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Abstract
7

Stochastic control design chooses the controller that makes the closed-loop behavior as close as possible to the desired one. The fully
probabilistic design describes both the closed loop and its desired behavior in probabilistic terms and uses Kullback–Leibler divergence as9
their proximity measure. This approach: (i) unifies stochastic control design methodology; (ii) provides explicit minimizer.

The paper completes the previous solutions of various particular cases by formulating and solving the fully probabilistic control design in11
the general, discrete-time, state-space setting.
© 2005 Published by Elsevier B.V.13

Keywords: Stochastic control design; Fully probabilistic design; State-space models

1. Introduction15

The standard stochastic control problem is formulated as minimization of an expected loss function with respect to feedback
control strategies, e.g. [1,2]. This minimization can be interpreted as an attempt to influence selected characteristics of the joint17
distribution of variables occurring in the optimized closed loop. This interpretation provides an alternative formulation: the
joint distribution of closed-loop variables should be forced to be as close as possible to their desired distribution. The above19
formulation of the control design problem, called fully probabilistic design (FPD), was proposed in [7]. It has been extended to
systems modeled by finite probabilistic mixtures [8].21

The approach has the following special features.

• Explicit minimizer is available in the pair of operations (minimization, expectation) that are applied sequentially when23
optimizing via stochastic dynamic programming [7].

• Employing the Kullback–Leibler divergence together with case-specific desired distribution makes the resulting loss func-25
tion to take into account both the deterministic and stochastic properties of the controlled system.

• The use of the multi-modal desired distribution provides a well-justified and feasible multiple-objective control design27
[10,4].

The listed features indicate a significant application potential of the FPD and justify attempts to formulate it as generally as29
possible. Up to now, the published versions of the FPD considered only controlled problems with the observable variables.
Relaxation of this restriction is the main contribution of the current paper, which provides the fully probabilistic control design31
coping with stochastic state-space models.

Section 2 prepares the necessary notions and notations. Section 3 contains the main result, i.e., the FPD in the state-space33
setting. Concluding remarks close the paper.
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2. Preliminaries1

The following notations are used throughout the paper: ≡ is an equality by definition; X∗ denotes a set of X-values;
◦
X means

cardinality of a finite set X∗; f (·|·) stands for a probability density function (pdf) that is assumed to exist; t labels discrete-time3

moments, t ∈ t∗ ≡ {1, . . . ,
◦
t}; ◦

t < ∞ denotes a given control horizon; dt = (yt , ut ) is the data record at time t consisting of an
observed system output yt and of an optional system input ut ; xt denotes an unobserved system state; d, x are assumed to be5
finite-dimensional; X(t) stands for the sequence (X1, . . . , Xt ), X(t) ∈ {d(t), y(t), u(t), x(t)}.

The following adopted simplifications are also used.

7
• Names of arguments distinguish respective pdfs. No formal distinction is made between a random variable, its realization

and an argument of a pdf.9
• Integrals used are always definite and multivariate ones. The integration domain coincides with the support of the pdf in

its argument.11

The FPD exploits the Kullback–Leibler (KL) divergence D(f ‖f̃ ) [12] that measures the proximity of a pair of pdfs f, f̃ acting
on a set X∗. It is defined as follows:13

D(f ‖f̃ ) ≡
∫

f (X) ln

(
f (X)

f̃ (X)

)
dX. (1)

The KL divergence has the following key property15

D(f ‖f̃ )�0, D(f ‖f̃ ) = 0 iff f = f̃ almost everywhere on X∗. (2)

The joint pdf f (d(
◦
t), x(

◦
t)|x0, d(0))f (x0|d(0)) = f (d(

◦
t), x(

◦
t)|x0)f (x0) of all random variables involved is known to be the17

most complete probabilistic description of the controlled closed loop. In it, x0 is an initial uncertain state and d(0) denotes the
prior information available before the choice of the first input. Habitually, d(0) is considered only implicitly.19

The chain rule for pdfs [14] implies the following decomposition of the joint pdf representing the complete probabilistic
description of the closed-loop behavior21

f (d(
◦
t), x(

◦
t)|x0)

=
∏
t∈t∗

f (yt |ut , x(t), d(t − 1))f (xt |ut , x(t − 1), d(t − 1))f (ut |x(t − 1), d(t − 1)). (3)

The chosen order of conditioning distinguishes the observation model f (yt |ut , x(t), d(t − 1)), the state evolution model23
f (xt |ut , x(t − 1), d(t − 1)) and the general randomized control law f (ut |x(t − 1), d(t − 1)). The collection of control laws
over t ∈ t∗ forms control strategy.25

The following assumptions are adopted on particular factors of the closed-loop decomposition (3).

