
Akademie věd České republiky

Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic

Institute of Information Theory and Automation

RESEARCH REPORT

Kárný M., Andrýsek J., Nedoma P., Böhm J., Guy T.V.

On Generalized Factors in Mixture

Learning and Prediction

No. 2095 December 2003

Projects GA ČR 102/03/0049, 102/03/P010
and AV ČR S1075351, S1075102

ÚTIA AV ČR, P. O. Box 18, 182 08 Prague, Czech Republic

http://utia.cas.cz, Fax: (+420) 26605 2068, E-mail: utia@utia.cas.cz

This report constitutes a non-referred software description. Opinions and conclusions
expressed in this report are those of the author(s) and do not necessarily represent the
views of the Institute.

Acknowledgement: This project was supported by GA ČR 102/03/0049, 102/03/P010
and AV ČR S1075351, S1075102

Contents

1 Addressed problem 3

2 Problem solution 3

2.1 Factorized form of normal components . 4

2.2 Filters . 4

2.3 Parameter estimation on filtered data . 5

2.4 Prediction on filtered data . 6

2.5 Action design and generating with filtered data 7

3 Software implementation 7

3.1 Constructors . 7

3.2 Filters . 9

3.3 Learning with ARX mixtures . 10

3.4 Mixture projection and prediction . 12

3.4.1 Mixture projection . 12

3.4.2 Prediction with a mixture . 12

3.4.3 Prediction example . 13

4 Unsolved problem 15

1 Addressed problem

Normal ARX (autoregressive with external variables) factors form basic building blocks
for constructing components creating finite (probabilistic) mixtures. Finite mixtures [1]
serve for efficient description of non-linear, non-Gaussian systems. Their applicability can
be substantially enhanced when using generalized ARX models in the sense introduced in
[2]. This generalization deals essentially with normal ARX model defined on transformed
data: both the regression vector and regressand are transformed by a known, unknown-
parameter-free mapping. This simple idea allows to cover ordinary data scaling, work
with log-normal versions of ARX factors, continuous convolution-based models [3, 4, 5]
etc.

This paper tries to find out structure of necessary evaluations that support the use of
the generalized ARX factors in all tasks treated by the software system Mixtools [6], i.e.
mixture estimation, data prediction as well as design and computing of optimal actions.

2 Problem solution

The following notation is adopted throughout the text.

Symbol Meaning

≡ equality by definition
x∗ a set of x-values
x̊ the number of elements in a vector x or in a finite x∗

f(·|·) probability density functions (pdf)
d(t) sequence (d1, . . . , dt)
t discrete-time, always the last subscript after ;
′ transposition, the default vector orientation is row one
baB a non-numerical index a of a variable B
Ψ raw data vector containing measured data dt and their delayed values
Ψ̄ the richest raw data vector: all mixture components select their data

vectors Ψ from it

Ψ̃ source data vector, i.e. filtered but non-permuted raw data vector Ψ
bπΨ filtered data vector obtained by permuting Ψ̃
|J | absolute value of the determinant of the matrix J

The pdfs are distinguished by the identifiers in their arguments. No formal distinction
is made between random variable, its realization and an argument of a pdf. The correct
meaning follows from the context. We use the chain rule [2] for pdfs

f(a, b|c) = f(a|b, c)f(b|c) (1)

and the formula for evaluation of pdfs of transformed variables. Let α = T (β, γ), α̊ = β̊,
such that for almost all (β, γ) the Jacobian

J(β, γ) ≡

∣
∣
∣
∣
∣

∂T (β, γ)

∂β

∣
∣
∣
∣
∣

(2)

3

is non-zero. Then,

f(β|γ) =
fα(T (β, γ)|γ)

J(β, γ)
(3)

where fα(α|γ) is the original pdf of α conditioned on γ.

