Akademie v&d Ceské republiky

— .:] Ustav teorie informace a automatizace, v.v.i.

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Kamil Dedecius®, Ivan Nagy, Miroslav Karny, Lenka Pavelkova

Partial Forgetting

A new method for tracking time-variant parameters

No. 2249 March 23, 2009

UTIA AV CR, P.0.Box 18, 182 08 Prague, Czech Republic
Tel: +420 286892337, Fax: +420 266052068, Url: http://www.utia.cas.cz,
E-mail: *dedecius@utia.cas.cz




This report constitutes an unrefereed manuscript which is intended to be submitted for
publication. Any opinions and conclusions expressed in this report are those of the author(s)
and do not necessarily represent the views of the institute.



1 Introduction

Tracking of slowly varying parameters is an important task in the theory of adaptive systems.
Majority of prediction and control algorithms, employing regression models like autoregression
model (AR), autoregression model with exogenous inputs (ARX), autoregression model with
moving average (ARMA) etc., assume a carefully defined model structure and correctly esti-
mated parameters. Problems arise, when the model parameters vary in time. The problems
of slowly time-varying model parameters were given a thorough attention. The exponential
forgetting method, motivated by the idea of flattening the posterior probability density func-
tion [1] or by time-weighted least squares (LS) [7] dominates the group of solutions. Various
modifications of this method were developed to solve the problem of information loss, when
non-informative data are coming, e.g. the controlled forgetting, directional forgetting, re-
stricted exponential forgetting etc. [2][3][17]. Some methods employ other approaches like
linear forgetting [15]. Another group of techniques employ the state-space model to describe
the parameter changes. A typical example is the Kalman filter, estimating the parameters of
a linear model with normal noise [4][5] and its modifications like Hy, filter, extended Kalman
filters [6] or particle filtering [6].

Many improvements of the exponential forgetting method solved its common drawback,
but in contrast to the state-space based models, they lack the ability to appropriately track
multiple parameters which vary with different rates. This paper proposes a partial forgetting
method, allowing to track the parameters even in this case.

The problem is stated in Section 2, where the system model and the theory of parameter
estimation is recalled. Section 3 introduces the concept of partial forgetting method, hypothe-
ses about parameter distribution (Section 3.1) and search for the approximation of the true
parameter distribution (Section 3.2). In Section 4, the algorithm of parameter estimation
with partial forgetting is described. The practical realization of the method is in Section 5,
where the partial forgetting is derived for normal autoregression model. Finally, Section 6
brings tests on both artificially generated and real data and demonstrates the advantages of
the method. Concluding remarks are in Section 7.

The specific notation: ' denotes transposition, = is equivalence by definition, o is pro-
portionality, i.e. equivalence up to a constant factor. 6* denotes a set of §-values, f(x) is
probability density function where the random variable is determined by its argument . The
time ¢ is discrete.

2 Problem statement

2.1 System model

Consider a discrete stochastic system observed at time instants ¢ = 1,2,... Let this system
have directly manipulated input u;, which affects the single system output y;. The couples
of inputs and outputs in each time instant ¢ form the data vector d; = (uy,y;); the sequence
d(t) = (dy,dsa,...,d;) describes the evolution of the system behaviour in time, i.e. from the
beginning time instant 1 until the time of estimation ¢.

Generally, the model output y; depends on the previous data d(t — 1) and the current
input u;. This dependence is modelled by a conditional probability density function (pdf),
which has the form

f(elue, d(t =1),00) = f(yel e, 0r) (1)



where 6, stands for a model parameter (possibly multivariate column vector) and v is a
column regression vector containing all data that have an influence on the output y;.

2.2 Parameter estimation

According to the Bayesian approach, the unknown model parameter 6 is a random variable.
Then, it is possible to describe it by a probability density function, conditioned by the data
available at the current time instant ¢, i.e. f(6|d(t)). If we apply the natural conditions of
control [1] saying

F(Oufug, d(t = 1)) = f(0]d(t — 1)) (2)
then the Bayes rule for recurrent parameter estimation reads
f(Ocld(t)) o< f(ye|te, 00) f(Ou]d(t — 1)) 3)

This relation can be viewed as the data update — the new information carried by the data
is incorporated into the parameter estimate.