Assumptions. Distribution of the system state xt is determined by the current system input ut and the previous system state27
xt−1 only, i.e.,

f (xt |ut , x(t − 1), d(t − 1)) = f (xt |ut , xt−1).29

Distribution of the observed system output yt is determined by the current system input ut and the current system state xt

only, i.e.,31

f (yt |ut , x(t), d(t − 1)) = f (yt |ut , xt ).

Admissible control strategies, generating the system input ut from the observed data history d(t − 1) and ignoring the33
unobserved states x(t − 1), are considered, i.e., f (ut |x(t − 1), d(t − 1)) = f (ut |d(t − 1)).

With these Assumptions, the closed-loop description (3) reduces to35

f (d(
◦
t), x(

◦
t)|x0) =

∏
t∈t∗

f (yt |ut , xt )f (xt |ut , xt−1)f (ut |d(t − 1)). (4)
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Note that the omission of d(t − 1) in the first two items of the Assumptions is unnecessary but it makes the explanations more1
transparent and closer to a usual understanding of the state-space models.

3. Problem formulation and solution3

The control aim and constraints are quantified by the so-called ideal pdf that represents the desired joint distribution of the
considered closed-loop variables. It is constructed in the way analogous to (4) with user-specified factors distinguished by the5
superscript I

I f (d(
◦
t), x(

◦
t)|x0)

I f (x0) =
∏
t∈t∗

I f (yt |ut , xt )
I f (xt |ut , xt−1)

I f (ut |d(t − 1))f (x0),
7

where ideal pdfs I f (yt |ut , xt ),
I f (xt |ut , xt−1) and I f (ut |d(t − 1)) describe the desired observation model, state evolution

model and control law, respectively.9
The prior pdf on initial states x∗

0 cannot be influenced by the optimized control strategy so that it is left to its fate, i.e.,
I f (x0) = f (x0).11

To formulate the FPD concisely and to simplify some formal manipulations, the following shorthand notation is used

ft ≡ f (d(t), x(t)|x0)f (x0),
I ft ≡ I f (d(t), x(t)|x0)f (x0). (5)13

Under the adopted Assumptions, Section 2, the FPD is formulated as follows.

Find admissible control strategy minimizing the KL divergence D

(
f◦

t

∥∥ I f◦
t

)
15

Solution of the FPD requires the solution of stochastic filtering problem in the closed control loop.

Proposition 1 (Stochastic filtering in closed control loop). Let the prior pdf f (x0) be given and the Assumptions hold. Then, the17
pdf f (xt |d(t)), determining the state estimate, and the pdf f (xt |ut , d(t −1)), determining the state prediction, evolve according
to the coupled equations19

Time updating f (xt |ut , d(t − 1)) =
∫

f (xt |ut , xt−1)f (xt−1|d(t − 1)) dxt−1,

Data updating f (xt |d(t)) = f (yt |ut , xt )f (xt |ut , d(t − 1))∫
f (yt |ut , xt )f (xt |ut , d(t − 1)) dxt︸ ︷︷ ︸

f (yt |ut ,d(t−1))

.

The stochastic filtering does not depend on the used admissible control strategy {f (ut |d(t −1))}t∈t∗ but on the generated inputs21
only.