2.1 Factorized form of normal components

Let us consider the source data vector Ψ̃ containing filtered both regressands and regres-
sion vector entering a normal component. Its entries are assumed to have a fixed meaning.
Let us split its entries on those that are modelled, distinguished by the left upper subscript
bm, and non-modelled ones, marked by bn. Let the mapping π permute indices 1, . . . , ˚̃Ψ of
Ψ̃ so that its modelled entries are placed to the beginning of the (permuted) filtered data
vector bπΨ, i.e.

bπΨ ≡
[
bmπΨ, bnπΨ

]

, bπΨj ≡ Ψ̃π(j), j = 1, . . . , Ψ̊ ≡ ˚̃Ψ. (4)

The part bmπΨ contains data whose dependence on bnπΨ is modelled by the normal
component, i.e. the normal multivariate pdf written in the factorized version

f
(
bmπΨ| bnπΨ,Θ

)

=

bmπΨ̊∏

i=1

N bπΨi

(

θi
bπψ′

i, ri
)

︸ ︷︷ ︸

normal factor

, (5)

where regression vector bπψi is a sub-selection of
[
bπΨi+1, . . . ,

bπΨ bmπΨ̊,
bnπΨ

]

, θi is the
corresponding vector of regression coefficients and ri noise variance. The unknown pa-
rameters of the component are Θ = {θi, ri}

bmπΨ̊
i=1 .

Obviously, a permutation of the modelled part has to appear in all considered compo-
nents, i.e. bmπΨ̊ has to be common to them and bmπΨ in a component has to be permuta-
tion (possibly trivial one) of bmπΨ in another component. This makes a clear restriction
on allowed permutations π and on the source data vector Ψ̃. On the other hand, the
non-modelled part bnπΨ can be component specific.

For a given source data vector Ψ̃, the structure of the component is described by the
permutation π and by the dimension bmπΨ̊.

The i-th factor models i-th entry bπΨi of bπΨ. Its structure is determined by the
mapping si(·) selecting entries in bπΨj, j ∈

{

i+ 1, . . . , Ψ̊
}

used in the regression vector
bπψi, i.e.

bπψik = bπΨsi(k) = Ψ̃π(si(k)), k = 1, . . . , s̊i, si(k) ∈
{

i + 1, . . . , Ψ̊
}

. (6)

Thus, the structure of the factor is described by the pair i, si.

2.2 Filters

The source data vector Ψ̃ is assumed to result from a sort of filtering, i.e. from a trans-
formation T of raw data vector Ψ. Obviously, its permuted version bπΨ is the result of

4

transformation bπT with entries bπTi(Ψ) = Tπ(i)(Ψ). Let’s split the transformation bπT
into the parts bmπT (Ψ), bnπT (Ψ) according to the following schema.

bπΨ ≡
[
bmπΨ, bnπΨ

]

≡ bπT (Ψ) ≡
[
bmπT (Ψ), bnπT (Ψ)

]

. (7)

The raw data vector Ψ forming argument of this transformation is selected from the richest
raw data vector Ψ̄t made of the raw data d(t) complemented by the state vector in phase
form, i.e.

Ψ̄t = [dt, dt−1, . . . , dt−∂, o], (8)

where t ∈ t∗ ≡ {1, . . . , t̊} denotes discrete time and dt is the data record measured at time
instance labelled by t and o is value of offset.

The structure of the richest raw data vector Ψ̄ is determined by the list of data channels
entering the data record dt, by the order ∂ ≥ 0 and by indicator o 6= 0 of the presence of
unknown offset o×unknown constant.

The mapping S determining Ψ from Ψ̄ has to be time-invariant so that for any t ∈ t∗

Ψi = Ψ̄S(i), S(i) ∈ {1, . . . , (d̊+ 1)∂ + 1}, i = 1, . . . , Ψ̊. (9)

The mapping S may choose any entry from Ψ̄ at most once. It should not introduce delay
in processing so that at least some items from the newest data record dt available at time
t have to be selected by S.

We want to deal with causal (in informational sense) models. This implies that the
the non-modelled part of the transformed data vector bnπT (Ψ) must not depend on dt. We
also want to model modelled part bmΨ of the raw data vector. bmΨ has to include dt but
it may be wider. The transformation bmπT must be regular, i.e. it has to have almost
everywhere non-zero Jacobian. The formulas (3) (5) imply that

f(bmΨ| bnπΨ, bnΨ,Θ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ bmπT (Ψ)

∂ bmΨ
︸ ︷︷ ︸

Jacobi matrix related to bmΨ

∣
∣
∣
∣
∣
∣
∣
∣
∣

−1

bmπΨ̊∏

i=1

N bmπTi(Ψ)

(

θi
bπψ′

i, ri
)

. (10)

This formula implies that the advantageous factorized version of the component can be
preserved only when the Jacobi matrix related to the modelled part is upper triangular one
with i-th diagonal entry dependent on bmΨi, on un-modelled bnΨ and bπψ.

