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Abstract

Economic activities developing over time are very often inuenced simultaneously by a random factor
(modelled mostly by a stochastic process) and a \decision" parameter that has to be chosen according to
economic possibilities. Moreover, it is necessary often to evaluate the economic activities simultaneously
by a few \utility" functions. Evidently, the mentioned economic situations can lead to mathematical mod-
els corresponding to multistage multiobjective stochastic programming problems. Usually, the multiob-
jective (one{stage) problems and multistage (one{objective) problems have been investigated separately.
The aim of this contribution will be to try to analyze a relationship between these two approaches.
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1 Introduction

Multistage stochastic programming problems belong to optimization problems depending on a
probability measure. Usually, the operator of mathematical expectation appears in the objective
function and constraints set can depend on the probability measure also. The multistage sto-
chastic programming problems correspond to applications that can be considered with respect
to some �nite "discrete" (say (0; M); M � 1) time interval and simultaneously there exists a
possibility to decompose them with respect to the individual time points. A decision, at every
individual time point say k; can depend only on the random elements realizations and the deci-
sions to the time point k� 1 (we say that it must be nonanticipative). To de�ne the multistage
stochastic programming problems we employ an approach in which the multistage stochastic
programming problem is introduced as a �nite system of parametric (one{stage) optimization
problems with an inner type of dependence (for more details see e.g. [1]). The multistage
stochastic programming problem can be then introduced in the following form.

Find
'F (M) = inf fE

F �0g
0
F (x

0; �0)j x0 2 K0g; (1)

where the function g0F (x
0; z0) is de�ned recursively

gkF (�x
k; �zk) = inffE

F �k+1j��k=�zk gk+1F (�xk+1; ��k+1) jxk+1 2 Kk+1
F (�xk; �zk)g;

k = 0; 1; : : : ; M � 1;

gMF (�xM ; �zM ) := gM0 (�xM ; �zM ); K0 := X0:

(2)



�j := �j(!); j = 0; 1; : : : ; M denotes an s{dimensional random vector de�ned on a prob-
ability space (
; S; P ); F �j (zj); zj 2 Rs; j = 0; 1 : : : ; M the distribution function of the

�j and F �kj��k�1(zkj�zk�1); zk 2 Rs; �zk�1 2 R(k�1)s; k = 1; : : : ; M the conditional distribu-
tion function (�k conditioned by ��k�1); P

F �j ; PF �k+1j��k ; j = 0; 1; : : : ; M; k = 0; 1; : : : ; M � 1

the corresponding probability measures; Zj := Z
F �j � Rs; j = 0; 1; : : : ; M the support of

the probability measure P
F �j : Furthermore, gM0 (�xM ; �zM ) denotes a continuous function de-

�ned on Rn(M+1) � Rs(M+1); Xk � Rn; k = 0; 1; : : : ; M is a nonempty compact set; the
symbol Kk+1

F (�xk; �zk) := Kk+1

F �k+1j��k
(�xk; �zk) (Kk+1

F �k+1j��k
(�xk; � Xk); k = 0; 1; : : : ; M � 1 de-

notes a multifunction mapping Rn(k+1) � Rs(k+1) into the space of subsets of Rn: ��k(:=
��k(!)) = [�0; : : : ; �k]; �zk = [z0; : : : ; zk]; zj 2 Rs; �xk = [x0; : : : ; xk]; xj 2 Rn; �Xk =
X0 � X1 : : : � Xk; �Zk := �Zk

F = Z
F �0 � Z

F �1 : : : � Z
F �k ; j = 0; 1; : : : ; k; k = 0; 1; : : : ; M:

Symbols E
F �0 ; EF �k+1j��k=�zk ; k = 0; 1; : : : ; M � 1 denote the operators of mathematical expec-

tation corresponding to F �0 ; F �k+1j��k=�zk ; k = 0; : : : ; M � 1:

