Fyzikální ústav Akademie věd ČR

Studium magnetoelektrických multiferoik

V těchto materiálech lze očekávat vliv magnetického pole na dielektrické vlastnosti a opačně (magnetoelektrický jev), což je nyní v popředí zájmu nejen pro atraktivní a zatím nepochopenou fyziku magnetoelektrické vazby, ale i pro své obrovské potenciální užití v technické praxi. Pokud by se podařilo přemagnetovávat magnetické domény elektrických polem, umožnilo by to konstrukci zcela nových pamětí RAM. Takové paměti byly již skutečně pokusně zkonstruovány, ale pracují jen při nízkých teplotách 80 K. Zatím neexistuje magnetoelekrické multiferoikum, které by vykazovalo dostatečně silnou magnetoelekrickou vazbu nad pokojovou teplotu. Pro navržení nových materiálů je však potřeba nejdříve pochopit podstatu magnetoelektrické vazby. Proto jsme studovali infračervenou odezvu polárních fononů a permitivitu ve vysokoteplotní magnetoferoelektrické keramice BiFeO3 s perovskitovou strukturou v závislosti na teplotě. Bylo ukázáno, že feroelektrický přechod u 1100 K je způsoben měkkým polárním fononem tj. nízkofrekvenčním kmitem mřížky svázaným s dipólovým momentem. Zároveň byl v nízkofrekvenční permitivitě BiFeO3 pozorován silný magnetoelektrický jev. Ukázali jsme však, že se jedná o nevlastní (extrinsický) jev způsobený rozdílnou magnetorezistencí v hranicích zrn a jejich objemu při teplotách nad 200 K. Při nižších teplotách magnetoelektrický efekt prakticky mizí. BiFeO3 keramika tedy není vhodná pro konstrukci magnetoelektrických pamětí. Podrobnosti viz Kamba a kol., Phys. Rev. B 75, 024403 (2007). V případě jiného perovskitového multiferoika EuTiO3 bylo vysvětleno pozorované kvantově-paraelektrické chování (výrazný vzrůst permitivity s ochlazováním a její saturace pod 30 K) měknutím polárního fononu (vibrace magnetického iontu Eu). Pod teplotou antiferomagnetického přechodu (5.5 K) dochází k výraznému poklesu permitivity, ale s magnetickým polem permitivita naopak stoupá (viz. obr. 3). To lze vysvětlit změnou frekvence měkkého fononu s magnetickým polem, což se nám nedávno skutečně (jako první laboratoři na světě) podařilo pozorovat. Podrobnosti viz. Kamba a kol., Europhys. Lett. 80, 27002 (2007) a Goian a kol., Eur. Phys. J. B 71, 429 (2009).


Teplotní závislost permittivity magnetoelektrického EuTiO3 při různých magnetických polích. Změna permitivity s magnetickým pole je způsobena posuvem frekvence polárního fononu s magnetickým polem.

Ve spolupráci s Hebrejskou univerzitou v Jeruzalémě byla studována akustická emise v PbFe2/3W1/3O3-PbTiO3. Tento materiál je zároveň feroelektrický i antiferomagnetický. Metoda akustické emise umožnila pozorovat nejen vznik polárních klastrů při vysokých teplotách a vznik feroelektrické fáze, ale poprvé se touto metodou zaznamenaly i teploty magnetických fázových přechodů. To umožnilo určit magnetický fázový diagram tohoto směsného keramického systému. Detaily viz. Dulkin a kol., J. Appl. Phys. 103, 083542 (2008). D


Copyright © 2008, Fyzikální ústav AV ČR, v. v. i.