Whenever we require preservation of this property even for different permutations π(·),
the Jacobi matrix related to the modelled part has to be diagonal one with ∂ bmπTi(Ψ)/∂ bmΨi

depending on bmΨi and bnΨ.

There is much more freedom in filtering of the non-modelled part. There, various
channels can be combined and dimensions need not be preserved: both bnπΨ̊ ≥ bnΨ̊ and
bnπΨ̊ ≤ bnΨ̊ may hold.

2.3 Parameter estimation on filtered data

The possibility to use the standard estimation of the ARX model is the main practical
advantage of the generalized ARX model. It can be run within the class of Gauss-inverse-

5

Wishart distributions with pdfs

GiWΘi
(V, ν) ≡ GiWθi,ri(Vi, νi) ≡

r
−0.5(νi+

bπψ̊i+2)
i

I(Vi, νi)
exp

{

−
1

2ri
tr

(

Vi [−1, θi]
′ [−1, θi]

)}

(11)
and statistics updated according to the formulas

bnewVi = Vi +
[
bπΨi,

bπψi
]′ [bπΨi,

bπψi
]

, bnewνi = νi + 1, i = 1, . . . , bmπΨ̊. (12)

The normalization integral I(Vi, νi) is the most effectively expressed when we deal with
L′DL decomposition of the extended information matrix Vi = L′

iDiLi. Here, Li is lower
triangular matrix with unit diagonal, Di diagonal matrix with non-negative entries. It
holds

I(Vi, νi) ≡ I(Li, Di, νi) = Γ(0.5νi)
bdD−0.5νi

i

∣
∣
∣
bψDi

∣
∣
∣

−0.5
20.5νi(2π)0.5 bπψ̊i , (13)

where bdDi is the first diagonal entry of Di and bψDi is gained from Di by cancelling the
first column and row. Note that

∣
∣
∣
bψDi

∣
∣
∣ is simply product of diagonal entries of Di with

the first one omitted.

2.4 Prediction on filtered data

Predictive pdf of individual filtered data bπΨi can be expressed in terms of the normal-
ization integral (13) as follows

f
(
bπΨi|

bπψi
)

=
I

(

Vi +
[
bπΨi,

bπψi
]′ [

bπΨi,
bπψi

]

, νi + 1
)

I(Vi, νi)
, i = 1, . . . , bmπΨ̊. (14)

Let us introduce mixed regression vector ψ̃ consisting of the modelled raw data Ψ and
non-modelled filtered data bnπΨ

ψ̃i ≡
[

Ψi+1, . . . ,Ψ bmΨ̊,
bnπΨ

]

, i = 1, . . . , bmΨ̊. (15)

With the upper triangular Jacobi matrix, the prediction of the original normalized data
reads, i = bmπΨ̊, . . . , 1,

f(Ψi|ψ̃i) =

[

∂ bπTi(Ψi, ψ̃i)

∂Ψi

]−1 I
(

Vi +
[
bπT (Ψi, ψ̃i), ψ̃i

]′ [
bπT (Ψi, ψ̃i), ψ̃i

]

, nui + 1
)

I(Vi, νi)
. (16)

The prediction order stresses that we have to start from the last predicted entry of the
modelled raw data vector bmΨ.

Often, the predictions are evaluated for measured values. Then, the value of bπΨi ≡
bπTi(Ψi, ψ̃i) enters the prediction formula and thus the presence of the Jacobian factor
[

∂ bπTi(Ψi,ψ̃i)
∂Ψi

]

computed at this bπΨi is the only difference encountered between predictions

with ARX and generalized ARX models.

6

It has immediate practical consequence: the current structure estimation can be used
without a change if the diagonal Jacobian depending only on the corresponding data-vector
entry is considered. Otherwise, attempts to cancel some entries from ψ̃i influence the
values of bπTi(Ψi, ψ̃i) and the accumulated statistics correlating in Vi this entry of the
data vector Ψ with entries of ψ̃i have to be recomputed. This is the decisive argument for
the use of transformations with diagonal Jacobians depending on the corresponding entry
of Ψ only.

2.5 Action design and generating with filtered data

The designed action form a part of dt and thus, with the adopted “diagonal” T s, they are
mapped in one-to-one fashion on the filtered modelled data bmπΨ. Thus, the design can
be performed fully in terms of filtered data bπΨ if the design target is expressed in them,
too. In the adopted fully probabilistic design, the optimal strategy is normal and written
in a factorized version mimic to (5). Thus, the transformation onto the raw (original)
actions is made exactly as it is done with prediction.

