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The paper presents a new methodology for improving of estimates of radiological situation on 
terrain in the late phase of a nuclear accident. Methods of Bayesian filtering are applied to the 
problem. The estimates are based on combination of modeled and measured data provided by 
responsible authorities. Exploiting information on uncertainty of both the data sources, we are 
able to produce improved estimate of the true situation on terrain. We also attempt to account 
for model error, which is unknown and plays crucial role in accuracy of the estimates. The 
main contribution of this paper is application of an approach based on advanced statistical 
methods,  which  allows  for  estimating  of  model  error  covariance  structure  upon 
measurements.  Model  error  is  estimated  on  basis  of  measured-minus-observed  residuals 
evaluated upon measured and modeled values. The methodology is demonstrated on a sample 
scenario with simulated measurements.

A) INTRODUCTION

     In  case of  an accident  in  a  nuclear power plant,  there could be an aerial  release of 
radioactive  pollutants  into  the  living  environment.  If  such  a  release  occurs,  there  is  a 
radioactive  plume moving over  the terrain.  During this  phase,  the  plume cause primarily 
exposure from the cloud and internal exposure due to inhalation. Due to deposition processes, 
the plume is depleted during passing over terrain and leaves a radioactive trace on the ground. 
The time interval spanning from the time of the release start to time when the radioactive 
cloud leaves area of interest (in meso-scale modeling up to few tens or hundreds kilometers 
from the source) is called the plume phase. 
    After the plume phase, post-emergency phase (late phase) follows. It covers latter stages of 
accident consequences evolution. Post-emergency phase may extend over a prolonged period 
of several weeks or many years depending on the source of radiation and local conditions. It 
ends when environmental radiation levels resume to normal. The main exposure pathways in 
this  phase  are  external  exposure  due  to  radionuclides  deposited  on  the  ground,  internal 
exposure due to inhalation of resuspended material (in some cases) and also internal exposure 
due to ingestion of contaminated foodstuffs as the deposited material migrates through the 
root system to the edible parts of crops consumed by people and livestock [1].
     This paper deals with assessment of radiation situation in the late phase of an accident. 
Knowledge of spatio-temporal distribution of radioactive material in this phase is essential for 
emergency  management  and  planning  of  late  phase  countermeasures.  The  distribution  of 
radioactive  material  on  terrain  can  be  modeled  via  models  taking  into  account  both  the 
radioactive decay and also removing of material caused by environmental processes. 
     We are aware of the fact that model results are not perfect and error can be in this field of 
modeling high (tens or even hundreds of percents compared to the real magnitude). The main 
sources of uncertainties are in model input parameters (source term, weather forecast, etc.), in 
wrong conceptualization of the physical problem and there are also inherited uncertainties 
caused by stochastic nature of the problem. The only information of the true situation on 
terrain is provided by measurements, which are assumed to be more accurate than model 



predictions.  Adjustment  of  model  predictions  in  a  way  to  be  in  accordance  with  these 
measurements can increase their reliability. The process of combining information provided 
by mathematical model and measurements is referred as data assimilation.

B) DATA ASSIMILATION
    
     Bayesian approach to filtering is applicable to all linear and nonlinear stochastic systems. 
Its  principle  consists  in  combining  of  the  information  provided  by  the  model  with  the 
measured data. Bayesian estimation procedure has two iteratively repeated steps. The first 
step transits the state estimate to the next time step. From the known state estimate in time t 
evaluates the prediction of the state in time t+1. This step is called time update. In the second 
step called data update, the information provided by actual measurements yt+1 is included into 
the current estimate, which is being adjusted towards these measurements.
     Kalman filter is simple implementation of the Bayesian filter and is widely employed in 
many fields. Its usage is limited to the case of linear estimation with the Gaussian noise. 
Under  these  assumptions  leads  general  Bayesian  filtering  scheme  to  the  Kalma  filter 
equations for time update and data update steps [9]. The equations perform recursive update 
of  the  first  two  moments  of  estimated  Gaussian  distribution  -  the  mean  value  x and  its 
covariance matrix P. The unavoidable condition for application of Kalman filter is knowledge 
of model and measurement error.

C) ASSIMILATION SCENARIO

    Our assimilation scenario covers the post-emergency phase. The source of pollution is 
placed into the center of polar network. We perform our calculations on subset of this network 
in successive time steps. All the calculations are made in terms of groundshine-dose as it can 
be easily measured and other dosimetric quantities can be calculated from it. Groundshine-
dose  in  ordered  set  of  analyzed spatial  points  forms our  state  vector  x.  We assume  x ~ 
N(x*,P),  where N(x,P)  is  multi-dimensional Gaussian distribution with mean value  x  and 
covariance matrix  P,  x* is the state estimate. Let  x*0  be an initial estimate of groundshine-
dose and  P0 its  corresponding error covariance matrix.  This background-field is  given by 
probabilistic  version  of  Atmospheric  Dispersion  Model  (ADM)  and  constitutes  the  prior 
characterization of the problem. It is based on segmented Gaussian plume model and it is part 
of the HARP system, more in [8]. We assume sparse measurements y of actual gamma dose-
rate  to be available  each time step.  These measurements are assumed to  be conditionally 
independent with known error. 
     As the problem is treated as linear-Gaussian, it can be solved via Kalman filter. Provided 
that the model error covariance matrix is known, the time update of forecast error covariance 
matrix Pt is calculated as Pt  = MPt-1M+Qt  [9]. The value of Q should reflect total (unknown) 
model error, which is contribution to the forecast error due to differences between the model 
and the true process in each step. It is obvious that if  Q is neglected, the predicted forecast 
error  will  be  underestimated.  This  could  cause  divergence  from  the  true  state  (its  good 
estimate)  because  smaller  model  error  will  handicap  the  information  provided  by 
measurements.
 

