.4)

The definition (3.4) satisfies the triangle inequality (3.2).

Remark 3.2. (i) Writing α ∈ M
(
Ω̄; RL

)
means that for any Borel measurable set ω ⊂ Ω, we have α(ω) =

(α1(ω), . . . , αL(ω)) ∈ RL. Then we equip RL by a norm ‖·‖L. The RL-valued total variation of α, |α|, is
naturally defined as |α| = (|α1| , . . . , |αL|).
(ii) If α ∈ M

(
Ω̄; RL

)
is absolutely continuous with respect to the Lebesgue measure with the density x ,→

α(x) ∈ RL, then it holds that

‖α‖M(Ω̄;RL) =
∫

Ω

∥∥α+(x) + α−(x)
∥∥

L
dx = ‖α‖L1(Ω;RL).

Now we are in a position to define the set of admissible configurations. Each such configuration will be
written as q :=

(
u, D̄u, η, λ

)
. The set of admissible configurations is then

Q :=
{
q =

(
u, D̄u, η, λ

)
∈ W 1,µ (Ω; Rm) × GDM uD

F
(
Ω; Rm×n

)
× M

(
Ω̄; RL

)
,

Du = Id • η, λ given by (3.3), and T̄
(
u, D̄u

)
= uD on ΓD

}
. (3.5)
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For convenience, we write
D(q1, q2) := D(η1, η2). (3.6)

For a process q : [0, T ] → Q and a given time interval [t1, t2] ⊂ [0, T ], the temporal dissipation is given by

Diss (q, [t1, t2]) := sup
L∈N

{
L∑

l=1

D (η(τl−1), η(τl))
∣∣ t1 = τ0 < τ2 < · · · < τL = t2

}
·

It is natural to expect the evolution of q to depend on applied external load f . The interesting case it that
of a load f varying over the given time interval [0, T ]. In the below, we restrict ourselves to an external loading
which depends continuously on time, f ∈ W 1,1 ([0, T ]; Lp (Ω; Rm)) with p > n. With q = (u, η, λ), we shall write

F (q) :=
∫

Ω
f(x, t) · u(x) dx (3.7)

for the contribution of the external load to the Gibbs energy. The power of the external load is then measured by

Ḟ (t, q) =
∫

Ω

∂f(x, t)
∂t

· u(x) dx.

We remind ourselves of the notation W̃ (x, s) := W (x,s)
1+|s| . The Gibbs stored energy E(t, q) is defined as

E(t, q) :=
∫

Ω̄×βFRm×n

W̃ (x, s)η(ds dx) −
∫

Ω
f(x, t) · u(x) dx. (3.8)

At present, it seems not feasible to prove the existence of an energetic solution with the energy (3.8). We
suppose that the measure λ ∈ M

(
Ω̄; RL

)
introduced in (3.3) is absolutely continuous with respect to the

Lebesgue measure on Ω. We identify it with its density x ,→ λ(x). Moreover, we will require that λ, which is
by definition integrable, belongs even to W 1,2

(
Ω; RL

)
; see [17] for a similar regularisation, and a justification.

Let + > 0; we then consider

Γ&(t, q) :=
∫

Ω̄×βFRm×n

W̃ (x, s)η(ds dx) + + ‖λ(x)‖W 1,2(Ω;RL) −
∫

Ω
f(x, t) · u(x) dx. (3.9)

Finally, we set

Γ(t, q) =

{
Γ&(t, q) if q ∈ Q and λ ∈ W 1,2

(
Ω; RL

)

+∞ otherwise.
(3.10)

Notice that (3.10) excludes states of the system in which λ is a measure which is not absolutely continuous with
respect to the Lebesgue measure with fairly regular density. In particular, Remark 3.2 (ii) applies and (3.4) can
be written as D (η1, η2) = ‖λ1 − λ2‖L1(Ω;RL).

In this context, the notion of a solution to this energetic model can be stated as follows (see [17,18]; we
merely repeat Def. 1.3 for the reader’s convenience).

Definition 3.3. Given q0 ∈ Q, we say that the process q : [0, T ] → Q is a solution to the problem under
consideration if the following conditions hold:

(1)
(
u, D̄u

)
∈ L∞ (

0, T ; W 1,µ (Ω; Rm)
)
.

(2) λ ∈ BV
(
0, T ; L1

(
Ω; RL

))
.

(3) Global stability: For every t ∈ [0, T ], the process is stable in the global sense,

Γ(t, q(t)) ≤ Γ(t, q̃) + D (q(t), q̃) for every q̃ ∈ Q. (3.11)
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(4) Energy inequality: For every 0 ≤ t1 ≤ t2 ≤ T , we have

Γ(t1, q(t1)) + Diss(q, [t1, t2]) ≤ Γ(t2, q(t2)) −
∫ t2

t1

Ḟ (t, q(t)) dt. (3.12)

(5) Initial condition: q(0) = q0 and Γ(0, q(0)) < ∞.

