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Differential geometry of ray surfaces in anisotropic solids
and its contribution to NDE: Modelling and experiment
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Abstract

Point-source/point-receiver techniques are one of the most widely used methods for nondestructive evaluation of anisotropic mate-
rials. The group velocities resulting from these techniques must be, for further inverse evaluation of elastic coefficients, geometrically
converted into corresponding phase velocities. On the other hand, the phase velocities can be determined from a material’s response
to a line source. But, due to the anisotropy, the short line sources generated by cylindrical lenses are insufficient for reliable determination
of the phase velocity. In this paper, a long line source is approximated by a set of linearly arranged point sources. As it follows from the
differential geometry of ray surfaces, information obtained from such set of sources is sufficient for determination of phase velocities of
both the quasi-transverse and the quasi-longitudinal modes of propagation. Moreover, this approach can be generalized for any arbitrary
set of point sources only by employing a proper time-base transformation. The applicability of the presented approaches is illustrated on
transversely isotropic and tetragonal fibrous composite materials.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the last 20 years, the point-source/point-receiver (PS/
PR) techniques for nondestructive ultrasonic evaluation of
anisotropic materials have been developed and validated
for a wide range of materials [1–4], primarily for fibreous
composites [5–10]. PS/PR techniques usually result in an
extensive set of group velocities of elastic wave propagation
in various material directions. From this data the elastic
coefficients are inversely determined. For a stable and reli-
able inversion, the group velocities must first be geometri-
cally converted into phase velocities (e.g. [3]). This can
induce systematical errors, especially in nondiagonal elastic
coefficients [11]. Moreover, the geometrical conversion into
the phase velocities generally complicates the entire proce-
dure’s automation, because the reliability of the chosen fit-
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ting function and the converted phase velocities must be
verified for each particular inversion.

This paper presents some possibilities of direct experi-
mental determination of phase velocities in certain direc-
tions. Signals from point-like sources are still detected by
a point-like detector, but the geometrical arrangement of
the source array is beneficially utilized, and exploits consis-
tently the differential geometry of ray surfaces. This paper
deals with a set of point-like sources arranged in a line,
called here, for simplicity, a linear array. In the last section
only, a possible generalization to a circular array is pre-
sented. Determination of the phase velocity is the main
objective of this paper; the experimental results and numer-
ical simulations are presented only to illustrate the meth-
od’s applicability on particular examples. To mention
briefly the experimental setup – the laser point-like source
(General Photonics Corporation Nd:YAG laser, dominant
wavelength 1064 nm, optical path width 12 ns) was used
to scan a free surface of the composite specimen. The
acoustic signals from local vaporization were detected by
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a miniature piezoelectric PIN-ducer VP-1093-A50, situated
on the same free surface, and recorded by a Nico-
let(12 bits, 100 MS/s) ACCURA 100 digital oscilloscope.
For further details in instrumentation, see [8–10,12].

2. Wave arrivals from a linear array of independent point-
like sources

Let us consider a free surface of an anisotropic material,
and let this surface be parallel to one of the material’s sym-
metry planes. The cartesian coordinates [x1,x2,x3] are
introduced such that the x2-axis is normal to the free sur-
face, as outlined in Fig. 1. The point-like detector is situ-
ated at the origin of this cartesian system. Let the angle b
denote a general direction in the x1x3-plane, and let us
consider an infinite linear array of point-like sources in
the distance d from the origin forming the angle b with
the x3-axis. The positions of particular sources of this array
are represented by one spatial coordinate y, or, equiva-
lently, by one angular coordinate a, with y = 0 for a = 0
(see Fig. 1). The distance between two neighboring sources
d
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Fig. 1. A linear array of point-like sources represented by a spatial
coordinate y, or, alternatively, by one angular coordinate a = 0. The
detector is situated in the origin, and d denotes its distance from the array.

