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Image Representations via a Finite Radon Transform

FrantiSek Matis

Abstract—This paper presents a model of finite Radon trans-
forms composed of Radon projections. The model generalizes
to finite group projections in the classical Radon transform
theory. The Radon projector averages a function on a group over
cosets of a subgroup. Reconstruction formulae that were formally
similar to the convolved backprojection ones are derived, and an
iterative reconstruction technique is found to converge after a
finite number of steps. Applying these results to the group Z.

P
new computationally favorable image representations have been
obtained. A numerical study of the transform coding aspects is
attached.

Index Terms—Finite Radon transform, Fourier transform, im-
age compression, image representations, iterative reconstruction,
Radon projections, transform coding.

I. INTRODUCTION

EVELOPMENT of various representations of image data

continues to be an area of active research. It has had
substantial impact on many image processing and image anal-
ysis problems including manipulation, compression, pattern
recognition, coding, computer vision, etc. The most common
manner of image representation is to use an energy-preserving
transform. Classical and thoroughly investigated examples
include Fourier, cosine, sine, Hadamard, Haar, and other
unitary transforms [15], [5].

The Radon transform entered the center of interest with
its first radioastronomic and tomographic applications [8]
and spread quickly into many fields. Recall that the Radon
transform (this notion is from integral geometry, cf. [7], [11],
[18]) of a real function f defined on a Euclidean plane is the
function f, which is defined on the family of all lines in the
plane having the value f (p) equal to the line integral along the
line p. It is often advantageous to view the Radon transform
as the family ( fq) of projections where the projection fq is
the restriction of f on the set of all lines parallel to the line
g containing the origin.

Numerous discretizations of the Radon transforms employed
in practice have been devised. For example, tomographic
data can also be arranged into a finite subfamily of sampled
projections. The utilization of the discretized Radon trans-
forms penetrates the range of image analysis and processing
techniques (for an account, see [17]). Projection space rep-
resentations and manipulations of digital images have given
rise to new algorithms and have opened new possibilities. A
substantial role in this progress has been played by the parallel
pipeline projection engine (P*E) computer architecture. This is
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even sometimes compared with the role of the FFT algorithm
supporting the Fourier transform.

During the last decade, elements of a finite Radon transform
theory have appeared mainly in the field of combinatorics
[2], [4], [12], [18]. The fundamental concept due to Bolker
is as follows. The finite Radon transform of a real function
[ defined on a finite set S (with respect to a collection 7°
of its subsets: blocks) is the function f on 7, the values of
which are obtained by summing (we prefer averaging) f over
the blocks. It seems quite impossible to say anything about
this transform without additional conditions on the collection
T; however, when considered on special combinatorial or
algebraical structures like designs, matroids, lattices, groups,
etc., some results have been attained (for a review, see [12]).
There seem to be very few resemblences to the classical Radon
transform theory.

The main goal of our paper is to introduce and investigate
a scheme of finite Radon transforms on groups, to present
new results on finite Radon transforms on finite Euclidean
planes, and to discuss corresponding projection representations
of images and their applications. Hence, we are not concerned
with the discretized Radon transforms but with the discrete,
finite ones.

Accordingly, the paper is divided into three parts.

First, we investigate Radon transforms viewed as families
of Radon projections on finite groups: In Bolker’s setting, S
is taken to be a group and T a quotient group of S getting the
Radon projection f — f. The reconstruction from projections
is the main theme explored here. Analogies with the classical,
analytical situation appear to be much deeper than one can
expect. Even an inversion of this Radon transform can be
written in the form of filtered backprojection (cf. Theorem 1).
Moreover, an iterative reconstruction technique (cf. Section II-
E.) akin to Kacmarz’s [17] converges after a finite number of
steps (which is equal to the number of the Radon projections;
see Theorem 3).

Second, we translate these results into the additive groups
Zg of Euclidean planes. A discrete version of projection
slice theorems connecting the finite Radon and finite Fourier
transforms is presented. We also examine Radon transforms
composed of partial projections, i.e., of the projections in
the above sense admitting that 7 is an arbitrary subset of
a quotient group.

Third, image representations via aforementioned finite
Radon transforms are suggested, and their numerical aspects
are discussed. Similarly, as with other transforms, maximum
information is packed into a small number of samples. In
this way, image compression is achieved by the storage of
the most informative samples only (this technique, which is
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called transform coding, is described for other transforms in
[1], [5], [10], and [16]). In Section IV, compression results
are visualized, the efficiency of the compression algorithms
is discussed, and the feasibility of real-time implementation
through the P3E architecture is approved.

II. FINITE RADON TRANSFORMS ON GROUPS

Let G be a finite group and A(G) be the linear algebra of
all complex functions on G, i.e., A(G) is a |G|-dimensional
complex linear space with the convolution of two functions
fi, f2 € A(G) (see [3])

fixf(e) =1GI7 Y hw)f(y ')

yeG

as the product. We start with simple notations and technical-
ities.