We point out that this notion of a solution is based on global stability. This means that a state q is stable if
and only if the potential reduction of the Gibbs energy at another state q̃ ∈ Q is not larger than the dissipation
D(q, q̃). We refer the reader to [18] for a discussion. It is convenient to denote the set of globally stable states
at a time instant t by S(t),

S(t) :=
{
q ∈ Q

∣∣ Γ(t, q) ≤ Γ(t, q̃) + D(q, q̃) for every q̃ ∈ Q
}

.

The following statement is technical, but crucial for the arguments proving the existence of an energetic
solution.

Proposition 3.4. Consider a sequence {(tk, qk)}k∈N with qk ∈ S(tk) such that tk → t, and qk → q weakly* in
the sense that

(
uk, D̄uk

)
→

(
u, D̄u

)
weakly* in W 1,µ (Ω; Rm), while ηk → η weakly* in C

(
Ω̄ × βFRm×n

)∗ ∩
GDM uD

F (Ω; Rm×n) and λk → λ weakly in W 1,2
(
Ω; RL

)
as k → ∞. For the external forcing f , we assume

that, for p > n, f ∈ W 1,1 ([0, T ]; Lp (Ω; Rm)) and furthermore that, for a constant C(Ω) specified in the proof,
‖f(t)‖Ln(Ω;Rm) ≤ C(Ω) for all t ∈ [0, T ]. Then q(t) ∈ S(t) and Γ(tk, qk) → Γ(t, q) as k → ∞.

Proof. Our first goal is to show that Γ(t, q) ≤ limk→∞ Γ(tk, qk). The argument uses that ηk → η weakly* in
C

(
Ω̄ × βFRm×n

)∗ as k → ∞. As W̃ is continuous and C
(
Ω̄

)
⊗C(βFRm×n) is dense in C

(
Ω̄ × βFRm×n

)
, this

implies ∫

Ω̄×βFRm×n

W̃ (x, s)ηk(ds dx) →
∫

Ω̄×βFRm×n

W̃ (x, s)η(ds dx). (3.13)

Since uk → u strongly in Lr (Ω; Rm) with 1 ≤ r < n
n−1 for k → ∞ [22], Theorem 5, and f ∈ W 1,1 ([0, T ]; Lp(Ω; Rm))

with p > n, it is immediate that

lim
k→∞

∫

Ω
f(tk, x) · uk(x) dx =

∫

Ω
f(t, x) · u(x) dx. (3.14)

Relations (3.13), (3.14) and the lower semicontinuity of the norm (here ‖λ‖W 1,2(Ω;RL)) in the weak topology
taken together prove that

Γ(t, q) ≤ lim
k→∞

Γ(tk, qk). (3.15)

Now for the stability of q. We use the main properties of D. Namely, for arbitrary q̃ ∈ Q, the triangle
inequality (3.2) for D and the expression of D given in (3.4) yield (note that λk → λ strongly in L1

(
Ω; RL

)
by

compact embedding of W 1,2
(
Ω; RL

)
in L1

(
Ω; RL

)
)

lim
k→∞

|D(qk, q̃) − D(q, q̃)| ≤ lim
k→∞

D(qk, q) = 0. (3.16)

Altogether, the lower semicontinuity (3.15), the stability of qk at time tk and (3.16) show the global stability q,

Γ(t, q) ≤ lim
k→∞

Γ(tk, qk) ≤ lim
k→∞

Γ(tk, q̃) + D(qk, q̃) = Γ(t, q̃) + D(q, q̃). (3.17)

Equation (3.17) proves the claimed stability; for q̃ := q, it also yields, together with (3.15), the continuity
Γ(t, q) = limk→∞ Γ(tk, qk).
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The only open claim so far is that q ∈ S(t). Since the global stability of q has just been proved, it remains to
prove that q ∈ Q. An argument similar to the one used in the proof of Proposition 2.3 shows that for r := n

n−1

Γ(tk, qk) ≥ ασk

(
Ω̄

)
− α |Ω| − ‖f(tk, ·)‖Ln(Ω;Rm) ‖uk‖Lr(Ω;Rm) .