Fig. 2. Examples of [y, t] fields experimentally obtained from two linear arrays o
The tested material was a 8 mm thick plate of a unidirectional CFRP composi
the distance d = 20 mm, and consisted of 101 point-like sources spaced by Dy =
denote the arrivals of particular wavefronts evaluated for known elastic coeffi
is denoted Dy and considered as constant. For Dy� d, the
signals obtained successively from all sources can be trea-
ted as a continuous wave field in the [y, t]-space.

Let us first focus on the fastest quasi-longitudinal (qL)
mode. The time of flight (TOF) of the qL-pulse from the
source to the detector is given by the group velocity vG in
direction (a(y) + b). Because the distance between the
actual source and the detector can be expressed as d/cosa,
the TOFs satisfy the equation

TOFðyÞ ¼ d
cosðaðyÞÞvGðaðyÞ þ bÞ : ð1Þ

For an isotropic material, the resulting function TOF(y)
should have a minimum in y = 0, and should be symmetric
about this point. Due to directional dispersion in the aniso-
tropic material, the minimal TOF deviates from the sym-
metric position as can be seen on examples in Fig. 2,
where the [y, t]-fields are compared to exactly evaluated
wavefront arrivals.

The extremal condition on TOF(y) is

0 ¼ dTOFðyÞ
dy ¼ d

da
d

cosðaÞvGðaþ bÞ

� �
� da

dy

) d

da
cosðaÞvGðaþ bÞð Þ ¼ 0;

ð2Þ

for obviously

cosðaÞ 6¼ 0; vGðaþ bÞ 6¼ 0; and
da
dy
6¼ 0: ð3Þ

For an infinite length of the array, (2) has always a solu-
tion. When considering a real array of a finite length, we
must require the absolute values of angles aend correspond-
ing endpoints of the array to be greater than the maximal
possible angular difference between the group and phase
velocity in the evaluated material. For fibreous composites
[5–10], our choice jaendj > 50� appears to be sufficient.
f point-like sources forming the angles b = 6� and b = 45� with the x3-axis.
te with the fiber direction parallel to the x3-axis. The array was situated in

1 mm, between y = �50 mm and y = 50 mm. For comparison, thick lines
cients.
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Let a0 denote the angle for which the minimum reached.
Recasting the condition (2) into

dvGðaþ bÞ
da

����
a¼a0

¼ vGða0 þ bÞ � tan a0; ð4Þ

we realize that the normal to the ray surface in point
(a0 + b) has the direction given by b. In the other words,
the minimal TOF determines the phase velocity vu in the
chosen direction b [3,5]

TOFða0Þ ¼
d

vGða0 þ bÞ � cos a0

¼ d
vuðbÞ

; ð5Þ

as denoted by arrows in Fig. 2. Moreover, the extremal an-
gle a0 determines the direction of the corresponding group
velocity, satisfying the well-known geometrical relation
vu(b) = vG(a0 + b) Æ cosa0 [13–15].

It must be pointed out that the condition (2) is always
satisfied in only one point of the ray surface. In the case
Fig. 3. Experimental verification of the superposition principle (a), compared
involved (c, d). Solid lines in (b) show the exact normal surfaces. The tested m
fibres parallel to axes x1 and x3. The resultant signals were superposed from 8
Each array consisted od 81 point-like sources between y = �40 mm and y =
d = 30 mm from the detector.
of the quasi-transverse (qT) mode, where singular cuspidal
features may appear, this point does not necessarily repre-
sent the first mode’s arrival on the detector. It can be a
local minimum on one of the pure convex/concave
branches of this mode, while other branches can be faster.
For b = 45�, in Fig. 1, the minimum on the qT-curve is eas-
ily detectable, and the corresponding phase velocity can be
determined. However, for b = 6�, the minimum is situated
on a low-energy branch of the qT-curve, and its reliable
determination is, thus, close to impossible.