In the case of time-variant parameters, the successive step after the data update is the
time update, formally given

f(9t+1|d(t)) = - f(9t+1’d(t)7 9t)f(9t’d(t)) do (4)

If the parameters were time-invariant (6,41 = 6;), the time update would be a formal
step. However, a mathematical model with a fixed structure and constant parameters is not
always suitable for modelling the reality and it is often necessary to admit that its parameters
vary. There is a couple of methods how to obtain the posterior pdf in (4), one of them is to
consider an explicit model of parameter changes of the right-hand side. Unfortunately such
model is not always available. Another approach is to modify the whole time-update and
make it admit slow permanent changes of parameter estimates. Such an approach is called
time weighting, time discounting or simply forgetting [8].

Remark 1 In this paper, the case of slowly varying parameters is considered, which can be
formally written as 0; =~ 0;_1. In regard to this proximity, we don’t write the parameters with
time index anymore.

The summary of estimation of slowly varying parameters with forgetting could be ex-
pressed as follows:

1. Collect the newest data d;.
2. Perform the data update of the parameter probability density function (3).

3. Perform the time update (4) in the form of forgetting

The main problem of the majority of forgetting methods consists in the fact, that even if
the parameters change with different rates, all of them are forgotten with the same rate. For
instance, suppose use of the exponential forgetting on a two-dimensional parameter pdf. In
addition, suppose that the individual parameters are slowly varying in time, each one with a
different rate of change. In this example, the exponential forgetting can easily fail, because
it cannot catch the individual parameter changes. Either it is tuned according to the more
quickly changing parameter and the slower one is completely forgotten, or it is fitted to the
slower one and the estimation cannot follow the quicker parameter. No matter how this
simple case might seem marginal, it can occur in some data measured on real systems.



3 Partial forgetting

The basic idea of partial forgetting, allowing tracking of individual parameters, is based on
the notion of unknown true parameter probability density function Zf(6|d(t)). This pdf
describes ideally the actual behaviour of the model parameters. Our aim is to find its best
approximation within the class of admissible pdfs. To this end we formulate hypotheses about
the variability of individual parameter elements. The hypotheses specify whether and which
configuration of parameters changes. Each hypothesis has its own probability with which
it is supposed to be valid and induces a probability density function, which should be used
on condition of the hypothesis validity. Division of the reality into several specific cases,
according to the specified hypotheses, leads to the description of the true pdf in the form of a
mixture of densities. The goal is to find the best approximation f of this mixture, regardless
on the knowledge which hypothesis is true at the moment.

This approximate pdf is constructed so that it would minimize expectation of a distance

between the mixture and itself, E [d( Tr f )] — min.

As the distance (or more correctly divergence) measure, we use the Kullback-Leibler di-
vergence [9] in the form

KL (f(@)llg(x)) = /f(:v) In %dl‘, zex ()

It measures the divergence of a pair of pdfs f and g, acting on a set *. However, it cannot be
considered as a distance measure, since it does not satisfy neither the symmetry KL (f||g) #
KL (g||f), nor the triangle inequality. Some interesting properties of the Kullback-Leibler
divergence are

e By definition KL (f||g) > 0
o iff f(x) = g(x) almost everywhere on z* = KL (fl||g) =0

o iff g(x) =0 A f(x) > 0 on a set of positive Lebesgue measure = KL (f||g) = oo

3.1 Hypotheses

As it has been mentioned, the method of partial forgetting is based on an unknown random
true multivariate parameter pdf Tf(6|d(t)) = Tf(01,...,0,|d(t)), n = 1,2,.... The problem
is, that such a pdf is not available to us, as we are not sure about the variability of individual
parameters. Theoretically, it would be possible to consider a hyper-distribution describing the
pdf Tf, but it is too complicated and we will drop the idea to construct it. For our purposes,
it is fully sufficient to take into account its point estimates constructed on the basis of the
individual hypotheses about the parameters behaviour. These hypotheses are given by the
expectations as follows:

Ho: E[Tf(6]d(t))|6,d(t), Ho]
Hy: E[T(6d(t))|6,d(t), Hi]
Hy: E[Tf(6d(t))|6,d(t), Ha)

f(0]d(?))
f(O2,...,0,]01,d(t)) fa(br)
f(01,0s,...,0,]02,d(t))fa(02)

H, : E[TF(01d(t)|0,d(t), Hy) = f(01, ..., 00—1|0n,d(t)) fa(6r)
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Hpi1: E[TF(01d())10,d(t), Hna] = f(0s,...,0n|01,02,d(t)) fa(61,02)
Hpyo o E[7f(0]d(t))]0,d(t), Hnya] = f(02,04...,0,|01,63,d(t)) fa(61,65)

Hoos : E[TF(01d(6)10,d(t), Hon—s] (00161, .00 1,d(£))fa(Ors -, On_1)
Hyn_y = E[Tf(0]d(t))|d(t), Hyn 1] = fa(6) (6)

where f4 is an alternative probability density function (preferably flat, e.g. the prior one),
expressing uncertainty arising from parameter changes.