As Γ(tk, qk) converges to Γ(t, q) as shown above in (3.17), we may suppose that for k ∈ N large enough
Γ(t, q) + 1 ≥ ασk

(
Ω̄

)
− α |Ω| − ‖f(tk, ·)‖Ln(Ω;Rm) ‖uk‖Lr(Ω;Rm). In other words,

Γ(t, q) + 1 ≥ lim
j→∞

∫

Ω
α

∣∣∣∇uj
k(x)

∣∣∣ dx − α |Ω| − C ‖f(tk, ·)‖Ln(Ω;Rm)

∥∥∥uj
k

∥∥∥
W 1,1(Ω;Rm)

,

where {uj
k}j∈N ⊂ W 1,1

uD
(Ω; Rm) is a generating sequence of (σk, ν̂k) and C is given by the Sobolev embedding [9],

Theorem 5.6.2. With the Poincaré inequality (2.6), it follows as in the proof of Proposition 2.3 that
(
C(Ω) − ‖f(tk, ·)‖Ln(Ω;Rm)

)∥∥∥uj
k

∥∥∥
W 1,1(Ω;Rm)

is bounded from above, and then by assumption
∥∥∥uj

k

∥∥∥
W 1,1(Ω;Rm)

is bounded. A diagonalisation argument

together with the assumption ηk → η for k → ∞ shows that η ∈ GDM uD
F (Ω; Rm×n).

This gives us a uniform bound on all sequences generating {ηk}k∈N. Since ηk → η for k ∈ N, the rest of
the proof is analogous to the proof of Proposition 2.3. Notice that ηk → η implies that λ satisfies (3.3) with
η ∼= (σ, ν̂). !

3.1. Incremental problems

With these preparations in place, it is not hard to harvest the results. Namely, the argument proving
the existence of an energetic solution now follows the established path of analysing the incremental time step
problem, and then taking the passage to the limit as the time increment goes to zero. We now turn our attention
to the incremental problem. Let us recall that T is an arbitrary, but finite final time. It is not restrictive to
choose the time step τ such that N := T

τ ∈ N. For a given initial condition q0
τ = q0, it is natural to define qk

τ

for k = 1, . . . , N as a solution to the problem

min
q∈Q

Γ (kτ, q) + D
(
qk−1
τ , q

)
. (3.18)

We introduce a piecewise constant interpolation qτ by setting qτ (t) := qk
τ for t ∈ ((k − 1)τ, kτ ] and k =

1, . . . , T
τ . Analogously, Fτ (t, q) := F (kτ, q) is a piecewise constant interpolation of F , and

Γτ (t, q) := Γ(kτ, q).

Proposition 3.5. Let f ∈ W 1,1 (0, T ; Lp(Ω; Rn)), for some p > n, with ‖f(t)‖Ln(Ω;Rm) ≤ C(Ω) for all t ∈ [0, T ],
as in Proposition 3.4. Then the problem (3.18) has a solution qτ (t) which is stable, i.e., for all t ∈ [0, T ] and
for every q̃ ∈ Q,

Γτ (t, qτ (t)) ≤ Γτ (t, q̃) + D (qτ (t), q̃) . (3.19)
Moreover, for all t1 ≤ t2 from the set {kτ}N

k=0, the following discrete energy inequalities hold if one extends the
definition of qτ (t) by setting qτ (t) := q0 if t < 0.

−
∫ t2

t1

Ḟ (t, qτ (t)) dt ≤ Γ (t2, qτ (t2)) + Diss (qτ , [t1, t2]) − Γ (t1, qτ (t1))

≤
∫ t2

t1

Ḟ (t, qτ (t − τ)) dt. (3.20)
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Proof. The existence of a solution to (3.18) follows from the coercivity of G(q) := Γ(kτ, q) + D
(
qk−1
τ , q

)
. The

weak* lower semicontinuity of G implies the existence of a solution.
The stability estimate (3.19) follows from the minimising property of qk

τ and the properties of D. Indeed, by
minimality of qk

τ ,
Γ

(
kτ, qk

τ

)
+ D

(
qk−1
τ , qk

τ

)
≤ Γ (kτ, q̃) + D

(
qk−1
τ , q̃

)
, (3.21)

from which we infer that
Γ

(
kτ, qk

τ

)
≤ Γ (kτ, q̃) + D

(
qk−1
τ , q̃

)
− D

(
qk−1
τ , qk

τ

)
.