3. Superposition approach

Although the extremal TOF from a linear array of
sources directly determines the phase velocity in chosen
direction, further simplification can be discussed. Due to
the considered linearity of observed waves, the superposi-
tion of signals from a dense linear array are expected to
to simulations for the qL and qT modes with and without energy focusing
aterial was a 7.5 mm thick plate of a GFRP tetragonal composite with the
0 mm long arrays, forming the angles b = 0�, 9�, . . ., 90� with the x3-axis.
40 mm (spatial resolution Dy = 1 mm), and was situated in the distance



Fig. 4. Effect of the angular step in angle b on resultant superposed field for the same material and the same geometrical configuration as in Fig. 3.
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Fig. 5. A polar PS/PR scan with a constant radius d and angular step D#
(a) and construction of the corresponding linear array for each angle b (b).
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be similar to a response to one long line source, which is a
planar wave travelling at a phase velocity. For such
response, the whole problem is reduced to a 1D detection
of wave-front arrivals. This approach brings additional
constraints on the source-receiver geometrical configura-
tion. The length L and minimal distance between the
source line and the receiver are required to satisfy the con-
dition of near-field of the finite line source: d/L < 1 (sup-
pression of influence of the line edges to the resulting
wavefield). The length L of the array must also be long
enough as to generate fundamental wave with maximal
angle differences between the group velocity and related
phase velocity. The incremental distance between nearby
source points of the array is supposed less than wavelength
of the source function. In our case, the selected increment
length is 1 mm, and the frequency band of acquisition is
2 MHz, hence corresponding minimal wavelength is
2.5 mm for maximal expected wave velocity 5 mm/ls.

Both extensive experiments and numerical simulations
were performed to explore this possibility. A tetragonal
GFRP composite was tested using a set of linear arrays,
corresponding to angles b = 0�, 9�, . . ., 90�. A polar plot
of superposed signals for the distance d = 30 mm, the array
of total length 80 mm spaced by Dy = 1 mm, is shown in
Fig. 3a. Whereas the qL-pulses superpose well into a
smooth normal surface, the qT-mode arrivals cannot be
simply detected. To better understand this phenomenon, a
numerical simulation was performed. For the material
properties known from results of a classical PS/PR tech-
nique [12], synthetically evaluated fields of a linear array
of point-like sources were superposed, resulting in Fig. 3c.
Similarly to the experiment, the qL-wavefronts superposed
into a new wavefront, with a shape similar to synthetic
pulses from particular sources. The superposed qT-field
exhibits the same disorder as observed in the experiment.

Explanation should be sought in energy focusing on the
qT ray surface. Besides the superposed planar wave, the
detector receives wave arrivals from particular sources.
Due to the energy focusing especially on the edges of cuspi-
dal regions, these waves can be of considerably higher
amplitudes than the whole superposed planar wave. More-
over, the velocities corresponding to the edges of the cuspi-
dal regions are usually global maxima of the whole qT ray
surface, thus arriving sooner than the planar wave. When
uniform energy distribution along the ray surfaces is consid-
ered (Fig. 3d), a significant superposed qT-wavefront arises.
As proven by other simulations, neither further densifica-
tion (resolution increase) nor arbitrary elongation of the
array can weaken this effect of energy focusing – i.e., the
response to a large number of point-like loadings does not
converge to a response to a line source. The only possible
improvement comes from decreasing the step in the angles
b, both in the calculation and experiment. Then, the super-
posed wavefronts form smooth normal surfaces, whereas
the particular arrivals in energetically-preferred directions
should appear as solitary localized maxima (see Fig. 4)
However, decreasing the angular step in b is disadvanta-
geous due to the large number of measurements required.