A. Radon Projections

The Radon projection of a function f € A(G) along a
normal subgroup H of G is defined in [14] to be the function
Ay f on the quotient group G/H given by

Apf(zH)=H|" Y f(y), «H € G/H.
yExH

The values of the Radon projection are thus equal to the
averages of the function f over the cosets tH = {zy; y € H}.
We shall frequently use an analogy of the Euclidean plane
backprojection. The backprojection of a function g € A(G/H)
along H is the function Vg € A(G) that is constant and
equal to g(zH) on every coset zH.
Considering this scalar product on A(G)

(f.fo) = 1GITV Y (@) falx), fi,f2 € AG)
zeG

one can easily verify the duality of the operators Ay and Vg

(AHf,g) = (f»VHg>7 f € A(G)vg € A(G/H)

We shall write out a collection of simple assertions on
the Radon projections and backprojections below. Proofs are
omitted because of their triviality. The |G/H| multiple of the
indicator function of H is denoted by Ay.

Lemma 1:
1. AHVHg:g, gGA(G/H)7
2. VygAuf=f*Am, feA(G),
3. Au(fixfo)=AufixAnfo, f.f2 € AG),
4. Vu(gi*g2) =Vug1*Vugi, 1,92 € A(G/H),
5. VHg*f:VH(g*AHf)a fEA(G)ngA(G/H)

B. Reconstruction from Projections

Let H = (H;)icn be a nonvoid and finite family of normal
subgroups of G (possibly H; = H; for i # j, i,j € N).
Instead of Ag,, Va,, and Ag,, we prefer to write A;, V;, and
Xi, tespectively. Now, our finite Radon transform on finite
groups will be defined in accordance with the classical theory
as a family of Radon projections.

Definition: The operator A : A(G) — A(H) given by
Af = (Aif)ien is called the finite Radon transform on G
with respect to H.

We remark that the symbol A (H) denotes here the product
of the family (A(G/H;))icn of linear algebras (operations
+ and * are performed in A(H) coordinatewise). All the
preliminaries for the precise formulation of our basic problem
are now available.

Reconstruction Problem: Find the necessary and suffi-
cient conditions for solvability of the equation Af = g with
the given right-hand side g € A(H) and find all solutions.

In other words, we should like to solve the system of
equations

Aif:giv tEN

where g; € A(G|H;), i € N, and g = (g:)ien. This is,
however, equivalent to

f*Xi=Vig, 1€N.

In fact, if f satisfies the first set of equations, then applying
V; and claim 2 of Lemma 1, we see that it satisfies the second
one. Conversely, for f holding the convolution equations, the
observation

gi = AiVigi = Ai(f + \) = AVikif = Aif

(we used consecutively claims 1, 2, and 1) yields that f has
the prescribed family of projections.

When dealing with convolution equations in algebras like
A(Q), the representation theory of groups and algebras is
usually the most convenient tool. We shall present here,
however, a shorter and simpler algebraic approach without
introducing additional, sophisticated notions and facts.

C. Solution

We shall denote by Hy = Il;cyH;; I C N, which are the
products of subfamilies of H. That means that Hy = {e},
where e is the identity element of G, Hy;y = H; for i € N,
Hy jy = HiH; = {zy € G;z € H;,y € H;} = H;H; for
i,J € N, etc. It is an elementary piece of group theory that the
order of multiplicators in the formula of H is not relevant and
that every Hy, I C N, is a normal subgroup of G. To avoid
double indexing, we write A; instead of Ay, .

The following two expressions (we started to use them in
[14] for the first time)

e= Y (=),
P#ICN
|1
w= ¥ (-pI-iay Yyl
O£ICN a=1

define two functions of A(G) that play the key role in our
problem. The later one can be called a convolving function.
Lemma 2:

6. ArxAy= g, I,J CN,
7. exAr=A, 0#ICN,
8. e*xe=c¢,
9. Y Mrw=e.

iEN
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For the proof of this lemma and the following three theo-
rems, see Appendix A. Before stating the main results of this
section, we shall find an explicit form of the dual operator of
A. If the scalar product on A(H) is considered to be the sum
of scalar products

(9, 9%) = 3™, o),
1EN
99 = (¢{V)ien € A(H), 5=1,2

then from
(Af7 g) = Z(Azfv gz)
ieN
=Y {fi\Vigi), feAG), g€ A(N)
iEN

we immediately get the form of the dual V : A(H) — A(G)
of A

Vg= Z Vigs,

iIEN

g € A(H).

Theorem 1: The equation Af = g, where g € A(H) is
given, has a solution if and only if A(Vg*w) = g, and in this
case, V g+w is its solution with the smallest norm. Any solution
differs from this one by a function f such that f *e = 0.

Remarks:

1) We point out at the beginning other necessary and
sufficient conditions for existence of a solution that are
also called the projectivity conditions (mainly in the
frame of marginal problems; see [13] and [14])

We explain only the necessity here. If Af = g, then
:f*/\j*Ai:‘/jgj*Ai ’L,]EN

The opposite implication is a nontrivial part of the Proof
of Theorem 1 in Appendix A.