However, the structure of the metric (see Rem. 3.2) implies that

D
(
qk−1
τ , q̃

)
− D

(
qk−1
τ , qk

τ

)
≤ D

(
qk
τ , q̃

)
,

from which (3.19) follows.
Next, we demonstrate the validity of the energy inequality (3.20), following the arguments in [18]. For this

part, let us test the stability of qk−1
τ with q̃ := qk

τ . This gives

Γ
(
(k − 1)τ, qk−1

τ

)
≤ Γ

(
(k − 1)τ, qk

τ

)
+ D

(
qk−1
τ , qk

τ ,
)

= Γ
(
kτ, qk

τ

)
+ F

(
kτ, qk

τ

)
− F

(
(k − 1)τ, qk

τ

)
+ D

(
qk−1
τ , qk

τ

)
. (3.22)

Suppose that 0 ≤ k1 ≤ k2 ≤ N and that t1 = k1τ and t2 = k2τ . A summation of (3.22) over k = k1 + 1, . . . , k2

yields

k2∑

k=k1+1

[
F

(
(k − 1)τ, qk

τ

)
− F

(
kτ, qk

τ

)]
≤ Γ

(
k2τ, q

k2
τ

)
− Γ

(
k1τ, q

k1
τ

)
+

k2∑

k=k1+1

D
(
qk−1
τ , qk

τ

)
. (3.23)

We rewrite this inequality in terms of qτ to see that it is the first inequality in (3.20),

−
∫ t2

t1

Ḟ (t, qτ (t)) dt ≤ Γ
(
k2τ, q

k2
τ

)
− Γ

(
k1τ, q

k1
τ

)
+

k2∑

k=k1+1

D
(
qk−1
τ , qk

τ

)

= Γ
(
k2τ, q

k2
τ

)
− Γ

(
k1τ, q

k1
τ

)
+ Diss (qτ , [t1, t2])

(the explicit form of Diss (qτ , [t1, t2]) holds since we consider a step function). To prove the validity of the second
inequality in (3.20), we rely on the minimality of qk

τ , when compared to as q̃ := qk−1
τ in (3.21). That is,

Γ
(
kτ, qk

τ

)
+ D

(
qk−1
τ , qk

τ

)
≤ Γ

(
kτ, qk−1

τ

)

= Γ
(
(k − 1)τ, qk−1

τ

)
+ F

(
(k − 1)τ, qk−1

τ

)
− F

(
kτ, qk−1

τ

)
.

Similarly as in the previous argument, a summation over k = k1 + 1, . . . , k2 is employed to find that

Γ
(
k2τ, q

k2
τ

)
− Γ

(
k1τ, q

k1
τ

)
+

k2∑

k=k1+1

D
(
qk−1
τ , qk

τ

)
≤

k2∑

k=k1+1

[
F

(
(k − 1)τ, qk−1

τ

)
− F

(
kτ, qk−1

τ

)]
, (3.24)

so that

Γ
(
k2τ, q

k2
τ

)
− Γ

(
k1τ, q

k1
τ

)
+ Diss (qτ , [t1, t2]) ≤ −

∫ t2

t1

Ḟ (t, qτ (t − τ)) dt,

which is the second inequality in (3.20). !
The next proposition gives the a priori bounds needed to pass to the limit as the step size goes to zero.
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Proposition 3.6. Assume that W satisfies the growth condition (2.1). Let f ∈ W 1,1 (0, T ; Lp (Ω; Rm)) with
p > n be such that there is a constant C = C(Ω, W ) > 0 depending only on Ω and W as specified in the proof
with

max
t∈[0,T ]

‖f(t, ·)‖Lp(Ω;Rm) +
∫ T

0

∥∥∥∥
∂f

∂t
(t, ·)

∥∥∥∥
Lp(Ω;Rm)

dt ≤ C(Ω, W ). (3.25)

Then there is κ ∈ R such that
∥∥(

uτ , D̄uτ

)∥∥
L∞(0,T ;W 1,µ(Ω;Rm))

< κ, (3.26)

‖λτ‖L∞(0,T ;W 1,2(Ω;RL))∩BV (0,T ;L1(Ω;RL)) < κ, (3.27)

and for Γ̂τ (t) := Γτ (t, qτ (t)), ∥∥∥Γ̂τ

∥∥∥
BV (0,T )

< κ. (3.28)

Proof. The growth condition (2.1) implies for q ∈ Q (i.e., η ∈ GDM uD
F (Ω; Rm×n)) the estimate

∥∥D̄u
∥∥

M(Ω̄;Rm×n) ≤
∫

Ω̄×βFRm×n

|s|
1 + |s|η(ds dx) ≤ 1

α

∫

Ω̄×βFRm×n

W (x, s) + α |Ω|
1 + |s| η(ds dx).

Using the Poincaré-type inequality (1.13), we obtain

∥∥(
u, D̄u

)∥∥
W 1,µ(Ω;Rm)

≤ C ‖uD‖M(ΓD;Rm) +
C

α

∫

Ω̄×βFRm×n

W (x, s) + α |Ω|
1 + |s| η(ds dx).

Hence,
α

C

∥∥(
u, D̄u

)∥∥
W 1,µ(Ω;Rm)

≤ α ‖uD‖M(ΓD ;Rm) +
∫

Ω̄×βFRm×n

W̃ (x, s)η(ds dx) + C.