The verbal expression of the given hypotheses is the following: Hj assumes that no pa-
rameter varies, hence the data-updated pdf is used in (3) directly. The hypotheses H; — H),
represent the cases when only one parameter varies and its marginal pdf is replaced with an
alternative pdf. The following hypotheses present cases when a specific subset of parameters
vary. The last hypothesis Hon_1 expresses the case when all parameters vary. Here, the whole
data updated pdf is substituted by an alternative.

Notice that in the hypotheses definition the random element is the whole pdf 7f. All
other variables like parameters and data occur in the condition and thus they are treated as
known. Hence the expectation is taken over all possible forms of f.

Each of these hypotheses is assigned its weight, characterized as a probability of becoming
true during the time run. That is why they must fulfill \; € [0,1], i=0,...,2" —1 and

PIARPYESY

3.2 Approximative pdf

The convex combination of the probability density functions according to individual hypothe-
ses produces the expectation of the true parameter probability density function.

E[T(0ld(t))Ic] = E [E[f(6ld(t))|C, Hi] IC] =

2m—1

=Y XNE[Tf(0ld(t))IC, Hi] (7)

=0

where the condition C = {6, d(t)}

We search for an approximative pdf f(0]d(t)) of the mixture (7) that belongs to the same
family of distributions as the mixture components. Under general conditions, as a ‘measure’ of
dissimilarity between two distributions, it is convenient to use the Kullback-Leibler divergence
[9]. Hence the approximative pdf could be selected as that one which minimizes the expected



divergence between the mixture and itself

arg min E [KL (77| ) Ic] =

Fef(0ld(t))
, TF(01d@))

- El [ Troae)m L0940 g0l =

e @) /. R (T
— i E[Zf(0]d(t))|C, Hi] In ——— LIy

fi?iﬁik/e* S R TIO)

on_1 1

— i NE [TF(8ld(1)|C, Hi] x In ——— db 8

o [ SNELHOMNCH] < s ®

Using the relation (8), we found the best approximation of the true parameter probability
density function f(0|d(t)). This pdf ideally approximates the probabilistic description of the
real behaviour of model.

4 Algorithm of the partial forgetting

The algorithm of the partial forgetting method can be described as follows:

Initial mode, for t =0

e Specify the appropriate hypotheses H; € H*, i =0,...,2"™ — 1 about expectation of the

true parameter pdf E [Tf]

e Select the probabilities \; € [0,1], 7 =0, ...,2" — 1 of relevance of individual hypothesis

H, € H*.

e Specify proper alternative pdfs for subset of hypotheses H*\ Hy (e.g. using the prior

pdf)

On-line mode, for ¢t > 0

1.

2.

Collect the newest data d;
Perform the data update (3)

Construct appropriate pdf for each hypothesis from H* (6) with a proper alternative
parameter behaviour, i.e.:

(a) Compute the pdf after the data update;
(b) Change the pdf describing the related parameter(s) with its alternative;

. Compute the minimally divergent pdf

. If t < teng (tenq is the ending time of the estimation), go to the step 1.



The probability density function from the step 4 forms the optimal estimate of the true
parameter probability density function.

Remark 2 The qualities like consistency and bias of the estimate are critically dependent
on the choice of hypotheses and weights, which should be solved as an optimization problem,
however it is computationally demanding. The preferred approach is to choose from the set
of hypotheses H* only those which can become significant during the time development. It
means, that we can select only a subset of the hypotheses set H* and consider the remaining
possible hypotheses to have weights equal to zero.