2) Our solution of the reconstruction problem can be writ-
ten formally in the same manner as in the classical
Radon transform theory. Namely, it can be written as
a convolved backprojection Vg *w or, equivalently (see
5 in Lemma 1), a backprojected convolution V(g * Aw).
Theorem 1 remains valid if we consider only real
functions on G as w and ¢ are real.

3) The function Ay is nonzero only at the point e and
Ag(e) = |G|. It is the identity of the algebra A(H)
similarly like the delta function among distributions
in the Euclidean plane. If we observe its projections
g = Ay, then our reconstruction, according to the above
theorem, will be (cf. 9 in Lemma 2)

Vgxw=VArw=> Vihirg*w

ieN
=Z(/\@*)\i)*w:)\0*2)\i*w
iEN iEN
=X xe=c¢.

More generaly, if we observe the projections Af of a
function f, the reconstruction formula yields (similar to
the above) f * e (note that the mapping assigning f * €
to a function f is a projector due to 8 of Lemma 2).

4) If Ag # €, then the nonzero function Ay — ¢ has zero
projections (we remind that V; is injective)

Vihido—e)=(Ao—e)* X = X = X = 0.

On the contrary, if all functions of A(G) are uniquely
given by their projections, then our reconstruction of Ay
must be equal to Ay, where Ay = €. These considerations
show that the equation A\g = ¢ is the necessary and
sufficient condition for unique reconstruction in the
projection scheme given by the family H.

D. Dual Problem

An analysis of the dual operator V' may be also of some
interest; we shall present here the dual version of Theorem 1.

Theorem 2: The equation Vg = f, where f € A(G) is
given, is solvable if and only if f xe = f, and in this case
A(f *w) = Af * Aw is its solution with the smallest norm.
Every solution differs from this one by a g = (g;)ien € A(H)
satisfying A(Vg *xw) = 0.

Remarks:

1) <Similar to our observation after Theorem 1, we can
see that Theorem 2 can be easily reformulated for the
algebra of real functions on G.

2) The backprojection V' is one-to-one only if |N| = 1.
Otherwise, for ¢ # j, 4,7 € N, weset g; =1,9; = —1
and g = 0,k € N — {i,5}, where Vg = 0 for
9 = (gi)ien # 0.

E. Iterative Reconstruction

The solution of the reconstruction problem from Theorem
1 can be rewritten in a simple iterative form, which is
computationally very tractable.

Consider N = {1,2,...,n}, choose arbitrary fo) € A(G),
and set

oy = fa—yy + Vilgi — Aif-1y), i=1,2,...,n

where g; € A(G/H;), i € N, are given projections.

Therefore, this is nothing but a counterpart of one of
the well-known standard algebraic iterative reconstruction
techniques, e.g., in computerized tomography (see [8] and
[17]); the new iteration f(;) is obtained from the old one f(;_1)
by adding the correction in the form of backtraced subtraction
of the given and current projections. We claim that f,,) is yet a
solution of the reconstruction problem; thus, only 7 iterations
are needed, which completely removes the main drawback of
the reconstruction methods of this type, namely, the slow rate
of convergence.

Theorem 3: Let g = (g;)icn be a family of projections
satisfying the projectivity conditions. Then, Af,) = g, and
moreover, the choice fio) = 0 gives fn) = Vg xw.
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III. FINITE RADON TRANSFORMS ON Zg

In this section, we describe finite Radon transforms on the
group Zs taking arbitrary families of its nontrivial subgroups.
Further, we make explicit connections with the finite Fourier
transform. Finally, reconstruction from partial projections will
be examined, i.e., instead of having given Radon projections
gi» © € N, on whole quotient groups, we suppose to know
only some values of them.

A. Basic Scheme

Let us consider the group G = Zg to be the Cartesian
product Z, X Z, of two exemplares of the cyclic group
Z, = {0,1,...,p — 1} with addition modulo p. We shall
suppose that p is prime. This group has p + 1 nontrivial
subgroups

H; = {(k,]) € G; li=k(modp)}, 0<i<p,
H,={(k,0)€ G, ke Z,}.

Weput N = {0,1,...,p}, H = (H;)ien. Every group H; and
every factor group G/ H; is isomorphical to Z,. The cosets of
the factor group G/H; will be indexed by j € Z, in this way

H! ={(k,)) €G; li+j=k(modp)}, 0<i<p,
H) = {(k,j) € G; k€ Zp}.