Trivially, this implies

+ ‖λ(x)‖W 1,2(Ω;RL) +
α

C

∥∥(
u, D̄u

)∥∥
W 1,µ(Ω;Rm)

≤ α ‖uD‖M(ΓD;Rm) + C

+
∫

Ω̄×βFRm×n

W̃ (x, s)η(ds dx) + + ‖λ(x)‖W 1,2(Ω;RL) . (3.29)

The right-hand side is the sum of a boundary term, a constant and, by (3.10) and (3.7), the Gibbs stored energy
Γ

(
k2τ, qk2

τ

)
plus the energy related to the external loading. We use (3.24) with k1 := 0 to deduce that

+
∥∥λk2

τ

∥∥
W 1,2(Ω;RL)

+
α

C

∥∥uk2
τ

∥∥
W 1,µ(Ω;Rm)

≤ α ‖uD‖M(ΓD ;Rm) + Γ
(
0, q0

)
+ C

+
k2∑

k=1

[
F

(
(k − 1)τ, qk−1

τ

)
− F

(
kτ, qk−1

τ

)]

+ F
(
k2τ, q

k2
τ

)

= α ‖uD‖M(ΓD ;Rm) + Γ
(
0, q0

)
+ C

+
∫

∂Ω

[
k2∑

k=1

(
fk−1
τ − fk

τ

)
· uk−1

τ + fk2
τ · uk2

τ

]
.
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We set Uτ := max0≤k≤N

∥∥(
uk
τ , D̄uk

τ

)∥∥
W 1,µ(Ω;Rm)

and Λτ := max0≤k≤N

∥∥λk
τ

∥∥
W 1,2(Ω;RL)

. Then

1
2

(
+Λτ +

α

C
Uτ

)
≤ α ‖uD‖M(ΓD;Rm) + Γ(0, q0) + C

+

(∫ T

0

∥∥∥∥
∂f

∂t
(t, ·)

∥∥∥∥
Lp(Ω;Rm)

dt + max
t∈[0,T ]

‖f(t, ·)‖Lp(Ω;Rm)

)
Uτ . (3.30)

The bound (3.25) with the choice 0 < C(Ω, W ) < α
C then proves (3.26) as well as the bound for

‖λτ‖L∞(0,T ;W 1,2(Ω;RL)) claimed in (3.27).
To prove the second bound for λτ in (3.27), we infer from (3.24) for k1 := 0 and k2 := N that

Γ
(
T, qN

τ

)
− Γ

(
0, q0

)
≤ Uτ

∫ T

0

∥∥∥∥
∂f

∂t
(t, ·)

∥∥∥∥
Lp(Ω;Rm)

dt. (3.31)

From the bound (3.26) which we have just proved via (3.30), we see that the right-hand side of (3.31) is bounded
independently of τ . In particular, (3.20) yields for D defined in (3.6) that

N∑

k=1

D(qk−1
τ , qk

τ ) =
∫

Ω

N∑

k=1

∥∥λk−1
τ (x) − λk

τ (x)
∥∥

L
dx =

∥∥∥∥∥

N∑

k=1

∥∥λk−1
τ − λk

τ

∥∥
L

∥∥∥∥∥
L1(Ω)

(3.32)

is bounded independently of τ . Thus the second bound ‖λτ‖BV (0,T ;L1(Ω;RL)) < κ in (3.27) holds as well.
Finally, let us prove the bound (3.28). The energy inequalities (3.23)–(3.24) with k2 := k, k1 := k − 1 and

the triangle inequality (3.2) for D imply

∣∣Γ
(
kτ, qk

τ

)
− Γ

(
(k − 1)τ, qk−1

τ

)∣∣ ≤ D
(
qk
τ , qk−1

τ

)

+ max
{∣∣F ((k − 1)τ, qk

τ ) − F (kτ, qk
τ )

∣∣ ,
∣∣F ((k − 1)τ, qk−1

τ ) − F (kτ, qk−1
τ )

∣∣} .

The qualification of the force f and (3.32) on D imply the desired estimate (3.28). !

4. Limit passage for τ → 0

We make one more assumption (see [17]). Namely, we require the following condition to hold for every
t ∈ [0, T ] and for every qj =

(
uj , D̄uj, ηj , λj

)
∈ S(t), with j = 1, 2:

if λ1 = λ2, then
(
u1, D̄u1

)
=

(
u2, D̄u2

)
. (4.1)

This condition is not inevitable; it is mainly a requirement on the map Λ describing the dissipation mechanism;
see [12] for how to proceed without this assumption.

Then we have the following proposition (see [17], Prop. 3.3).