5 Derivation for normal regression model

If we assume normality of the regression model (1), we can consider the parameters to have
Gauss-inverse-Wishart (GiW) distribution defined as follows [10]:

Proposition 1 (Gauss-inverse-Wishart pdf) The probability density functionof the Gauss-
imverse- Wishart distribution has the form

GiWeo(V,v) = W exp {;1 [;}]/ vy } 9)

or

—0.5(v+n+2) _ . A
GZW@(L, D, V) = T_[(_LiDy) X exp {27’ [(0 — 8)/071(0 — 0) + DLSR:| } (10)

where the individual terms have the following meaning:
v stands for degrees of freedom,
n denotes length of the regression vector [—1,6'),
r is the variance of model noise,

V; is the extended information matriz, i.e. symmetric square n X n dimensional non-zero
positive definite matriz, which carries the information about the past data. By its L' DL
decomposition, the terms L and D are obtained.

0 is a vector of regression parameters
0 is a least-squares (LS) estimate of 0
I stands for normalization integral
C' is the covariance of LS estimate

Dysr is the LS reminder

The expression of individual terms (the normalization integral in particular) can be found in
[10]. The important terms are given later in this paper.



The extended information matrix is symmetric and positively definite and therefore fac-
torable to unique unit triangular matrix L and the unique unit diagonal matrix D as follows

\-a‘/ \.dwl , 1 0 ! Ldp 0 1 0
V:[tdw LW]ZLDL:[WL WL] [o WDHWL WL} (11)

Here, the left upper-corner elements of the V and D matrices are scalars, D, 4 ¢ R.
Recalling Proposition 1, the least-square estimate of parameters 6 = WL-1I¥L has the
covariance C' = Y[ ~1 W’D‘l( WL_I)/ and the least-square reminder Dygr = L.

Suppose, that the GiW pdf given above represents the density obtained by the data-
update step (3) and the next logical step to be determined is the time update in the form of
forgetting. First, we have to construct appropriate hypotheses about the individual regression
parameters’ behaviour (6).

Proposition 2 (Low-dimensional pdfs of GiW pdf) Given a distribution GiWq (V. V).
Let L' DL be the decomposition of the extended information matriz V of its probability density
function as follows:

1 Ldp
L= |ldg Lo, D = lapy (12)
ey, laby, L, L))

Then, the GiW probability density function can be decomposed to the low-dimensional marginal
pdf

: 1 L)
f( L%, 7’) ~ GZW'.‘HJ‘ <|:LdaL LaL:| s I: LG’D:| ,V)

(13)

and the low-dimensional conditional pdf
-1
7, 1) ~ Ny, (t@l (L, — Loty Lg) (L U ) )

(14)
The proof can be found in [10]

This proposition allows us to select and change the marginal pdf for parameter 9 by
replacing the proper rows in the L’ D L-factorized information matrix with suitable alternative.
To change the marginal pdf inherent to parameter B, it is necessary to permute the proper
rows of the information matrix. The permutation algorithm is given in [10] as well.

As given in Section 3.2, the convex combination of the hypothetic pdfs with weights \;
leads to a mixture of densities approximating the true parameter probability density function.
To approximate this mixture with a single GiW density we search for the minimally divergent
(in the Kullback-Leibler divergence sense) pdf as given in (8). The Kullback-Leibler divergence
introduced by (5) of two GiW distributions is given by the following proposition [10]:



Proposition 3 (KL divergence of two GiW pdfs) Given two distributions with proba-
bility density functions f and f. The Kullback-Leibler divergence of these two functions has
the following form

r D
(057) _ 51 ICC™| + 0.50 In =222

KL<fo):1nF(05 ) Drsr

0.5 — 9)o(0.50) — 0.5n — 0.50 + 0.5T¢ (CC"1>

A/ A~
s A A (s £ .
H05 5 [(0 o) ¢ (6-0) +DLSR] (15)
where 1o (-) denotes the digamma function, i.e. the first logarithmic derivative of the gamma

function T'(+).

The proof is not trivial and is given in [10].
To find the best approximation of the mixture (7) of GiIW densities, we need to find the
minimum of the Kullback-Leibler divergence (Proposition 3) by taking derivatives with respect

to é,é,DLSR and . Useful identities are %ln |AXB| = (X~ 1) and B%Tr(AX) =A).

Proposition 4 Given a convexr combination (mixture) of n Gauss-inverse- Wishart pdfs. Its
best approrimation in the sense of the minimizer of the Kullback-Leibler divergence, holding
the GiW distribution, is given by the following parameters (statistics)

e O — the regression coefficients

-1 n ' A
) S

i=1

e Disp — the least-squares reminder

n -1
Drsp=17- <Z)\1 < ) (17)

o (' — the least-square covariance matrizc

o LCRO LR I

=1

e and the counter (degrees of freedom,)

1+ /1+2(A-In2)
2(A - ln2)

V=

(19)



where

=In (Z)\

Remark 3 The given expression of counter employs an approzimation of the digamma func-
tion ¢¥o(v). The approximation was done on base of the Bernoulli numbers, however multiple
methods can be used (see e.g. [11][12][13]).