One additional aspect arises. The implemented design procedures rely on the shifted
phase form of processed data. They can be used without a change whenever this property
is preserved for filtered data. The following important filters meet this property:

• scaling,

• static, non-linear, invertible transformations applied to all delayed variables,

• entry-wise applied linear filters,

• dynamic, non-linear transformations applied to all delayed variables and invertible
for the newest value,

• spline based filters.

3 Software implementation

Software representation of the above approach to generalized ARX factors is discussed
here. The reader is supposed to be familiar with principles of Mixtools processing.

3.1 Constructors

Each component is a structure. It has a field comstr referred to as component structure
(S in (9)). It describes the richest raw data vector Ψ̄. The component structure has
two rows. Each column has the meaning of a channel and a time delay. The pair [0; o]
introduces offset of the value o, see (8).

The factor structure str (si in(6)) and modelled channel ychn are described relatively to
comstr.

7

The relevant constructors are summarized.
Fac = facarx(ychn, str) % ARX factor
Fac = facarxls(ychn, str) % ARX LS factor
Com = comarx(comstr, Facs) % ARX or ARX LS component
Com = matarxls(ychns, str, comstr) % matrix ARX LS component
Mix = mixconst(Coms, dfcs) % mixture of any type
Flt = fltconst(type, filter arguments % filter

The matrix ARX component is not discussed here. It has only an auxiliary meaning for
data input and interpretation of results. The arguments Facs is a cell vector of individual
factors, the argument Coms a cell vector of individual components.

As an example, we have the component structure:

comstr = [2 1 1 1 2 2; 0 0 1 2 1 2] % component structure
comstr =

2 1 1 1 2 2

0 0 1 2 1 2

Two dynamic factors are build. The first one is a model for the comstr structure item
[1;0]. It means, that its relative position in comstr is 2. We speak about the modelled
channel 2 in this sense.

ychn = [1; 0]; % modelled channel
str = [2 1 1 2 2; 0 1 2 1 2]; % factor structure
rstr = str2str(comstr, str) % relative factor structure
rstr =

1 3 4 5 6

ychn = str2str(comstr, ychn) % modelled channel
ychn =

2

Fac1 = facarx(ychn, str) % ARX factor

Fac1 =

ychn: 2 − > modelled item of comstr

str: [1 3 4 5 6] − > factor structure

dfm: 1 − > degrees of freedom

type: 1 − > coded factor type

LD: [6x6 double] − > L’Lt of information matrix

The second factor is build similarly.

ychn = 1; % modelled channel
str = [3 4 5 6]; % factor structure
Fac2 = facarxls(ychn, str); % build matrix ARX LS factor

An ARX component is build by the function comarx.

8

Com = comarx(comstr, {Fac1 Fac2}) % ARX component
Com =

Facs: {[1x1 struct] [1x1 struct]} − > component factors

comstr: [2x6 double] − > component structure

Flts: {[0] [0] [0] [0] [0] [0]} − > array of filters

type: 11 − > coded component type

rawdata: [0 0 0 0 0 0] − > workspace for Ψ

datavect: [0 0 0 0 0 0] − > workspace for Ψ̃

A mixture is build by mixconst:

dfcs = [22 11]; % degrees of freedom
Mix = mixconst({Com Com}, dfcs) % ARX mixture
Mix =

Coms: {[1x1 struct] [1x1 struct]} − > mixture components

dfcs: [22 11] − > degrees of freedom

mmod: 2 − > number of modelled channels

type: 21 − > mixture type (ARX)

3.2 Filters

Filters are realized as structures. A filter contains a coded filter type and all internal
states needed for the data transformation made by it. The filters are build by the function
fltconst and the data transformation is done by the function filters. Composed filters
are cell vectors of individual filters - structures.

The filters on modelled channels must ensure one-to-one data transformation between
raw data and modelled filtered data. The Jacobian of the transformation is needed in
learning, backwards transformation by prediction.

There is no limitation on the filters on non-modelled part of data vector.