Proposition 4.1. Let (4.1) hold. The requirements on the loading f stated in Proposition 3.4 are assumed to
hold. Let qk =

(
uk, D̄uk, ηk, λk

)
∈ S(tk) with some tk → t and λk → λ weakly in W 1,2

(
Ω; RL

)
. Then uk → u

in L1 (Ω; Rm).

Proof. Since {
(
uk, D̄uk

)
}k∈N is bounded in W 1,µ (Ω; Rm) by (3.26), we can extract a converging subsequence

(not relabeled) in L1 (Ω; Rm). Moreover,
(
uk, D̄uk

) !
⇀

(
u, D̄u

)
weakly* in W 1,µ (Ω; Rm), again by [22], The-

orem 6. Furthermore, ηk
!
⇀ η in C

(
Ω̄ × βFRm×n

)∗ ∩ GDM uD
F (Ω; Rm×n) for a suitable subsequence. Thus

for any such subsequence (not relabeled) with weak limit q, say, it holds that q ∈ S(t) by Proposition 3.4.
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Since the limit u is by (4.1) unique, independently of the choice of the convergent subsequence of {uk}k∈N, the
entire sequence converges. !

The following proposition uses the concept of nets from general topology. Here, we only briefly recall this no-
tion, which generalises the notion of sequences. We refer the reader to [8] for more details. The set {xξ}ξ∈Ξ ⊂ X
is a net if the index set Ξ is directed, i.e., it is partially ordered and has the property that any two elements
have a common majorant. The net {xξ}ξ∈Ξ is said to be convergent to x0, limξ∈Ξ xξ = x0, if for every neigh-
bourhood U of x0, there is ξ0 such that xξ ∈ U for all ξ 2 ξ0. The concept corresponding to subsequences are
finer nets. A net {yξ̃}ξ̃∈Ξ̃ is a finer net than {xξ}ξ∈Ξ if there is a mapping φ : Ξ̃ → Ξ such that for any ξ̃ ∈ Ξ̃,
it holds that yξ̃ = xφ(ξ) and furthermore for any ξ ∈ Ξ there is ξ̃ ∈ Ξ̃ such that φ(ξ̃) 2 ξ if ξ̃ 2 ξ̃. Compact sets
enjoy the property that every net possesses a finer net that converges.

Proposition 4.2. We assume f ∈ W 1,1 (0, T ; Lp(Ω; Rn)), for some p > n, with ‖f(t)‖Ln(Ω;Rm) ≤ C(Ω) for
all t ∈ [0, T ], as in Proposition 3.4. In addition, (3.25) has to hold. Let {qτk} be a sequence of solutions
to (3.18), indexed by vanishing step-sizes τk = T

2k . Then there is its subsequence (not relabeled) and q : [0, T ] →
W 1,µ (Ω; Rm) × GDM uD

F (Ω; Rm×n) × L1
(
Ω; RL

)
such that

(1) limk→∞ uτk(t) = u(t) in L1 (Ω; Rm) for all t ∈ [0, T ] and
(
u, D̄u

)
∈ L∞(0, T ; W 1,µ (Ω; Rm));

(2) limk→∞ λτk(t) = λ(t) weakly in W 1,2
(
Ω; RL

)
for all t ∈ [0, T ], and λ ∈ BV

(
0, T ; L1

(
Ω; RL

))
;

(3) limξ∈Ξ Γτk(t, qτξ) = Γ(t, q(t)) for all t ∈ [0, T ];
(4) w*-lim ητξ(t) = η(t) for all t ∈ [0, T ] in the sense of net convergence. Moreover, every limit q =(

u, D̄u, ν, λ
)

is a solution according to Definition 3.3.

Proof. We recall that the existence of a solution to (3.18) is shown in Proposition 3.5. We divide the proof into
five steps. The proof follows the one of [17], Theorem 3.4.
Step 1. We first demonstrate Claim 2. By Helly’s principle [18], Corollary 2.8, we get λτk(t) → λ(t) weakly
in W 1,2

(
Ω; RL

)
for all t ∈ [0, T ] and λ ∈ BV

(
0, T ; L1(Ω; RL)

)
. Moreover, Proposition 3.6 is applicable; (3.27)

then implies that, again up to a selection of a subsequence, λτk(t) → λ(t) weakly in W 1,2
(
Ω; RL