) +Z)\ In Drspri — Z)\ ¥0(0.51%) (20)

DLSR’L i—1

A Gauss-inverse-Wishart probability density function (10) constructed with the found
terms (16), (17), (18) and (19) can be used as the best approximation of the parameters’
reality and hence used e.g. for prediction purposes.

6 Experiments

The partial forgetting method was tested on both artificially generated and real data and
the results were compared to the exponential forgetting method, which is the most popular
approach to time-variant parameters in linear stochastic systems.

The exponential forgetting is formally motivated by time-weighted least squares [7] or
flattening the posterior pdf [1]. The time update has the following form

[F@la®)Y,  xe(0,1] (21)

where f(6|d(t)) is the data-updated pdf from (3) and A is the forgetting factor, usually not
lower than 0.95.
In both cases, the related systems were modeled with a first-order autoregression model
AR(1) in the form
Yt = 01 +92yt—1 +e, t=1,2,... (22)

where 6 = (61,02)" are regression coefficients and e; denotes the normally distributed white
noise with zero mean and constant variance. y; denotes the modelled system output.

According to the model, the appropriate four hypotheses about the true pdf equivalent to
those given in (6) were constructed as follows

H() E [Tf(al,92,T|d(t))|01,(92,7‘ d(t),Ho] = f(91,92,r|d(t))

Hy : E[Tf(01,09,7]d(t))[61, 02,7, d(t), Hi] = f(02101,7,d(t)) fa(61,7)

H2 - E [Tf(a 92,T|d(t))|01,(92,7‘ d(t),HQ] = f(91|02,7‘ d(t))fA(eg,’l“)
[/( Q) d(t), H,

3] = fa(61,602,7) (23)

The optimization problem consisted in the search for optimal weights A = [Ag, A1, A2, Ag] of
hypotheses Hg, H1, H2, H3. The quality of estimation was evaluated by the prediction ability.
As a criterion of the prediction quality, the relative prediction error RPFE was considered

N \/ S (s — 1) -

s t

where y; denotes the real system output, y,; is the predicted output and s is the sample
standard deviation of data on horizon t. The Matlab software was used for this purpose.

10



6.1 User-defined data

First, we try to predict the development of an artificially generated time series. This series
has the following form

1
yt:<09_t> yt71+27 t:17277y(1):2

For testing purposes the data were noiseless, thus we expected almost precise prediction
and a very little relative prediction error. Although the variable term is the multiplier of
the previous output, the first order autoregressive model (22) was expected to catch the
development of the data by both regression coefficients 61,65. As the source of alternative
information for the partial forgetting-based estimation, we used the prior obtained from the
first 10 data samples. The following 50 samples were used directly for prediction.

The course of the modelled (i.e. generated) data shows Figure 1.

ARTIFICIALLY GEMERATED DATA
18 T T T T T

VaLUE

1] 10 20 30 40 a0 G0
TIME

Figure 1: Artificially generated data.

The test showed that the partial-based estimation of the regression coefficients 61, 6 led
to a better prediction than the prediction with exponential forgetting. The optimal forgetting
weight of the exponential forgetting was 0.95, which led to the relative prediction error RPE =
0.0045. The partial forgetting minimizes the error with weights A = [0.89,0,0.05, 0.06] leading
to RPE = 0.0017.

In the Figures 2 and 3, the course of parameters estimates of the autoregressive model
with partial and exponential forgetting is shown. The absolute prediction errors are depicted
in the Figures 4 and 5, respectively.
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The Table 1 summarizes a few interresting characteristics of the prediction, namely the
relative prediction error RPE and statistics of the absolute prediction errors (residues) —
the maximum and minimum error, the mean and the standard deviation. Apparently, the
prediction errors are more symmetric around zero in the case of the prediction with the partial
forgetting-based parameter estimation.