The problem (1) is a \classical" one{stage, one{objective stochastic problem, the problems
(2) are (generally) parametric one{stage, one{objective stochastic optimization problems. Let
us assume a special case when the function gM0 (�xM ; �zM ) ful�ls the following assumption.

i.1 there exist continuous functions �gj(xj ; zj); j = 0; 1; : : : ; M de�ned on Rn�Rs such that

gM0 (�xM ; �zM ) =
MX

j=0

�gj(xj ; zj): (3)

Evidently, under i.1, the function �gj(xj ; zj) corresponds to an evaluation of the economic activity
at the time point j 2 f0; 1; : : : ; Mg: However, it happens rather often that it is reasonable to
evaluate this economic activity simultaneously by several \utility" functions, say �gji (x; ; z); i =
1; : : : ; l: Including this reality we can see that the \underlying" common objective function
gM0 (�xM ; �zM ) (in (1) and (2)) has to be replaced by the following multiobjective criterion function.

gM0; i(�x
M ; �zM ) =

MX

j=0

�gji (x
j ; zj); i = 1; : : : ; l: (4)

Consequently, assuming the same inner time dependence as it was assumed in the problem (1)
and (2), we obtain formally the following multistage, multiobjective problem.

Find
'F (M; i) = inf E

F �0g
0; i
F (x0; �0); i = 1; : : : ; l subject to x0 2 K0; (5)

where the function g
0; i
F (x0; z0); i = 1; : : : ; l are de�ned recursively

g
k; i
F (�xk; �zk) = inf E

F �k+1j��k=�zk g
k+1; i
F (�xk+1; ��k+1); i = 1; : : : ; l

subject to xk+1 2 Kk+1
F (�xk; �zk); k = 0; 1; : : : ; M � 1;

g
M; i
F (�xM ; �zM ) := gM0; i(�x

M ; �zM ); i = 1; : : : ; l; K0 := X0:

(6)

The problem (5) is formally a problem of one{stage multiobjective optimization theory. The
problems (6) are one{stage multiobjective parametric optimization problems. It is known that
there doesn't exists (mostly) an optimal solution simultaneously with respect to all criteria.
Consequently, the optimal solution has to be mostly replaced by a set of e�cient points.
Consequently, gk; iF ; i = 1; : : : ; l; k = 0; : : : ; M � 1 have to be replaced by multifunctions

Gk; iF ; i = 1; : : : ; l; k = 0; : : : ; M � 1 corresponding to the function values in e�cient points
(for de�nition of the e�cient points see [2] or the following section).
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2 Some De�nitions and Auxiliary Assertion

2.1 One{Stage Deterministic Multiobjective Problems

A multiobjective deterministic optimization problem can be introduced as the problem.

Find
min fi(x); i = 1; : : : ; l subject to x 2 K: (7)

fi; i = 1; : : : ; l are functions de�ned on Rn; K � Rn is a nonempty set.

De�nition 1. [4] The vector x� is an e�cient solution of the problem (7) if and only if x� 2 K
and if there exists no x 2 K such that fi(x) � fi(x

�) for i = 1; : : : ; l and such that for at least
one i0 one has fi0(x) < fi0(x

�): We denote the set of e�cient points of the problem (7) by KE :

De�nition 2. [4] The vector x� is a properly e�cient solution of the multiobjective optimization
problem (7) if and only if it is e�cient and if there exists a scalar M > 0 such that for each i

and each x 2 K satisfying fi(x) < fi(x
�) there exists at least one j such that fj(x

�) < fj(x) and

fi(x
�)� fi(x)

fj(x)� fj(x�)
�M: (8)

We denote the set of properly e�cient points of problem (7) by KPE :

De�nition 3. [2] The vector x� is called weakly e�cient solution of the problem (7) if and only
if x� 2 K and if there exists no x 2 K such that fi(x) < fi(x

�) for every i = 1; : : : ; l: We denote
the set of weakly e�cient points of the problem (7) by KwE :

Furthermore, let us de�ne the following parametric optimization problem.