)
. This proves

Claim 2. We recall the definition Γ̂τ (t) := Γτ (t, qτ (t))) of the approximate Gibbs energy; we remark that (3.28)
shows that Γ̂τk converges in the sense that there is a Γ̂ ∈ BV (0, T ) such that Γ̂τk(t) → Γ̂(t) pointwise as k → ∞.
Step 2. We now establish the convergence in Claim 1 and follow [17], Proof of Theorem 3.4. For a fixed t ∈ [0, T ],
take a sequence {θ(t, τk)}k∈N such that θ(t, τk) → t as k → ∞. We write qτk(t) ∈ S(θ(t, τk)). We use Claim 2
established for the subsequence of λτk(t) in Step 1 in conjunction with Proposition 4.1 to deduce the convergence
of Claim 1. The regularity stated in Claim 1 follows from the a priori estimate (3.26) of Proposition 3.6; we
can select a subsequence (not relabeled) such that uτk → u weakly* in L∞ (

0, T ; W 1,µ (Ω; Rm)
)

as k → ∞.
Step 3. Claim 4 can be proved similarly as in [17]. Notice that ‖ητ‖M(Ω̄;Rm×n) is bounded, which means

that στ (t)
(
Ω̄

)
is bounded. Consequently, ητ (t)

(
Ω̄ × βFRm×n

)
is uniformly bounded and lives in a ball B ⊂

M
(
Ω̄ × βFRm×n

)
. If we consider ητ = {ητ (t)}t∈[0,T ] as an element of B[0,T ], which is a weakly* compact set by

the Tychonoff’s theorem, we find that there is a finer convergent net. Thus, there exists a limit of a subsequence
of {ητξ}ξ∈Ξ, which we denote η(t).
Step 4. Let us now prove Claim 3. We already know that for a fixed time t, the convergence qτk(t) → q(t)
weakly in W 1,µ (Ω; Rm) × GDM uD

F (Ω; Rm×n) × W 1,2
(
Ω; RL

)
holds. Since qτk(t) ∈ S(θ(t, τk)), it follows from

Proposition 3.4 that q(t) ∈ S(t); q(t) ∈ Q by definition of Q. In addition, limk→∞ Γτk(t, qτk(t)) = Γ(t, q(t)),
again by Proposition 3.4. Since Γ̂τ (t) := Γτ (t, qτ (t)), the pointwise convergence Γ̂τk(t) → Γ̂(t) established in
Step 1 in conjunction with the stability estimate (3.19) of Proposition 3.5 implies that Γ(t, q(t)) ≤ Γ̂(t) ≤
Γ (t, q̃) + D (q(t), q̃). Since q(t) ∈ Q, the choice q̃ := q(t) is admissible and yields Γ̂(t) = Γ(t, q(t)). This
establishes the validity of Claim 3.
Step 5. Now we can pass to the limit in (3.20), with t1 := 0 and t2 := t for some t ∈ [0, T ], where it is not
restrictive to suppose that t is a grid point to some partition of [0, T ]. In particular, (3.20) is valid also for all
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refinements of this partition. As in the previous argument, we use a consequence of the stability estimate (3.19)
of Proposition 3.5, limk→∞ Γτk(t, qτk) = Γ(t, q(t)). The pointwise convergence of λτk (Claim 2, established in the
first step) in combination with Fatou’s Lemma shows the sequential weak lower semicontinuity of Diss(·, [0, t]),
as defined in (3.4).

Moreover, limk→∞
∫ t
0 F (θ, qτk(θ)) dθ =

∫ t
0 F (θ, q(θ)) dθ due to the continuity of the forcing term. As {uτk}

has the same weak* limit as {uτk(· − τk)}, we find that both terms expressing the work of external forces
in (3.20) converge to the same expression, namely

∫ t
0

∂
∂θF (θ, q(θ)) dθ. Now we pass to the limit with both sides

of (3.20); to this behalf, we set

e(t) := Γ(t, q(t)) − Γ(0, q(0)) + Diss(q, [0, t]) −
∫ t

0

∂

∂θ
F (θ, q(θ)) dθ. (4.2)

Then e(t) = 0 at any point t of the form t = kτ ∈ [0, T ] with 1 ≤ k ≤ N by (3.20). The set of such points
is dense in [0, T ]. Therefore, (4.2) also holds for every point of continuity of e. All functions involved in (4.2)
are functions of bounded variation; thus, they are continuous everywhere except for at most countably many
points. Therefore, (4.2) holds a.e. in [0, T ].