Thus, H? = H;, i € N. Having an element z = (k,l) of
G and a subgroup H;, i € N, there is just one coset H] of
H; containing z; let us write m;(k,l) = j. In other words,
7p(k,l) =l and m;(k,l) = k — li(modp), 0 < i < p. The
function ; is nothing but a variant of the factor mapping of
G on G/Hl

The Radon projection of a function f on G is now given by

p—1lp—-1

M) =2 S Y Sk Dbk D). i€ N7,

k=0 1=0

where §;(m) equals one or zero, according to whether or not
m equals j. The backprojection of a function g; on G/H; has
the form

‘/igi(k’ l) = gz(’ﬂ'l(k',l)),

shortening the expression g;(H?) to g;(5).

i€ N, (k1) eG

B. Reconstruction Formulae

Now, we shall rewrite Theorem 1 for the presented scheme.
Let us suppose more generally that N is a nonempty subset
of {0,1,...,p} with cardinality n. Observing that H; = G as
soon as I has at least two elements, we immediately get

e=1—-n+ Z i
iEN
and after a computation (see Appendix B)
1
w=—-n++ Z A, .
n i€N

The Radon transform A with respect to H = (H;)ien is
injective according to Theorem 1 and Remark 4 if and only

if ¢ = Ap. This means e(e) = 1 — n+np = Ag(e) = p?,
where e = (0,0) is the identity element of G. We arrive at
the necessary condition n = p + 1, and in this case due to
G-e=Y,cn(H;—e), weseethate(z) = 1-(p+1)+p=10
for z # e. The Radon transform A is thus injective only if it
consists of all p + 1 Radon projections.

A family g = (gi)ien of functions on the factor groups
G/H;, i € N, can be viewed as the family of projections of
a function f if it fulfils the projectivity conditions of Remark
1. These conditions require that the expression

Vigi * Air = Vigi x Ay x Ao = Vigi * Ag
1
= ;2' Z Vigi(kﬁ l)
(k,)EG
p—1

1
==>g(i), L €Nt
p

=0

does not depend on i € N. Naturally, all projections must have
the same averages; in this case, we denote them by a(g). The
smallest norm function having these prescribed projections is
given by

1
Vgrw= Vigix(=—n+Y X
i€EN n JEN
£ 3 Vigi + a(g)(n? = )
1€EN

a(g) + Y _ (Vigi — a(g)).

iEN

1-n?

n

na(g)

Il

A carefull look at Theorem 3 reveals that this formula can also
be obtained easily by the iterative procedure.

For the Radon transform composed of all p + 1 Radon
projections, we get the identity

f=VAfxw=a(f)+ Y _(Vihif —a(f)), f€A(G)
=0

where

af)=— 3 flk0)

(k,H)eG

is the average value of f. Note that if the Radon transform A
is considered only for the functions with zero average, then
its dual V is also its inverse.

There is another way of viewing the above situation, namely,
the group G together with all cosets H, 0 < i < p, and
0 < j < p form the affine plane AG(2,p). It has p? points,
p? + p lines (cosets), every point z € G lies on p + 1 lines
(in one coset of every factorgroup G/ H;), every line contains
p points, and most noteworthy, every two distinct points lie
on just one line. Under some conditions, like the very last
one, more general identities were proved (in {2] and [18]) for
combinatorial designs.
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C. Radon and Fourier transforms

The Fourier transform is closely related to the Radon one in
the classical Radon transform theory. Roughly speaking, the
1-D Fourier transform of the projection f; is equal to the 2-D
Fourier transform of the original function f restricted on the
line g*, which is perpendicular to ¢ and contains the origin;
see [7] and [18]. This assertion is called, in applications, the
projection slice theorem [8], [17]. We shall see here that an
analogy is valid also for the group Zz.

Let us be reminded that the finite Fourier transforms can
be written as

-1 p-1

] Z Zf K, U)ex p[——(kk’+ll)}

k'=01=

Faf(k,1)

for functions on Z? and as

Z h(j")exp [— —Jj }

=0

F1h(j) =

for functions on Z,.
The Fourier transform of a projection A; f is thus
p—1p-1

P>

£k, 1) 85 ok, 1)) exp [—%“jj']

FiAf(j
k=0

1p 1p—1
2 ZZf(k l)exp [——] mi(k, l)]
k=0 1=0
ie., we find
F1A,f(5) = F2£(0,5), J € Zp,
F1Aif(§) = F2f(j, —ij(modp)), 0<i<p, j€ Z,.

Denoting by p(0) = p, p(p) = 0 and by p(¢) = j, which is the
unique solution of the equation 1 + ¢j = 0(mod p), we can
interpret the above equations verbaly in the following form:
Knowledge of the Fourier transform F;A;f of a projection
Aif is nothing but knowledge of the Fourier transform Fsf
restricted on the subgroup H,;), 0 < i < p. This claim could
be called the discrete projection slice theorem. We remark that
similar assertions can be formulated for compact groups by
means of harmonic analysis [14].

D. Reconstruction from Partial Projections

Let us denote by P; a subset of the cyclic group Z,,
0 <1 < p with cardinality 0 < |P;| = p; < p and by I the set
of those ¢ from N = {0,1,...,p} for which P; equals Z,.

