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Energetic formulation of nonlocal crystal

plasticity

We review an energetic solution to a problem of the rate-in-
dependent evolution of elasto-plastic materials subjected to
external loads in the framework of large deformations and
multiplicative plasticity. Our model includes gradients of
the plastic strain and of hardening variables.
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1. Introduction

The elastic —plastic behavior of crystalline materials poses
a challenge for mathematical analysis on the microscopic,
mesoscopic, and macroscopic scales. Here, we study a
rate-independent model arising in crystal plasticity. A com-
mon and successful approach to the analysis of crystalline
materials is via energy minimization. This is manifested
for elastic crystals, even for those with the potential of un-
dergoing phase transitions. The applicability of variational
methods has been broadened to include rate-independent
evolution. The rate-independent character of the evolution
brings serious mathematical difficulties if one wants to
show the existence of solutions since the problem generally
leads to the so-called doubly nonlinear evolutionary inclu-
sion. In their pioneering work, Mielke, Theil, and Levitas
[1, 2] defined a generalized solution to these inclusions,
nowadays called the energetic solution; ct. [3] for a closely
related approach. Its main advantage is that it does not con-
tain time-derivatives and therefore it allows for temporal
non-smoothness. Moreover, it straightforwardly suggests
numerical approximation schemes. This concept of solution
1s based on two requirements. First, as a consequence of the
conservation law for linear momentum, all work put into
the system by external forces or boundary conditions is
spent on increasing the stored energy or it is dissipated.
Secondly, the formulation must satisty the second law of
thermodynamics, which has in the present mechanical fra-
mework the form of a dissipation inequality. The last re-
quirement enters the framework as the assumption of the
existence of a non-negative convex potential of dissipative
forces. As a consequence, the imposed deformation evolves
in such a way that the sum of stored and dissipated energies
is always minimized. This is reflected in the so-called
stability inequality; see (1) below.
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In this contribution. we apply this framework to strain
gradient plasticity following earlier work of Dillon and
Kratochvil [4], Gurtin [5], Mainik and Mielke [6], and
many others. In what follows, Q C R* will be a smooth
bounded domain representing the reference configuration
of the material body. The overall deformation y : Q — R’
maps the reference configuration to a deformed one. In the
framework of multiplicative plasticity. we decompose
Vy = F.F, where F, and F; are the elastic and plastic parts
of the deformation gradient, respectively. We suppose that
the plastic deformation is incompressible, i.e., det F, =1
at all times. The plastic strain tensor, jointly with hardening
variables p € R™ make a set of internal variables of our
model. We denote 7 := (£}, p) and suppose that z(r) € Z,a
set of plastic variables, for all time instants r € [0, 7] of
our process time interval. Similarly, y(¢) € Y where Y is -
typically a subset of a function space. We consider a separ-
able material, where the energy density splits into elastic .
and plastic contributions, i.¢.,

W(x. F..2,Vz) i= We(x, Fe) + Wp(x. 2. Vz) (1

subjected to external forces whose work on the body is de- |
scribed by ;

L= [ fe st [ g sds @
Q JI ;

where f and g represent (time-dependent) body and surface
force densities, respectively, and [} C boundary (Q).
Moreover, we suppose that v = vy on I’y C boundary ()
for some fixed yj. Altogether, the elasto—plastic energy
functional 7 has the form

I(1,¥,2) :/S; W(x, Vy(x) Fp“(x).z(x). Vz(x)) dx — L{1,¥(1))
' 3)

We are interested in the rate-independent evolution of the
material. To this end, we assume the existence of a non-ne-
gative convex potential of dissipative forces ¢ = d(x.z,2),
where 7 denotes the time derivative of z. In order to ensure
rate-independence, d must be positively one-homogeneous,
ie., o(x,z,az) = ad(x,z,z) for all a > 0. Following
Mielke [7] we define a dissipation distance between two
values of internal variables zp,zy € Z as D(x.z9.31) =
inf{ fil 0(x. 2(s), 2(s)) ds: 2(0) = z0.2(1) = 2}, and set
D(z1,22) = [ D(x.21(x), 22(x)) dv.
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2 Energetic solution

Suppose. that we look for the time evolution of v(f) € Y
ad z(¢) € Z during the time interval [0. T]. The following
two properties are key ingredients of the so-called energetic
solution due to Mielke and Theil [2]

(i) Stability inequality: Vi € [0.T]. Vi€ Z. Yy e Y:

Iev(t).2(0) < Z(1.3.2) + D(z(1).3) (1)
iy Energy balance: V¢ € {0. T]:
Iev(r). 2(r)) + Var(D. z: [0, 1]) = Z(0.¥(0).2(0))

+ / L(&.v(&)) dé

where Var(D,z;[0.4]) := sup{ZfiI D(z(1;). z(ti-1)): {6}
partition of [0.7]}. The stability inequality means that not
anly is the mere elastic energy minimized but the dissipa-
tion must be added. The energy balance says that work done
by external loads is either dissipated or used to change the
tlastic energy. The mapping t— (v(1),z(¢)) € Y x Z is an
energetic solution to the problem (7,0, L) if stability in-
equality and energy balance are satisfied for all # € [0, 7].
Is existence was established (under suitable assumptions)
in [6, 8] by means of a sequence of incremental problems
for a time discretization 0 =1ty <...<t, =T with
My~ Max <<, (t; — #;-1) = 0. Let a stable initial state
€Zbe given. For | < k < n, find (v*.2*) € Y x Z such
at this pair minimizes Z(r..v.z) + D(ZF7!.z), which is a
iscrete version of the stability inequality. Thus, this mini-
ization amounts to solving a global optimization problem.
spatial discretization by finite elements, for instance, de-
es an algorithm for numerical solutions. We refer to [9]
it closely related numerical issues.
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