Find
min
x2K

f�(x); � 2 �; where f�(x) =
lP

i=1
�ifi(x) and

� = f� 2 Rl : � = (�1; : : : ; �l); �i 2 h0; 1i; i = 1; : : : ; l;
lP

i=1
�i = 1g:

(9)

Proposition 1. [2] If

1. x̂ 2 K is a solution of (9) for � 2 �; then x̂ 2 KwE ;

2. K is a convex set, fk; k = 1; : : : ; l are convex functions, then

x̂ 2 KwE () there exists � 2 � such that x̂ is optimal in (9):

Proposition 2. [4] If

1. x̂ is optimal in the problem (9) for some �xed � = (�1; : : : ; �l) 2 � with �i > 0; i =
1; : : : ; l; then x̂ 2 KPE ;

2. K is a convex set and fi; i = 1; : : : ; l are convex functions on K, then

x̂ 2 KPE () there exists � 2 � with �i > 0; i = 1; : : : ; l such that

x̂ is optimal in (9):
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If we denote by the symbols f(KE); f(KPE) � Rl the image of KE ; KPE � Rn obtained by
the vector function f = (f1; : : : ; fl), then the following implication has been recalled in [4].

K closed and convex; fi; i = 1; : : : ; l continuous and convex on K

=) f(KPE) � f(KE) � �f(KPE); where �f(KPE) denotes a closure of f(KPE):
(10)

Lemma 1. [10] Let K � Rn be a nonempty set, fi; i = 1; : : : ; l be functions de�ned on Rn:

Let, moreover, the function f� be de�ned by the relation (9). If fi; i = 1; : : : ; l are bounded
functions on K; (jfi(x)j � �M; x 2 K; i = 1; : : : ; l; �M > 0), then for every x 2 K; f� is a
Lipschitz function on � with a Lipschitz constant not greater then l �M:

2.2 Deterministic Parametric Optimization

De�nition 4. [5] Let h(x) be a real{valued function de�ned on a convex set K � Rn: h(x) is
a strongly convex function with a parameter � > 0 if

h(�x1+(1��)x2) � �h(x1)+(1��)h(x2)��(1��)�kx1�x2k2 for every x1; x2 2 K; � 2 h0; 1i:

Lemma 2. [6] Let K � Rn be a nonempty, compact, convex set. Let, moreover, h(x) be a
strongly convex with a parameter � > 0; continuous, real{valued function de�ned on K: If x0 is
de�ned by the relation x0 = argmin

x2K
h(x); then

kx� x0k2 �
2

�
jh(x)� h(x0)j for every x 2 K:

Lemma 3. [10] Let K � Rn be a nonempty convex set, " 2 (0; 1): Let, moreover, fi; i =
1; : : : ; l be convex functions on K. If

1. f1 is a strongly convex (with a parameter � > 0) function on K; then f� de�ned by (9) is
for � = (�1; : : : ; �l) 2 � with �1 2 ("; 1) a strongly convex function on K;

2. fi; i = 1; : : : ; l are strongly convex function on K with a parameter �; then f� de�ned by
(9) is a strongly convex function on K:

Lemma 4. [7] Let K 2 Rn; Y 2 Rm; n; m � 1 be nonempty convex sets. Let, furthermore,
�K(y) be a multifunction mapping Y into the space of nonempty closed subsets of K; h(x; y)
function de�ned on X � Y such that

�'(y) = inffh(x; y)jx 2 �K(y)g > �1 for every y 2 Y:

If

1. h(x; y) is a convex function on X � Y and simultaneously

�( �K(y(1)) + (1� �)( �K(y(2)) � �K(�y(1) + (1� �)y(2)) for every y(1); y(2) 2 Y;

then �'(y) is a convex function on Y:

2. h(x; y) is a Lipschitz function on X�Y with the Lipschitz constant L and simultaneously

�[ �K(y(1)); �K(y(2))] � �Cky(1)� y(2)k for every y(1); y(2) 2 Y and a �C � 0

then �'(y) is a Lipschitz function on Y with the Lipschitz constant not greater then L( �C+1):
(the symbol �[�; �] denotes the Hausdor� distance, for the de�nition see e.g. [12].)
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3 Problem Analysis

In this section, we return to the problem introduced by (6) and (7). In particular, the aim of this
section will be to try to characterize points obtained by \weight" approach and consequently to
approximate e�cient points sets corresponding to the individual problems (6), (7). To this end
we assume.