Having a system h = (h;);cn of functions (h; defined on
F;), we shall employ the extensions E;h; of h; on Z, induced

by a number ¢
Eihi(5) = hi(j),

Eihi(5) = — [pt — Z h; (])] JE€EZ,- P

jE€ R,

Since E;h; is constant on Z, — P; and chosen in such a
way as to ensure the average of E.h; equal to ¢, one can
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speak about the uniform extensions induced by t. We shall
also write Exh = (Eih)ien. .

Theorem 4: The family of equations A;f(H}) = hi(j)
indexed by i € N, j € P;,, where h = (h;);en is a given
system of functions, has a solution if and only if the expression
%ZjePi hi(j) is constant on I; for I # §, we denote it by
a(h), and for I = @, we take

,,_',,1, 3 haa)

JGP

—P+Z P—p;

i=0

il M'e

a(h) =

If this is fulfilled, the function A‘lEa(h)h is the smallest norm
solution.

For the proof of Theorem 4, see Appendix B.

Remarks:

1) If we do not have more than one complete projection,
the family of equations is always solvable.
2) Thus, the distinguished solution has these values:

a(h) + Y _[Eamyhi(mi(k,1)) — a(h)], (k1) € ZZ.
i=0

IV. NUMERICAL EXPERIMENTS

We performed simple computational studies of the finite
Radon transforms and their inversions oriented to digital image
processing. These transforms were found to be numerically
well tractable, and the corresponding image representations
were found to be interesting from the transform coding stand-
point. In this section, we shall demonstrate favorable behavior
and properties of the related algorithms and discuss the results
of our numerical experiments.

A. Computing Finite Radon Transforms of Images

We worked with 256 gray-level digital images of size
127 x 127 pixels. Interpreting them as functions f(k,!), 0 <
k <126, 0 <1 < 126, on the group Z2,,, the finite Radon
transform according to the scheme from Section III-A consists
of averaging over cosets of the 128 nontrivial subgroups. They
are visualized in Fig. 1; Fig. 1(a) exhibits the function 727,
which is constant on cosets of Hi27, and Fig. 1(b)~(d) were
generated to show mig6, 125, and 724, respectively. These
pictures resemble contour images of discrete representations of
analog lines [17]. Fig. 1(a) even coincides with them. How-
ever, the visual forms of the functions 7; for a considerable
part of the projections look like gray unstructured images; the
points of lines are, as a rule, “dissipated” all over the images.

In Fig. 2(a), we can see the digital image of a portrait
we analyzed. Its finite Radon transform g¢;(j) = A, f(H}),
0 <¢<127,0 < j £ 126 was arranged into an array of
128 rows, where every one was of length 127; see Fig. 2(b).
Computing the ith Radon projection, i.e., the ith row of the
array, we need to pass all pixels of the original image once
and employ 127 histogrammers: one for every pixel in the row;
the gray level f(k,l) of a pixel (k,[) is added to the m;(k,!)
histogrammer. At the end, all 127 histogrammed values are
divided by 127 to get the average values, and the results are
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Fig. 1. Cosets H] of nontrivial subgroups H; (parallel lines of the geome-
try): (a) ¢ = 127; (b) ¢ = 126; (c) i = 125; (d) ¢ = 124.

rounded off to integer numbers. This is the only source of
noise in our model.
To illustrate this algorithm, we present the following scheme:

begin
for: = 0,p—1
gi =0
n =1
for! =0,p—1
n=mn-—1
ifn <Othenn=n+p
1 =n-1
fork =0,p-1

j=Jj+1
ifj>pthenj=j;—-0p
9i(J) = g:(h) + f(k,1)
endfor
endfor
9i = 9i/p
endfor
gp = 0
for/ =0,p—-1
for k =0,p—1
9p(l) = gp(1) + f(k,1)
endfor
endfor
9 = 9p/P
end
Having at our disposal a pipeline of 128 stages, one pass
of the image through it gives all projections, where every one
is on the corresponding stage. Hence, the computing of the
finite Radon transform can be pipelined and performed by P°E
architecture. Another, more effective, way of computing this
transform is to use the results of Section III-C. Accordingly,
one performs the 2-D finite Fourier transform followed by the
128 1-D ones. This is, of course, much more noisy.

B. Computing the Inverse

Our original image was adjusted to have the average value
a(f) = 128. Its reconstruction was obtained column by

1001

Fig. 2. (a) Original image, 127 x 127 pixels, 256 gray levels; (b) radon
transform of the image (a); (c) reconstruction of the image (a) via inverse
Radon transform; (d) radon transform with ordered rows according to their
variances.

column as follows. In the {th column 0 < [ < 126, we employ
127 histogrammers, where the kth one takes care of the pixel
(k,1), 0 < k < 126. The initial value of all histogrammers is
taken to be gy27(l) (this is the [th record in the last row of our
projection array). This originates from a{f)+ (g127() —a(f)),
which is the constant plus the last term in the sum of the
reconstruction formula. Now, it suffices to pass the projection
array from the first row to the 126th row and to find to every
datum ¢;(5) = A;f(§), 0 < ¢ < 126, 0 < j < 126, the
uniquely given index k for which 7;(k,) = j. The correction
gi(3) — a(f) is then added to the kth histogrammer.