Proof. The pdf f (x0|d(0)) = f (x0) is given. Let us assume that we have already got f (xt−1|d(t − 1)) for a generic t ∈ t∗.23
Then the time updating is implied by the following identities

f (xt |ut , d(t − 1)) =︸︷︷︸
marginalization

∫
f (xt , x(t − 1)|ut , d(t − 1)) dx(t − 1)

=︸︷︷︸
chain rule

=
∫

f (xt |ut , x(t − 1), d(t − 1))f (x(t − 1)|ut , d(t − 1)) dx(t − 1)

=︸︷︷︸
Assumptions

=
∫

f (xt |ut , xt−1)f (x(t − 1)|d(t − 1)) dx(t − 1)

=︸︷︷︸
marginalization

=
∫

f (xt |ut , xt−1)f (xt−1|d(t − 1)) dxt−1.
25
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The data updating completes the recursion and it is implied by the identities1

f (xt |d(t)) =︸︷︷︸
conditioning

f (xt , yt , ut |d(t − 1))

f (yt , ut |d(t − 1))

=︸︷︷︸
chain rule

= f (yt |ut , xt , d(t − 1))f (xt |ut , d(t − 1))f (ut |d(t − 1))

f (yt |ut , d(t − 1))f (ut |d(t − 1))

=︸︷︷︸
Assumptions

= f (yt |ut , xt )f (xt |ut , d(t − 1))∫
f (yt |ut , xt )f (xt |ut , d(t − 1)) dxt

. �

Proposition 2 (Solution of the FPD). Let both the joint pdf f (x(
◦
t), d(

◦
t)|x0) and its ideal counterpart I f (x(

◦
t), d(

◦
t)|x0) meet3

the Assumptions.

Then, the optimal admissible control strategy minimizing D

(
f◦

t
‖I f◦

t

)
is randomized one given by the pdfs5

of (ut |d(t − 1)) = I f (ut |d(t − 1))
exp[−�(ut , d(t − 1))]

�(d(t − 1))
, t ∈ t∗, (6)

�(d(t − 1)) ≡
∫

I f (ut |d(t − 1)) exp[−�(ut , d(t − 1))] dut .7

Starting with �(d(
◦
t)) ≡ 1, the functions �(ut , d(t −1)) are generated recursively for t = ◦

t ,
◦
t −1, . . . , 1 in the backward manner,

as follows:9

�(ut , d(t − 1)) ≡
∫

�(ut , d(t − 1), xt−1)f (xt−1|d(t − 1)) dxt−1

with f (xt |d(t)) updated according to Proposition 1 and11

�(ut , d(t − 1), xt−1)

≡
∫

f (yt |ut , xt )f (xt |ut , xt−1) ln

(
f (yt |ut , xt )f (xt |ut , xt−1)

�(d(t))I f (yt |ut , xt )I f (xt |ut , xt−1)

)
dyt dxt .

Proof. The result is implied by the following sequence of equalities in which we use the definition of the KL divergence (1),13
its basic property (2), Fubini theorem on multiple integration [15], marginalization and normalization of pdfs and the chain rule

for them [14] together with conditional independencies expressed by the adopted Assumptions. The definition �(d(
◦
t)) ≡ 1 and15

the shorthand notation (5) are used. Moreover, the notation of differentials is simplified by taking dx(t) ≡ dx(t)dx0.
The KL divergence can be viewed as an expectation of the additive loss function with the tth partial loss equal to17

ln

(
f (yt |ut , xt )f (xt |ut , xt−1)f (ut |d(t − 1))

I f (yt |ut , xt )I f (xt |ut , xt−1)I f (ut |d(t − 1))

)
.

This observation, together with the definition �(d(
◦
t)) = 1, implies the following identity19

D◦
t
≡ min

{f (ut |d(t−1))}
◦
t
t=1

D(f◦
t
||I f◦

t
) = min

{f (ut |d(t−1))}
◦
t −1
t=1


D(f◦

t −1
||I f◦

t −1
)

+ min
f (u◦

t
|d(

◦
t −1))

∫
f◦

t −1


 ∫

f (y◦
t
|u◦

t
, x◦

t
)f (x◦

t
|u◦

t
, x◦

t −1
)f (u◦

t
|d(

◦
t −1))

× ln


 f (y◦

t
|u◦

t
, x◦

t
)f (x◦

t
|u◦

t
, x◦

t −1
)f (u◦

t
|d(

◦
t −1))