A.1 �gji (x
j ; zj); i = 1; : : : ; l; j = 0; : : : ; M are for every �zM 2 �ZM convex functions of

�xM 2 �XM ;

A.2 �[Kk+1
F (�xk(1); �zk); �xk(2); �zk)] � Ck�xk(1)� �xk(2)k for every

�xk(1); �xk(2) 2 �Xk; �zk 2 �Zk and some C > 0;

A.3 �Kk+1
F (�xk(1); �zk)+ (1��)Kk+1

F (�xk(2); �zk) � Kk+1
F (��xk(1)+ (1��)�xk(2); �zk) for every

�xk(1); �xk(2) 2 �Xk; �zk 2 �Zk,

A.4 Gk; iF (�xk; �zk) 2 (�1; +1) for every �xk 2 �Xk; �zk 2 �Zk:

The cases under which the assumption A.2, A.3 and A.4 are ful�lled can be found e.g. in [8] or
[11].

Evidently, according to the assertions of Proposition 1, Proposition 2 and the relation (10)
it is reasonable to set a weight approach to the multiobjective function (5). We obtain by this
one{objective multistage parametric problem of the type (1), (2) in which

gM0 (�xM ; �zM ) is replaced by g
M;�
F (�xM ; �zM ) =

MX

j=0

lX

i=1

�i�g
j
i (x

j ; zj); � = (�1; : : : ; �l) 2 �:

Obviously, for given � 2 � the values of the component �i for every i 2 f1; : : : ; lg corresponds to

the relevance of the component
MP
j=1

�gji (x
j ; zj) in the multiobjective criterion

MP
j=1

�gj1(x
j ; zj); : : : ;

MP
j=1

�gji (x
j ; zj) (for more details see e.g. [3] or [4]). Consequently, we obtain (by this approach)

the following multistage stochastic parametric programming problem.

Find
'�F (M) = inf fE

F �0g
0; �
F (x0; �0)j x0 2 K0g; (11)

where the function g
0; �
F (x0; z0) is de�ned recursively for k = 0; 1; : : : ; M � 1 by

g
k; �
F (�xk; �zk) =

inffE
F �k+1j��k=�zk [

lP
i=1

�i�g
k
i (x

k; zk) + g
k+1; �
F (�xk+1; ��k+1)] jxk+1 2 Kk+1

F (�xk; �zk)g:

(12)
According to Lemma 3, if for every k 2 f0; : : : ; Mg at least one �gki (x

k; zk); i 2 f1; : : : ; lg is a
strongly convex function of xk 2 Xk; then for � 2 (0; ") (" arbitrary small) there exists only one
solution of every individual problem (12). Employing, the assertions of Lemma 1 and Lemma
4 we can see that the optimal function of '�F (M) is (under general assumptions) a Lipschitz
function of � 2 h0; 1i and x. Completed this consideration by scenario approach based on some
stability results (for details see e.g. [11]), according to Lemma 2 and Lemma 4 we can obtain a
relatively \good" approximation of criteria value functions and approximation of e�cient points
sets also.
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Remark. Evidently, the introduced approach doesn't introduce completely e�cient points in the
multiobjective, multistage problems. However, we obtain a \reasonable" solution corresponding
to the evaluation of individual criteria corresponding to the relevance of \underlying" economic
problem. Maybe that some others results can be obtain employing the de�nition of multistage
problems as a problem in some abstract mathematical space. However this consideration is over
the possibilities of this contribution.
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