1. Estimation of model error covariance matrix

      In our case, the model error covariance matrix Q is unknown and it has to be estimated 
before  application  of  KF  each  assimilation  step.  As  the  total  number  of  model  error 
covariance elements to be estimated is much higher than the number of measurements, we 
can't estimate all of them. Simplified covariance model based on idealized assumptions has to 
be introduced.



       Schematically, let the model error covariance matrix be approximated as a function Q(θ) 
of a parameter vector  θ. Function Q has to be chosen properly in order to produce positive 
semi-definite  symmetric  matrices,  which  can  be  covariance  matrices.  The  covariance 
parametrization is constructed upon physical background of the problem, more in [3], [10].

Figure 1. Schematic of one cycle of recursive assimilation algorithm.

For finding the most plausible values of  θ a similar approach as proposed in [4] based on 
modeled-minus-observed  residuals  is  used.  Instead  of  maximum  likelihood  estimates 
proposed  there  we  use  marginalized  particle  filter  described  for  example  in  [2].  The 
marginalized particle filter is a powerful combination of the particle filter and the Kalman 
filter, which can be used when the underlying model contains a linear sub-structure, which is 
being subject to Gaussian noise.
      When the measurements are available, we can evaluate residual vector v having the same 
dimension as the measurement vector.  We assume  v  to be normally distributed with zero 
mean value and covariance matrix dependent on estimated parameters  v  ~ N(0, S(θ)). The 
form of residual covariance is derived in [4]. The most plausible values of parameters are 
found each time step via  particle  filter  from multiple  evaluation of likelihood p(vt|θt)  for 
different parameter vectors θt from the set {θt

(1), θt
(2),..., θt

(N)}. The likelihood is the higher, the 
higher is the probability that the difference between modeled and measured values is zero 
given the covariance  S(θt

(i)). Incorporation of this algorithm into Kalman filter assimilation 
scheme  results  in  marginalized  particle  filter  for  estimation  of  joint  probability  density 
function p(xt, θt| yt) which is a mixture of Gaussian and nonparametric distributions.
      The schematic  of assimilation procedure is in the Figure 1.  Assimilation procedure 
consists of two iteratively repeated steps: In time update step current state estimate together 
with its forecast error covariance matrix are propagated forward in time. The model error is 
estimated and accounted for. Following data update step produces so called analysis - adjusts 
the model prediction to be in accordance with actual  measurements.  Along with this  two 
Kalman filter steps is in each time step estimated model error and added to the forecast error. 
The algorithm is in detail explained in [10]. 

D) NUMERICAL EXAMPLE

       Among many radionuclides released during emergency situations, we focus only on Cs-
137. Its half-time of decay is long (30 years) and also analysis after the Chernobyl accident 
had shown that it is one of the most significant nuclides in these types of accidents having 
detrimental long-term effects on population health.
      Groundshine-dose evolution is modeled via semi-empirical formulas from Japan model 
OSCAAR. This abbreviation stands for Off-Site Consequence Analysis code for Atmospheric 
Releases  in  reactor  accidents.  It  has  been  developed  within  the  research  activities  on 



probabilistic  safety  assessment  at  the  Japan  Atomic  Research  Institute  [6]  and  besides 
radioactive  decay  it  is  capable  to  take  into  account  the  decrease  of  groundshine  due  to 
environmental  processes,  such as  radionuclide migration deeper  into the  soil,  weathering, 
leaching etc.
      For experimental demonstration of the algorithm, an artificial scenario with local rain 
during the fifth hour of the plume phase was chosen.  The rain increases depletion of the 
plume due the wet deposition. The area of interest is subset of polar network comprising of 91 
analyzed points. The measurements were simulated via linear forward observation operator 
where the true initial deposition x0 was assumed to be two times higher than the prior estimate 
x*0  obtained from ADM. The initial estimate of forecast error covariance matrix was also 
provided  by  ADM  where  the  rain  intensity  was  treated  as  random  variable  with  given 
probability distribution. This provided us a valuable physical knowledge but this process also 
introduced  strong  covariances  among  states.  Before  assimilation,  the  covariances  were 
reduced  in  a  way of  element-wise  multiplication  with  matrix  generated  by  the  means  of 
second order autoregressive function [3]. Presentation of visualized assimilation results with 
comments will be given in oral presentation.

E) CONCLUSION

    The  results  are  in  compliance  with  our  expectations  for  this  special  scenario.  Model 
predictions were successfully adjusted in accordance with the measurements correcting the 
speed of dose mitigation. Even thought it seems that the methodology has a potential for 
improving of reliability of predictions in the late phase, the algorithm still has to be improved 
in terms of robustness and carefully tested.
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