�(d(
◦
t))I f (y◦

t
|u◦

t
, x◦

t
)I f (x◦

t
|u◦

t
, x◦

t −1
)I f (u◦

t
|d(

◦
t −1))


 dy◦

t
dx◦

t
du◦

t


 dx(

◦
t −1) dd(

◦
t −1)


 . (7)
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Let us deal with the second term in the expression (7), which depends on the last member f (u◦
t
|d(

◦
t −1)) of the opti-1

mized admissible strategy. In this term, the factor A◦
t
, defined as the expression in the square brackets, can be rearranged

as follows3

A◦
t
≡

∫
f (y◦

t
|u◦

t
, x◦

t
)(x◦

t
|u◦

t
, x◦

t −1
)f (u◦

t
|d(

◦
t −1))

× ln


 f (y◦

t
|u◦

t
, x◦

t
)f (x◦

t
|u◦

t
, x◦

t −1
)f (u◦

t
|d(

◦
t −1))

�(d(
◦
t))I f (y◦

t
|u◦

t
, x◦

t
)I f (x◦

t
|u◦

t
, x◦

t −1
)I f (u◦

t
|d(

◦
t −1))


 dy◦

t
dx◦

t
du◦

t

=
∫

f (u◦
t
|d(

◦
t −1))


ln


 f (u◦

t
|d(

◦
t −1))

I f (u◦
t
|d(

◦
t −1))




+
∫

f (y◦
t
|u◦

t
, x◦

t
)f (x◦

t
|u◦

t
, x◦

t −1
) ln


 f (y◦

t
|u◦

t
, x◦

t
)f (x◦

t
|u◦

t
, x◦

t −1
)

�(d(
◦
t))I f (y◦

t
|u◦

t
, x◦

t
)I f (x◦

t
|u◦

t
, x◦

t −1
)


 dy◦

t
dx◦

t




︸ ︷︷ ︸
�(u◦

t
,d(

◦
t −1),x◦

t −1
)

du◦
t

.

This rearrangement uses Fubini theorem, non-presence of y◦
t
, x◦

t
in the optimized pdf f (u◦

t
|d(

◦
t −1)) and normalization5 ∫

f (y◦
t
|u◦

t
, x◦

t
)(x◦

t
|u◦

t
, x◦

t −1
) dy◦

t
dx◦

t
= 1.

With the adopted notation (5) and the introduced function �(u◦
t
, d(

◦
t −1), x◦

t −1
), the term B◦

t
≡ ∫

f◦
t −1

[A◦
t
] dx(

◦
t −1) dd(

◦
t −1)7

in (7) influenced by f (u◦
t
|d(

◦
t −1)) becomes

B◦
t
≡

∫
f (d(

◦
t −1))




∫
f (u◦

t
|d(

◦
t −1))


ln


 f (u◦

t
|d(

◦
t −1))

I f (u◦
t
|d(

◦
t −1))




+
∫

f (x(
◦
t −1)|d(

◦
t −1))�(u◦

t
, d(

◦
t −1), x◦

t −1
) dx(

◦
t −1)

]
︸ ︷︷ ︸

�(u◦
t
,d(

◦
t −1))

du◦
t




dd(
◦
t −1). (8)

9

To get (8), the chain rule f (d(
◦
t −1), x(

◦
t −1)|x0)f (x0)=f (x(

◦
t −1), x0|d(

◦
t −1))f (d(

◦
t −1)), Fubini theorem, non-occurrence of

x(
◦
t −1) and x0 in the control law f (u◦

t
|d(

◦
t −1)), and the normalization

∫
f (x(

◦
t −1), x0|d(

◦
t −1)) dx(

◦
t −1)=1 are sequentially11

exploited.