More formally, the algorithm is described as follows (note
that in this and foregoing schemes, we do not even use
multiplications).

begin
a=20
for j = 0,p—1
a=a+go(j)
endfor
a = a/p
for{ =0,p—1
for k =0,p—1
F(k1) = g,(0)
endfor
n=—1
for: =0,p—1
n=n+l
ifn>pthenn =n-p
k=n-1
for j =0,p-1
k=k+1
ifk>pthenk =k —1p
flkel) = f(k,D) +9:(G) —a
endfor
endfor
endfor
end
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N\
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Fig. 3. (a) Histogram of the original image; (b) histogram of its Radon

transform.

This algorithm can be performed again by a pipeline of
127 stages, where every one takes care of one column of the
reconstructed image. Evidently, only one pass of the projection
data is needed. Moreover, under the assumption that we know
precisely a(f) (of an integer value), this inversion procedure
works without numerical errors.

The result of the reconstruction is shown in Fig. 2(c).
Apparently, there is no visual difference between the original
image and the reconstructed one, and the difference, which is
caused exlusively by the noise accompanying the finite Radon
transform, is in fact not greater than two gray levels at each
pixel.

The histograms of the portrait image in Fig. 2(a) and its
Radon transform array are shown in Fig. 3. Note that the
original image contains all 256 gray levels, but the array only
contains 96 gray levels.

C. Compression by Rows

Typical row profiles of the finite Radon transform are shown
in Fig. 4. Intuitively, profiles in Fig. 4(a) and (b) corresponding
to the rows 128 and 64, respectively, retain a lot of information
about the original image, whereas profiles in Fig. 4(c) and (d)
(rows 116 and 52, respectively) are much less informative.

To ground this intuition, let us look more carefully at the
reconstruction formula

127

a(f)+ 3 [Vikif — a(f)].

=0

It consists of the constant a(f) and 128 functions on G =
Z%,, all being mutually orthogonal. In fact, since Ag = 1,
Ag * Ai = Ag and A; x Ay = A (4,7 € N distinct), we get

(Vidif — a(f), Aa) = ([, Vihide) — a(f)
={f,iAg*X)—a(f)=0
(Vihif — a(f), Vihs f = a(f))
={(f*Xi*xAi, f)
—(a(f), f = Xir) = (f * A, a(f)) + la(f)]* = 0.

) ®)

“HN i Y

© @

Fig. 4. Typical row profiles of the Radon transform array: (a) Row 128; (b)
row 64; (c) row 116; (d) row 52.

Obsérving that due to

IVitif — a(HI? = [IVi(Aif = a(H)I?
= (AVi(Aif = a(f)), Aif - a(/))
= [|Aif — a(H)IP?

the norms of these functions are simply the variances of the
Radon projections (rows in Fig. 2(b)), and we can conclude
that projections such as those in Fig. 4(c) and (d) do not
contribute substantially to the reconstruction formula, and
when omitted, the resulting image differs only mildly (in the
square norm) from the original one.

The rows of the Radon transform image were sorted ac-
cording to their variances; the ordered finite Radon transform
is shown in Fig. 2(d). Let us note that from the fourth row,
the diapason of gray levels enables them to be encoded to six
bits and, starting from the 40th row, to four b only. In this
way, a 59% compression of the original image can be gained
without any lost of information.

Further, we have used for the reconstruction only the first n
(more informative) rows of Fig. 2(d). The results are exhibited
in Fig. 5 (from left to right and from top to bottom, we utilized
4,7, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, and 128
projections; the last area is occupied by the original image).
The achieved compression levels are presented in Table I.

Let us remark that this way of compression is in the main
equivalent to the Fourier transform coding as the omission of
noninformative rows corresponds to a restriction of the Fourier
transform F; (cf., discrete projection slice theorem).
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Partial reconstructions from the most informative Radon transform
rows (according to Table I).

Fig. 5.

TABLE 1
PARTIAL RECONSTRUCTIONS FROM THE MOST INFORMATIVE
Rows (nr is the number of rows that were used;
¢ is the compression level of the original (in percent))

nr C
4 3
7 5

10 7

20 13

30 19

40 24

50 28

60 32

70 36

80 40

90 44

100 48

110 52

120 56

128 59

D. Compression by Pixels

Another look at the reconstruction formula reveals that the
pixels with the gray level 128 = a(f) do not contribute to
the reconstructed image at all. The most informative pixels
are thus the most different from the mean value. This claim
is based on the identity from the beginning of the Proof of
Theorem 4 (see Appendix B), which can be rewritten as

12 = ,%Zlfu«,z)l?

P p—1 )
S ; STIASHD) - alH)I

=0 " j=0

Of course, we have to save the knowledge about the positions
of the chosen pixels, e.g., by a binary mask.