The filter constructor has the form:

Flt = fltconst(filter type, filter arguments)

The data filtering on modelled channels is done in three modes. The arguments are:

yraw raw data item
yflt filtered data item

dy logarithm of diagonal Jacobian-matrix entry of the transformation Ψ− > Ψ̃
mode coded mode of operation

Individual modes of filtering are:

[yflt, dy] = filters(Flt, yraw, 1) % used in trial step of estimation
% filter state is not updated
[yflt, Flt] = filters(Flt, yraw, 2) % update filter states
[yraw, Flt] = filters(Flt, yflt, 3) % inverse used in prediction

9

An example folows. Data scaling with filters is discussed. We have a data sample. Mean
and standard deviation of DATA is used for building of filters for each channel.

m = mean(DATA’)

m =

-0.1723 -0.1559

s = std (DATA’)

s =

0.6925 0.8284

The corresponding filter for scalling data of the 1st channel is build. +

Flt = fltconst(1, -m(1), 1/s(1)) % filter for the 1st channel
Flt =

add: 0.1723

mul: 1.4441

type: 1

The filter scales the raw data item by adding F lt.add and multiplying the result by
F lt.mul. The Jacobian of the transformation is F lt.mul. This value is returned in loga-
rithm.

The filters are set either ”manually” or or using auxiliary functions.

The scaling and other filters are supported by the function fltpre. The preprocessing list
is used as input.

pre = {’scale’, []}; % preprocessing list
Mix0 = fltpre(Mix0, pre); % set filters for all channels

Here, the function fltpre sets filters for each comstr element with the exception of offset.

3.3 Learning with ARX mixtures

Learning with an ARX component is done in several steps:

• the component field rawdata (i.e. Ψ) is filled from data sample DATA using comstr
(S in (9));

• corresponding filters recorded in F lts are called, the transformed data elements are
copied to datavect. If the filter contain a numerical value, no filtering occurs. In
this case, the numerical value is only a placeholder;

• the factors Facs are updated. The factors gets values from datavect.

Example follows, the results are displayed in Fig. 1. The data sample is generated.

10

−2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Mixture simulator

−2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Estimated without filters

−2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Estimated with filters

−2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Iterative estimated, filters

Figure 1: Case study: mixture estimation

ndat = 1000; % size of data sample
cove = [0.1 0.01; 0.01 0.1]; % component noise variance
ncom = 4; % number of components
Sim = statsim(ndat, ncom, cove); % data sample
... plot

The initial mixture is build and estimated without filters and forgetting.

Mix0 = genmixe(ncom); % build initial mixture
frg = 1; % without forgetting
Mix = mixestim(Mix0, frg, ndat); % mixture estimation
... plot

The scaling is specified, relevant filters set and the intial mixture is estimated and dis-
played.

pre = {’scale’, []}; % preprocessing requirement
Mix0 = fltpre(Mix0, pre); % set filters
Mix = mixestim(Mix0, frg, ndat); % mixture estimation
... plot

The estimation is done in 10 iterations.

11

niter = 10;

Mix = mixest(Mix0, frg, ndat, niter); % iterative quasi-Bayes estimation
... plot

3.4 Mixture projection and prediction

There are two basic operations related to prediction with normal mixture:

• mixture projection
means marginalization and conditioning. The result of these operations is referred
to as mixture projector;

• mixture prediction
arises from the mixture projection by substitution of a specific regression vector into
it. The result is a static mixture referred to as mixture predictor.

3.4.1 Mixture projection

The projection converts mixture estimator into mixture projector. It provides description
of Student pdf mostly approximated by normal pdf. The projection is conditional pdf on
a set of modelled channels referred to as predicted channels and conditioned by values of
another set of modelled channels referred to as channels in condition. The predictor can
be re-built for a new selection of these channels.

The mixture projection is done by the function mix2pro:

pMix = mix2pro(Mix, pchns, cchns) build mixture projector

The argument together with defaults are:

argument meaning defaults
Mix mixture estimator or projector must be specified
pchns predicted channels all modelled channels
cchns channels in condition no channels in condition

3.4.2 Prediction with a mixture

Prediction with a mixture is derived from a mixture projector by substitution of a regres-
sion vector into it.

The regression vector can be specified for several comstr items only or can be missing.
In the case, the data needed are extracted from the signal database. Often, only values of
zero-delayed structure items are specified and the history items are loaded from database
(DATA).

The regression vector is specified as a raw regression vector. It consists of 3 rows. The
first one contains values, the second and third ones contains the corresponding structure
items.

12

The third row can be omitted - in the case, row of zeros is internally substituted.
Moreover, the second row can be omitted if there is only one channel in condition. The
order of the regression vector is not important. Note that the specification or regression
vector is in ”raw data” style.