We now follow the ideas of [17], Proof of Theorem 3.4, to show that e(t) = 0 for every t ∈ [0, T ]. Indeed,
as λ ∈ BV

(
0, T ; L1

(
Ω; RL

))
by Claim 2 established in Step 1, the left-sided and the right-sided limits exist

for every t ∈ [0, T ]. Let us consider a point θ ∈ [0, T ] where e, given by (4.2), is not continuous, and denote
λ+(θ) := limt↘θ λ(t) and λ−(θ) := limt↗θ λ(t). By Proposition 4.1, there exist also the weak limits u+(θ) :=
limt↘θ u(t) and u−(θ) := limt↗θ u(t). Therefore q+(θ) := limt↘θ q(t) and q−(θ) := limt↗θ q(t) exist in the weak
topology. Let us also define Γ+(t) := limt↘θ Γ(t, q(t)) and Γ−(t)(θ) := limt↗θ Γ(t, q(t)). As shown in Step 4,
Γ+(θ) = Γ (θ, q+(θ)) and Γ−(θ) = Γ (θ, q−(θ)). We test the stability of q(θ) ∈ S(θ) (established in Step 4) by
q̃ := q+(θ) and obtain

Γ (θ, q(θ)) ≤ Γ
(
θ, q+(θ)

)
+ D

(
q(θ), q+(θ)

)
= Γ+(θ) + D

(
q(θ), q+(θ)

)
. (4.3)

Similarly, q−(θ) is stable as a limit of stable configurations by Proposition 3.4. Hence, with (4.3),

Γ−(θ) = Γ(θ, q−(θ)) ≤ Γ(θ, q(θ)) + D
(
q−(θ), q(θ)

)

≤ Γ+(θ) + D
(
q(θ), q+(θ)

)
+ D

(
q−(θ), q(θ)

)
. (4.4)

By definition (1.15), Diss (q, [s, t]) = Diss (q, [s, θ])+Diss (q, [θ, t]) for s < θ < t. Further, limt↗θ Diss (q, [t, θ]) =
D (q−(θ), q(θ)) and limt↘θ Diss (q, [θ, t]) = D (q(θ), q+(θ)). Passing to the limit in (4.2), we find

Γ+(θ) − Γ−(θ) + D
(
q−(θ), q(θ)

)
+ D

(
q(θ), q+(θ)

)
= 0.

Thus, (4.4) is in fact an equality (and thus the same holds for (4.3)). Thus for θ > 0 one gets with (4.4)

e(θ) − lim
t↗θ

e(t) = Γ(θ, q(θ)) − Γ−(θ) + D
(
q−(θ), q(θ)

)
= 0.

This shows continuity of e from the left. Similarly, we can show its continuity from the right. Hence, we have
e(t) = 0 for all t ∈ [0, T ]. The energy inequality (3.12) is equivalent to e(t1) = e(t2), which has just been
shown. !

Appendix A. Compactifications and DiPerna-Majda measures

The construction of DiPerna-Majda measures introduces a compactification of the target space Rd. A com-
pactification of Rd is a compact set, denoted by βFRd, into which Rd is densely and homeomorphically embedded.



EVOLUTIONARY PROBLEMS IN NON-REFLEXIVE SPACES 21

Various compactifications of Rd exist, the two extreme cases being the (Alexandroff) one-point compactification,
where a point at infinity is added, and the Stone-Čech compactification βRd.

In a nutshell, compactifications of a locally compact Hausdorff space X can be constructed as follows. Let
BC(X) denote the bounded continuous functions f : X → R. Consider a subset F ⊂ BC(X) and let J be an
index set for F . We can identify each point x in X with its evaluation h(x) := (fj(x))j∈J , and the latter is
compact by Tychonoff’s theorem. Furthermore, suppose that F separates points from closed sets; that is, for a
closed set C ⊂ X and a point x /∈ C, there exists f ∈ F such that f(x) /∈ f(C). Then every f in the smallest
closed algebra in BC(X) containing F has a continuous extension to the compactification βFX of X by F [11],
Proposition 4.56. Here, closeness is understood in the maximum norm. Since in this situation, the space of
continuous bounded functions on X is thus isometrically isomorphic to the space of continuous functions on
βFX , we shall not distinguish between elements of F and their unique continuous extensions on βFX . Likewise,
we silently identify X with its image in βFX .

F1 = BC(X) yields the Stone-Čech compactification, while F0 = C0(X) gives the one-point compactification.
We choose an intermediate compactification.

An algebra is completely regular if it is closed with respect to the maximum norm, contains the constants and
separates points from closed subsets. It is known [8], Section 3.12.21, that there is a one-to-one correspondence
F ,→ βFRd between complete, separable subalgebras of BC

(
Rd

)
and metrisable compactifications of Rd. (In

particular, the Stone-Čech compactification βX is not metrisable unless X was already compact.) It is easy to
see that βF1Rd ⊂ βF2Rd if F1 ⊂ F2. We choose F ⊂ BC

(
Rd

)
to be the set of functions f which have radial

limits limr→∞ f(rs) for every direction s. Obviously F ⊃ C0

(
Rd

)
, and thus F separates points from compact

sets by Urysohn’s Lemma.
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[13] A. Ka"lamajska and M. Kruž́ık, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104.
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