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Energetic formulation 0f nonlocal crystal
plasticity

We review an energetic solution to a problern of the rate-in-
dependent evolution of elasto-pli istic materials subjected to
external loads in the fiamework of large deformations and
multiplicative plasticity. Our model inclr-rdes gradients of
the plastic strain and of hardening variables.
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1. Introduction

The elastic-plastic behavior of crystall ine materials poses
a challenge fbr mathematical analysis or-r the microscopic,
mesoscopic, and macroscopic scales. Here, we study a
rate-independent model arising in crystal plasticity. A com-
nlon and successful approach to the analysis of crystall ine
materials is via energy rninirnization. This is manifěsted
tbr elastic crystals, even for those with the potential of un-
dergoing phase transitions. The applicabil ity of variational
rnethods has been broadened to include rate-independent
evolution. The rate-independent character of the evolution
brings serious mathernatical dift]cLrlties iť orre wants to
show the existence of solutions since the problem generally
leads to the so-called doubly nonlinear evolutionary inclu-
sion. In their pioneering work, Mielke, Theil, and Levitas
t l .  2 l  def ined a general izecl  solut ion to these inc lus ions.
nowadays called the energetic solution: cf. [3] fbr a closely
related approach. Its main advantage is that it does not con-
tain time-derivatives and therefore it allows for temporal
non-smoothness. Moreover. it straightforwardly suggests
numerical approximation schemes. This concept of solution
is based on two requirements. First, as a consequence of the
conservation law tbr l inear momentum. all work put into
the system by external fbrces or boundary conditions is
spent on increasing the stored energy or it is dissipated.
Secondly' the formulation Inust satisÍy the second law of
thermodynamics. which has in the present rnechanical fra-
mework the tbrm of a dissipation inequality. The last re-
quirement enters the fiamework as the assumption of the
existence of a non-negative convex potential of dissipative
forces. As a consequence, the imposed defbrmation evolves
in such a way that the sum of stored and dissipated energies
is always nlinimized. This is reÍlected in the so-cirl led
stabi l i ty inequal i ty; see ( l)  below.
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In this contribution. we apply this framework to strain
gradient plasticity following earlier work of Dil lon and
Kratochvíl [4]' Gurtirr [5], Mainik and Mielke [6]. and
many others. [n what follows, O C R' wil l be a smooth
bounded domain representing the reference configuration
of the n'raterial body. The overall deformation -y : O - Rr
maps the reference corrÍiguration to a deformed one. In the
framework of multiplicative plasticity. we decompose
V.y : F.Fn where F. and Fo are the elastic and plastic parts
of the defbrmation gradient, respectively. We suppose that
the plast ic deformation is incompressib le, i .e. ,  det Fp:I
at all times. The plastic strain tensor, jointly with hardening
variables 2 c R"' make a set of internal variables of our
model.  We clenote : ::  (Fp, d and suppose that : ,Q) e Z,a
set of plastic variables, for all time instants / C [0.7] of
our process time interval. Similarly, y(/) c Y where Y is
typically a subset of a function space. We consider a separ-
able material, where the energy density splits into elastic
and plast ic contr ibut ions, i .  e. ,

W(r, F".:" Y;) ::  W"(",  tr .)  i  Wo(.r ,  z,  V:) (1)

subjected to external Íbrces whose work on the body is de-
scribed by

L(r .  r ' )  : - s( t .x)  .  r  ( r)  dS (2)

wherel'and g represent (time-dependent) body and surface
force densities, respectively, and I- t C boundary (O),
Moreover, we Suppose that ) :.\'0 on f0 C boundary (í2)
for some fixed ys. Altogether, the elasto-plastic energy
Íbnctiona| T has the fbrm

1(r ,  y ' ,  l ) W(x' Vr.(.r) r; '(;r) '  z(x).Vz(x)) ďr - t(r.r '(r))
(3)

We are interested in the rate-independent evolution of the
material. To this end, we assume the existence of a non-ne-
gative convex potential of dissipative forces d : r)(.t,r,i),
where : denotes the time derivative of z. In order to ensure
rate-independence, d must be positively one-homogeneous,
i.e., d(x, ;, rl i) : r'vd(x, z. Ž) for all cv ) 0. Following
Mielke [7] we define a dissipation distance between two
va lues  o f  in te rna l  var iab les  zo ,z r  C  Z  as  D(x , :e , ; ' ) ,=
.  ^  ,  r . l  . - .
i n f - { . / i ,  r ) ( x . : ( s ) , : ( t ) )  d , r :  ; ( 0 )  :  r 0 . : ( l )  :  ; r } ,  and  se t
D(a ,:u ) :  J .n D(,,:  r  (r) ,  zz (r)) ďr.
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2. Energetic solution

Suppose. that we look fbr the time evolution of y'(r) e Y
and:(t) e Z duríng the time interval [0. r]. The following
two properties are key ingredients of the so-called energetic
solution due to Mielke and Theil l2l
(i) Stabil ityinequality: Vr e [0 r]. V: e Z. VÍ e Y:

í ( t . l ' ( r ) . ; ( r ) )  s  T ( t . l , . : )  +  p ( : ( r ) . : )  ( l )

(i i) Energy balance: Vr e [0, f]:

í ( t . r ( r ) . : ( r ) )  *  Va r (D , ; ;  [ 0 .  r ] )  :  T (0 . ) ( 0 ) . : ( 0 ) )

* 
J,, 

t( i .  .\ (( ) ) Clť

where  Yar(D. : ;  [0 .  r ] )  : :  sup{tL ,  DQ. f t ; ) , ; ( r i - r ) ) r  { r ,}
partition of [0. r]]. The stabil ity inequality means that not
only is the rnere elastic energy minimized but the dissipa-
tion must be added. The energy balance says that work done
by external loads is either dissipated or used to change the
ela$ic energy. The mapping r '--' (.r'(r),:(r)) G Y x Z is an

ic solut ion to the problem (7, , l ,  )  i f  stabi l i ty in-
l ity and energy balance are satisÍled for all r e |0, Z].

existence was established (under suitable assumptions)
[6, 8] by means of a sequence of incremental problems

a time discretization 0 : 1o
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l1-' fftoX1íi<,r(/i - tr t) : 0. Let a stable init ial state
eZbegiven. For I < k < n, f ind (.y^,;^) e Y x Z such. ,  r ! . r e  
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th i s  pa i r  min imizes  I ( t r , . \ . . : )  + D( .Á  I . : ) ,  wh ich  i s  a
te version of the stabil ity inequality. Thus, this mini-
ion amounts to solving a global optimization problem.

spatialdiscretization by finite elements, for instance, de-
an algorithm for nurnerical solutions. We refer to [9]

closely related numerical issues.

work was , supported
0770003 (MSMT CR).

by the grants V26840170021,
and I,{A100750802 (GAAV). It was
MRTN-CT-2004 - -50-s 226 "MULTI -u i th in  the  EU p ro jec t

3Í1ll . Mat. Res. (Íbrmer|y Z. Metallkd.) l00 (2009) 3