For the reconstruction of the analyzed image, seven intensity
bands defining the partial projections were consecutively used.
Table II reports on intensity values, numbers of pixels in
each band, and compression ratios. The corresponding partial
reconstructions are shown in Fig. 6. Under comparision with

1003

TABLE 1l
PARTIAL RECONSTRUCTIONS FROM THE MOST INFORMATIVE PIXELS (band: the
intensity band in the Radon transform array; np: the number of pixels in
the band; c: Compression level of the original image (in percent))

image band np c
a 0-119, 137 -255 1179 7
b 0-122, 134-255 2169 11
c 0-124, 132 -255 4510 22
d 0-125, 131 -255 6 779 29
e 0-126, 130 -255 10 009 40
f 0-127, 129 -255 14 058 52
g 0 — 255 16 256 59

Fig. 6. Partial reconstructions from the most informative pixels (according

to Table II).

the above described “row compression” method, the results
here are of better visual quality at the same compression level.

E. 2-D Convolution

The Radon transform can serve as a tool for reducing the
dimensionality of certain image processing techniques as well.
In our setting, the convolution of an image f with a kernel
o of small size coincides with the convolution f x ¢ in Z’?
up to border effects and can be computed due to Lemma 1 as
well by the formula

fro=A"A(fxp) = A1 AS+ Ap)

(cf. with the convolution theorem in [17]). In other words,
2-D convolutions in image space correspond to a series of
p+1 1-D row convolutions in projection representation space.
The Fourier methods are, of course, more effective from a
computational standpoint. Nevertheless, having compressed
projection arrays by rows, the above formula implies that the
convolutions are to be processed only for the informative rows,
which might bring additional simplification of computations.

APPENDIX A
PROOFS OF ASSERTIONS FROM SECTION Il

Proof of Lemma 2: Forany z € G, we have Ar*Aj(z) =
|Hr| ™1 oveH; As(y~'z). This yields that if ¢ Hyy, then
for y € Hj, the element y~ 'z does not belong to y Y Hioy =
Hyuy = HiHj; D Hy, ie, Ar x Az(z) = 0. In the opposite
case ¢ € Hy_y, we observe that y € Hy and y 1z € Hy
if and only if y € (zH ) N Hy. The last set is nonempty for
having z in the form z = 2122, 21 € Hy, 22 € Hj;the element
z1 belongs to ('I'HJ) NHy = (ZlHJ) NHy = Zl(H] n HJ)
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Now, it is easily seen that

|Hy N H,||G/H,| _ [Hi 0 Hy||G|
A ,\ = =
r J(-’l') |H1| |HI||HJ|
IGI
= = H
]HIUJl |G/ IUle IEHIUJ

takes place, employing standard identities of group theory.
Having proved 6, we apply it immediately. If ; € N, then

6*/\i= A@+ Z (~

D=1 (A - /\1—{1'})] * A = A
i€ICN

and straighforward 7 follows for nonempty I, namely, if one
chooses any 7 € I, then

6*/\125*(Ai*)\1)=(E‘*)\i)*/\[=/\i*)\1=/\1.

Now, the statement 8 is a trivial consequence of 7

exe= Z (-1 -tex Ay = 5[1 - Z(—l)m] =¢
0£ICN ICN

and this computatlon shows the validity of 9 (we use the

notation ¢; = Zs 1 s’ t>0)
DAixw=3" 3 (=) N e
iEN iIEN Q#ICN
= ¥ -yt [III/\IC|I|+ > Afu{i}qn} =
OAICN iEN-I
= 3 )+ (=)=
P0£ICN
=E£. D

Proof of Theorem 1: The condition A(Vg x w) = g is
trivially sufficient for the existence of a solution. If Af = g,
then the projectivity conditions hold as we have seen in
Remark 1. From them, we derive (see Lemmas 1 and 2)

Ai(Vg xw) = AViki(Vg xw)
JEN
= A;(Vigi x Z Aj *w)
JEN

= Ai(Vigixe) = Ai(Vigixe*x X)) = gi, 1€ N.

This crucial computation closes the first part of the proof.

The difference of two solutions of the equation belongs to
the kernel of the operator A, and this can also be characterized
as Ny = {f;Af =0} = {f; f xe = 0}. In fact, if A;f =0,
then VVA;f = f«XA;, =0andfor # 1 C N and : € I;
moreover, f* A\f = f* A; x A\; = 0; finally, f xe = 0.
Conversely, f*e = 0 implies fxex\; = fx A, = VA, f =0
and, due to injectivity of V;, A;f =0, i € N as well.

The algebra A(G) can be, as a complex Hilbert space,
orthogonally decomposed into Ay and Ry, where Ry is
the range of the backprojection V. However, the solution
Vg*w = V(g*Aw) belongs to Ry and, thus, has the smallest
norm among all solutions of the equation. O
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Proof of Theorem 2: The condition f *e = f is sufficient
for if it is satisfied then by 9 of Lemma 2:

VAfxw) = ZVA (frw) = f*w*ZAi:f*e:f
ieN iEN

i.e., g = A(f * w) solves the equation Vg = f. In addition,
this reasoning
Vgxe= ZV,»AiVig,-*e
iEN
= Z Vigix i xe
iEN
=) Vigixhi=Vg, geA(H)
iEN
shows that Ry = {f; f xe = f}. The mapping f — f x¢ is
the orthogonal projector on Ry (cf., Remark 3).