4. Application to general arrays

Let us now return to determination of phase velocities
via the extremal condition (2). To obtain sufficiently
smooth [y, t]-fields for a reasonable number of angles b,
the same problem of the large number of required measure-



Fig. 6. Results of a polar PS/PR scan and its transformation into a [y*, t]-field for determination of the phase velocity in direction b = 45�. The polar scan
was performed for a 8 mm thick plate of a unidirectional CFRP composite with the fibre direction parallel to the x3-axis by scanning a quarter of a circle of
diameter d = 20 mm by an angular step of D# = 1�. Thick lines denote the arrivals of particular wavefronts evaluated for known elastic coefficients.
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ments arises. However, the findings from the first section
can be utilized for circular or arbitrary curved arrays of
point-like sources.

Let us consider a set of signals obtained from a polar PS/
PR scan. With a detector considered in the origin of
the cartesian system again, the geometry is outlined in
Fig. 5a. The angular coordinate # denotes the position of
a particular source, scanning the arc of a constant radius
d, angularly spaced by D#, where # is the angle which join
on the actual source and the detector forms with the x1-axis.

Our aim is now to determine the phase velocity for any
given angle b. The wavefronts of particular modes arrive
on the detector in times

TOFð#Þ ¼ d
vGð#Þ

: ð6Þ

If the array was linear and forming the angle b with the x3-
axis, the distance of the source corresponding to direction #
would be d* = d/cos(# � b), see Fig. 5b for clarity. And,
consequently, the times of flight (TOFs) would transform
into

TOF�ð#Þ ¼ d�

vGð#Þ
¼ d

vGð#Þ � cosð#� bÞ : ð7Þ

This function has the same properties as (1), reaching,
analogically, its minimum in

min
#2h0�;90�i

TOF� ¼ TOF�ð#0Þ ¼
d

vGð#0Þ � cosð#0 � bÞ

¼ d
vuðbÞ

: ð8Þ

By the transformation TOF! TOF* we are treating the
sources of the circular array as if they were arranged in a
line. An example of resultant field is presented in Fig. 6.
For b = 45�, we obtain a field similar to that in Fig. 1, only
with the y-axis scaled by
y� ¼ d � tanð#� bÞ: ð9Þ
The phase velocities in chosen direction b can be, again, di-
rectly determined from the minima of the TOFs.

5. Concluding remarks

All of the above described approaches enable the phase
velocities of acoustic waves in anisotropic solids to be
detected in chosen directions. The superposition approach
offers the most direct method of phase velocity determi-
nation. However, it was shown that this approach is inap-
plicable to wavefronts with significant energy focusing.
Surprisingly, increasing the resolution of the linear array
does not induce a convergence of the superposed field to
a response to a line source.

The presented methods are most suitable for the fastest
qL-mode, which might be completely insufficient for
stable determination of elastic coefficients [16,17]. For the
qT-modes, where considerable energy focusing usually
appears, the methods based on the extremal condition (2)
can be, with some limitations, applied, whereas the super-
position approach fails. It must be mentioned that the pro-
posed approaches, except the superposition again, enable
an analytical phase velocity error estimation. For the
[y, t]-field obtained from a linear array, let a0 be the point
where the minimal TOF is reached. So, we take
vuðbÞ ¼ d

TOFða0Þ with a variance

r2
vuðbÞ ¼

1

TOFða0Þ

� �2

r2
d þ

d

TOF2ða0Þ
dTOFðaÞ

da

����
a¼a0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�0

0
BBB@

1
CCCA

2

r2
a;

ð10Þ
concluding that forDy� d, the accuracy of vu is given mainly
by the accuracy of the distance d. For the conventional geo-
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metrical conversion, such error estimation is impossible, and
the effect of conversion on the resultant accuracy must be
determined from Monte Carlo simulations [11].

The presented methods, as well as conventional PS/PR
techniques, are limited to the symmetry planes. This limita-
tion may be crucial for single crystals or biological materi-
als, but it is irrelevant to composites. Similarly, all the
problems known from the classical PS/PR techniques, such
as unreliable identification of low-energy branches of the
qT-mode, can be expected to appear in above described
approaches. However, the advantage of avoiding the geo-
metrical conversion from phase to group velocities makes
the approaches presented simpler, more stable, and more
suitable for automation.
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