’ Characteristics Partial forg. Exp. forg.
Rel. pred. error 0.0017 0.1576
Pred. error — minimum —-0.0037 —-0.0140
Pred. error — maximum 0.0113 0.0113
Pred. error — average —-0.0009 -0.0077
Pred. error — st. deviation 0.0040 0.0072

Table 1: Artificially generated data: Elementary characteristics of AR(1) model with partial
forgetting with A = [0.89, 0, 0.05,0.06] and exponential forgetting with A = 0.95.

ARTIFICIALLY GEMNERATED DATA
FPaRTIAL FORGETTING - PARAMETER ESTIMATES
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TIME

Figure 2: AR(1) with partial forgetting: Evolution of model parameters estimates
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ARTIFICIALLY GEMERATED DATA
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Figure 3: AR(1) with exponential forgetting: Evolution of model parameters estimates
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Figure 4: AR(1) with partial forgetting: Prediction errors
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PREDICTION ERROR

ARTIFICIALLY GEMERATED DATA
EXPOMEMTIAL FORGETTIMG - PREDICTION ERRORS
0.015 T T T
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Figure 5: AR(1) with exponential forgetting: Prediction errors
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6.2 Transportation data

The next test used the real traffic data. The data sample consisted of traffic intensities
measured in Prague, Czech Republic, with the sampling period equal to five minutes. For
testing purposes, a data window of 300 samples was used (see Fig. 6). The initial 10 samples
were used as a source of alternative information.

Again, the normal first order autoregression model AR(1) defined by Equation (22) was
used.

Some interesting results and statistics are summarized in the Table 2. Again, it com-
pares the AR(1) models with parameter estimation with partial and exponential forgetting
methods and shows the relative prediction error and a few interesting statistics of the ab-
solute prediction errors. Apparently, the partial forgetting based estimation with weights
A =1[0.9,0.1,0,0] led to smaller relative prediction error RPE = 0.0422, while the exponen-
tial forgetting worked best with weight A = 1.0 (i.e. no forgetting) leading to RPE = 0.0989.
The absolute prediction errors were smaller and less biased in the case of the partial forgetting
method.

Figures 7 and 8 show the evolution of model parameter estimates él and ég during the
estimation for both forgetting methods. Apparently the changes are caught by the absolute
term in both cases, as one would intuitively expect.

Figures 9 and 10 respectively show the course of prediction errors for both forgetting
methods. The prediction with partial forgetting led to smaller and more symmetrical (around
zero) errors than the exponential forgetting.

’ Characteristics Partial forg. Exp. forg.
Rel. pred. error 0.0422 0.0989
Pred. error — minimum -1.0930 —2.3060
Pred. error — maximum 3.1240 3.8140
Pred. error — average 0.0934 0.7709
Pred. error — st. deviation 0.6215 1.2530

Table 2: Elementary characteristics of AR(1) model with partial forgetting with A =
[0.9,0.1,0,0] and exponential forgetting with A = 1.0.
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TRAFFIC INTEMSITIES
B0 ; 5 ! ! !
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Figure 6: Real course of traffic intensities.
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PARTIAL FORGETTIMNG - PARAMETER ESTIMATES

PARAMETER ESTIMATE WALUE

o a0 100 150 Zoo Pl 300
TIME

Figure 7: AR(1) with partial forgetting: Evolution of model parameters estimates
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TRAFFIC INTEMSITIES
EXPOMENTIAL FORGETTING - PARAMETER ESTIMATES
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Figure 8: AR(1) with exponential forgetting: Evolution of model parameters estimates
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Figure 9: AR(1) with partial forgetting: Prediction errors
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Figure 10: AR(1) with exponential forgetting: Prediction errors

7 Conclusions

The paper described a new method suitable for tracking of slowly time-varying parameters of
a linear stochastic model with parameters that vary in time with different rates. It is based on
an unknown true probability density function, describing the real behaviour of parameters. To
find its approximation, we define hypotheses about this pdf, introducing its point estimates.
Their convex combination is approximated to find the minimally divergent (in the Kullback-
Leibler divergence sense) pdf, well describing the parameters and therefore convenient e.g.
for prediction purposes.

The tests on both artificially generated and real traffic data demonstrate, that this ap-
proach to slowly time-variant model parameters is suitable and the obtained results show the
improvement of the prediction quality in comparison to the exponential forgetting.

The challenge is to find a method for selecting significant hypotheses from the set of
all possible hypotheses, as well as the choice of their weights. Also, there may be multiple
approaches to the problematics of the suitable alternative(s). Any theoretical concept would
be welcome.
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