Note that Vg = 0 if and only if A(V g *w) = 0. In fact, to
prove the nontrivial implication, we apply the operator V

0=VA(Vgx*uw) :Vg*w*Z/\,‘ =Vgxe=Vyg.
iEN
The algebra A(H) can be orthogonally decomposed into
the kernel Ay of the backprojection and the range R, of
the Radon projection; we remark that ¢ — A(Vg * w) is the
orthogonal projector on Rp. As A(f * w) belongs to Ry, it
has the smallest norm among all solutions of the equation. [
!’roof of Theorem 3: Let us prove f(zﬂ-) * N, = Vigs
for i € N and j = 0,1,...,n — ¢ by induction on j =
0,1,...,n — 1. For § = 0, we have

JoyxAi=fa_ny*xM+Vigix A —ViAifi_1y*Ai=Vigi, 1€ N
and the induction argument has the form (0 < j < n — 1)
Fati+ny * X = fari * A + Vigjt1 Girje x X
= flitd) * A x N =
=Vigi + Vidja1 Gitier * A
- VigixAiyjr1=Vigi, 1<i<n—j
employing the projectivity conditions.
Thus, Af(,,y = g. The choice fo) € Ry gives
oy = foy + Z Vi(g: — Aifi-1)) € Rv.
ieN
However, from the Proof of Theorem 1, we know that the

equation Af = g has only one solution in Ry, which yields
fn) = Vg * w whichever f(g) € Ry was chosen. O

APPENDIX B
PROOFS OF ASSERTIONS FROM SECTION III

Derivation of the Form of w: We have realized that for /
having more than one element A\; = Ag = 1 and then

I
w= Y (=nI1y, Z
O#ICN s=1"
111
—Z/\ —-n+ Z( nii- IZ
iEN ICN



MATUS AND FLUSSER: IMAGE REPRESENTATIONS VIA A FINITE RADON TRANSFORM

Rewriting the sum of the fractions into

"1 1 11—
Z—:/ Zzs_ldz:/ % dz
s:ls 0 =1 0 -z
we obtain
|17}
> (-1 (=)= — ZMhydz
ICN ICN
1
=/0 1-22( 1)1 g
ICN

1 1 1
= / (1—-2)""tdz = / 2"y =~
0 0 n

The convolving function w can also be found by using the
finite Fourier transform and Lemma 2; we omit details. [

Proof of Theorem 4: The solvability condition is evidently
necessary. If it is valid, then E,()h satisfies the projectivity
conditions, and hence, A_lEu(h)h is a solution.

To prove the last assertion of the theorem, we will need
this identity

1712 = =pla(NI” + IALI, | € AG).

Note that the finite Radon transform conserves the norm of
functions with zero average. The supporting computations
follow:

p p—1

ZZlAf (H])?

1.—0 7=0

IASI? = Z A fI1? =

P

|
-

1
53

M’e

| ) F(k,Dé;(ms(k, D) =
J k,l
p p-—1
= LS kDTS
k,l k'l 1=0 j=0

8;(mi(k, 1))8; (mi(K', 1))

i

1l
=
I§
=]

i

’E

The double inner sum is equal to 1 for (k,1)
p + 1 otherwise, which yields

# (K',l') and to

IAfI? = 3ZZf(k (K1) +;j§z|f(k,z>|2
kl kU k1l
= pla(HP + 171

This identity also follows from the discrete projection slice
theorem.

Let us suppose now that f is a solution of the family of
equations. Then

—pla(H)I + Y lIhs ||2+, Yo X mG)P

i€l zEN Ij€EP;

+— S nsHEDP

zEN 1j€Z,—-P;

IF11* =
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Having a complete projection (I # @), we estimate by
Cauchy inequality

2
S ASEDE> ——| ST Af(HD)
JEZp,—P; tliez,—P;
2
1 . .
—pa(f) = Y hi(j)| , ieN-1T
pi jEP;

and from a(f) = a(h) = a(f*), where f* = A" E,)h, we

conclude
1112 > =pla(F)] + > 1A
i€l
1 =
+= 3 S Emhi()P = 1£717
pieN——Ij:O

where the equality takes place only if Af = Af*, ie., f = f*.
Having no complete projection, we similarly estimate

117 > —pla(f)I? + ZZM
zENJGP
——Zh(m?
1€N ]EP

An elementary computation shows that this function

|t|+2|t |2

ieN pP—Di

of the complex variable ¢ takes its strong global minimum at
the point

t;

t* B lgv pP—pi

- 1
-1+ %jv eyl
Thus
17112 > =pla(h)® + D | Eaqmhall® = 15117
ieN

with equality just for f = f*. O
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