As the function �(u◦
t
, d(

◦
t −1), x◦

t −1
) does not depend on x(

◦
t −2) and x0, these superfluous variables can be integrated13

out from the joint pdf. Hence, the function �(·) defined in (8) can be evaluated using the pdf determining the state estimate
only15

�(u◦
t
, d(

◦
t −1)) =

∫
f (x◦

t −1
|d(

◦
t −1))�(u◦

t
, d(

◦
t −1), x◦

t −1
) dx◦

t −1
.
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Proposition 1 has shown that the filtering result f (x◦
t −1

|d(
◦
t −1)) does not depend on the optimized admissible strategy. The1

optimized f (u◦
t
|d(

◦
t −1)) enters only the functional in the compound brackets in (8) as follows

∫
f (u◦

t
|d(

◦
t −1)) ln




f (u◦
t
|d(

◦
t −1))

I f (u◦
t
|d(

◦
t −1)) exp[−�(u◦

t
,d(

◦
t −1))]

�(d(
◦
t −1))


 du◦

t

− ln

(∫
I f (u◦

t
|d(

◦
t −1)) exp[−�(u◦

t
, d(

◦
t −1))] du◦

t

)
︸ ︷︷ ︸

− ln(�(d(
◦
t −1)))

. (9)

3

By adding and subtracting ln(�(d(
◦
t −1))) in (9), the first term in (9) has become a conditional version of the KL divergence.

The basic property (2) of the KL divergence and independence of ln(�(d(
◦
t −1))) on the optimized f (u◦

t
|d(

◦
t −1)) imply that5

this expression is minimized by the claimed pdf (6)

of (u◦
t
|d(

◦
t −1)) =

I f (u◦
t
|d(

◦
t −1)) exp[−�(u◦

t
, d(

◦
t −1))]

�(d(
◦
t −1))

.
7

The expression (8) evaluated for this pdf provides the reached minimum

−
∫

f (d(
◦
t −1)) ln(�(d(

◦
t −1))) dd(

◦
t −1) = −

∫
f◦

t −1
ln(�(d(

◦
t −1))) dx(

◦
t −1) dd(

◦
t −1).9

Inserting this minimum into (7) shows that − ln(�(d(
◦
t −1))) enters D(f◦

t −1
‖I f◦

t −1
) at the same place as − ln(�(d(

◦
t))) = 0

enters D(f◦
t
‖I f◦

t
). Thus, the whole procedure can be repeated for the decreasing horizons

◦
t −1,

◦
t −2, . . . , 1. �11

4. Concluding remarks

This paper completes the development of the fully probabilistic control design by covering the control design for the stochastic13
state-space model. Advantageous properties of the FPD, see [7,8,10,4] and the brief outline in Introduction, apply to the treated
case, too. For instance, the formula (6) implies that the support of the ideal control law I f (ut |d(t − 1)) includes the support of15
the designed control law of (ut |d(t − 1)), i.e. the ideal pdf I f (ut |d(t − 1)) may set hard constraints on the range of inputs or
its changes.17

Besides, the unified probabilistic treatment opens a novel way of distributed control by adopting technology developed in
connection with graphical models [5,11] for creating the compound probabilistic models.19

In a sense, the initial phase of development of the FPD theory is concluded here by extending the FPD to the state-space
models that allow for a richer and more realistic modeling of the controlled system than the input–output models. A further21
development will include the following directions.

• Applications of the FPD to specific models.23
For instance, the complete linear-quadratic-Gaussian design with the Gaussian state-space model is obtained if all pdfs
considered within the problem are Gaussian. This allows the rich analytical results available, for instance, general notions25
like controllability and other “abilities”, [13] to be widely exploited by the FPD.
On the other hand, the general theory of the FPD contributes to a deeper understanding of the “traditional” notions. For27
example, the interpretation of penalization matrices in quadratic loss function as precision matrices of the ideal pdf helps
to choose their values, cf. [7].29
Algorithmic novelty is expected from the applications to the linear dynamic models with the uniform noise. A sort of
dynamic linear programming will arise.31

• Computational and algorithmic aspects.
In our opinion, a further development should predominantly concentrate on the algorithmic aspects. The computational33
complexity barrier that is ever present in any stochastic design is the primary problem. The fact that the minimizer is found
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explicitly reduces this problem to simpler, but still very hard, multivariate integration and an approximate interpolation of1
the involved multivariate functions. The recently proposed stationary version of FPD [9] is expected to help further on.
The practical solvability of the underlying evaluation problems is indicated by an existence of the solutions for the case of3
probabilistic mixtures, see the cited references and the vast amount work done in this respect world-wide, e.g. [3,6].
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