Současný vědecký program ústavu zahrnuje fyziku elementárních částic, kondenzovaných systémů, pevných látek a plazmatu a klasickou a kvantovou optiku.
Výzkum ve fyzice elementárních částic uskutečňujeme převážně v rámci velkých mezinárodních kolaborací. Jedná se o experimenty na urychlovačích v CERN u Ženevy a Fermilab v USA, ve kterých se zkoumá nejhlubší struktura hmoty a síly působící v mikrosvětě. S tím úzce souvisí i naše aktivity při vývoji detektorů částic.
Zabýváme se také astročásticovou fyzikou, oborem na pomezí částicové fyziky a astrofyziky. Kosmické záření nejvyšších energií zkoumáme v rámci mezinárodní kolaborace v Observatoři Pierra Augera v Argentině. Jedná se o největší experiment tohoto druhu na světě. Věnujeme se i teoretické a matematické fyzice a otázce využití svazků částic v lékařství.
Simulace spršky kosmického záření vyvolané vysokoenergetickým protonem a dopadající na pole detektorů Observatoře Pierra Augera (vytvořeno Cosmus group of the University of Chicago).
Ve fyzice kondenzovaných systémů studujeme dynamické a kooperativní jevy v neuspořádaných a nehomogenních materiálech a systémech se sníženou prostorovou dimenzí. Hlavními objekty zájmu jsou kondenzované látky s výraznými fyzikálními vlastnostmi nebo v extrémních podmínkách. Zabýváme se přípravou a zkoumáním funkčních materiálů a kompozitů, supravodičů, kapalných krystalů a slitin s tvarovou pamětí ve formě monokrystalů, polykrystalů, nano- strukturovaných materiálů, tenkých vrstev a materiálových povlaků pomocí kombinace teoretických, experimentálních a moderních technologických přístupů.
V oblasti pevných látek je výzkum zaměřen na nové formy pevných látek, nové fyzikální jevy a principy mikroelektronických komponent. Vlastnosti nových materiálů jsou určovány povrchem, defekty, nanometrickou, vrstevnatou či aperiodickou strukturou. Charakteristické je propojení pokročilých technologií přípravy materiálů, unikátních metod jejich charakterizace v rozsáhlém oboru vnějších podmínek až do nanometrické i atomární úrovně a zpracování výsledků pomocí mikrofyzikálních i ab-initio teoretických výpočtů. Výrazně jsou zastoupeny magneticky a opticky aktivní materiály, nanokrystalické formy křemíku, polovodičů III-V, diamantu a grafitu a nanostruktury pro biologické, lékařské a mikroelektronické aplikace.
Průběh vytváření předem definovaného vzoru pomocí mikroskopu atomárních sil (AFM), v tomto případě písmene Si, z jednotlivých atomů křemíku (tmavá kolečka) na povrchu cínu (světlá kolečka).
K přípravě nových optických materiálů pro optoelektroniku se využívají nové plazmové a hybridní technologie. V oboru kvantové optiky jsou vyvíjeny různé typy zdrojů kvantově korelovaných fotonových párů a zařízení pro přenos takto uložené informace.
První výkonový zesilovač A1 laseru PALS
Intenzivně se studuje dynamika laserového plazmatu a zářivé vlastnosti vysokoteplotní fáze hmoty vytvářené terawattovým jodovým laserovým systémem PALS. Rychlé ionty a intenzivní roentgenové záření se využívají ke studiu interakce laserového svazku s plynnými i pevnými vzorky.
Copyright © 2008, Fyzikální ústav AV ČR, v. v. i.