The mixture prediction is done by:

lhs = profix(pMix, psi0) prediction

where

argument meaning
lhs output argument(s), see below
pMix mixture projector
psi0 the data vector

The output arguments can have the form:

pMix
[Eths, coves, alphas]
[pMix, weights]
[Eths, coves, alphas, weights]

where

argument meaning
Eths vector or cell vector of means of individual components
coves vector or cell vector of noise covariances
alphas weights of individual components corresponding to normalized dfcs

modified due to conditioning
weights data-dependent approximate component weights

The prediction can be done for a number of processing steps ahead.

lhs = profixn(Mix, psi0, nsteps) prediction nsteps ahead

Join mixture projection and prediction done by one function can be made:

lhs = mixpro(Mix, pchns, cchns, psi0) mixture prediction

3.4.3 Prediction example

The mixture projection is documented by a simulated example. A static ARX LS mixture
is built and data cluster displayed in Fig. 2, subplot 1.

13

6 8 10 12 14
15

20

25

30
data 1x2

Data clusters

6 8 10 12 14
15

20

25

30
estimated mixture

6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5
psi0=22

−2 −1 0 1 2

−2

−1

0

1

2

estimated, scalling canceled

Figure 2: Mixture prediction

slide3.m

14

cove = ltdl([0.1 0.01; 0.01 0.1]); % common component noise covari-
ance
ncom = 4; % number of components
Mix = statsim(0, ncom, cove); % build ARX LS mixture
... plot ...

Then, the mixture projector is build:

pchns = 1; % predicted channel
cchns = 2; % channel in condition
pMix = mix2pro(Mix, pchns, cchns); % build mixture predictor
pMix.states

ans =

predicted: 1

incondition: 2

The result is p-ARX LS mixture. The mixture states record the projection done.

The mixture prediction is built and displayed in Fig. 2 subplot 2. The prediction is static
p-matrix ARX LS mixture. The degrees of freedom of components are transformed due to
conditioning. This form cannot be rebuild for another conditioning and marginalization.
The data vector can be supplied in the forms shown below.

psi0 = 0.5; % zero-delayed data vector
psi0 = [0.5 2]’; % other form of psi0
psi0 = [0.5 2 0]’; % the complete psi0 specification
pMix1 = profix(pMix, psi0); % get prediction
... plot ...

The filters are disconnected and the mixture is displayed in Fig. 2 subplot 4. Note that
internally the mixture is held in scalled data but, any projection displays it in the user
data levels.

for i=1:4

Mix1.Coms{i}.Flts{1} = 0;

Mix1.Coms{i}.Flts{2} = 0;

end

... plot mixture ...

4 Unsolved problem

The presented implementation of generalized factors does not solve systematically how
to handle admissible non-diagonal relationships among non-modelled channels. This case
is important as it includes the data transformation that must be done during estimation
of important factors. ARMAX models represent a prominent example of this type. This
case will be solved later on.

15

References

[1] D.M. Titterington, A.F.M. Smith, and U.E. Makov, Statistical Analysis of Finite
Mixtures, John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore,
1985, ISBN 0 471 90763 4.

[2] V. Peterka, “Bayesian system identification”, in Trends and Progress in System
Identification, P. Eykhoff, Ed., pp. 239–304. Pergamon Press, Oxford, 1981.

[3] T.V. Guy and M. Kárný, “Spline-based hybrid adaptive controller”, in Modelling,
Identification and Control. Proceedings, M. H. Hamza, Ed., Anaheim, February 1997,
pp. 118–122, IASTED Acta Press.

[4] T. V. Guy, M. Kárný, and J. Böhm, “Linear adaptive controller based on smooth-
ing noisy data algorithm”, in European Control Conference. ECC ’99. (CD-ROM),
Karlsruhe, August 1999, pp. –, VDI/VDE GMA.

[5] Guy T. and Karny M., “Possible way of improving the quality of modelling for adaptive
control”, in Computer Aided Control System Design, Gray J. O., Ed., Amsterdam,
September 2001, pp. 179–185, Elsevier.

[6] P. Nedoma, M. Kárný, I. Nagy, and M. Valečková, “Mixtools. MATLAB Toolbox for
Mixtures”, Tech. Rep. 1995, ÚTIA AV ČR, Praha, 2000.

files=pomfilt.tex, soft.tex, December 3, 2003

16

