
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Decision Support

Shapley mappings and the cumulative value for n-person
games with fuzzy coalitions

Dan Butnariu a, Tomáš Kroupa b,*
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Abstract

In this paper we prove existence and uniqueness of the so-called Shapley mapping, which is a solution concept for a
class of n-person games with fuzzy coalitions whose elements are defined by the specific structure of their characteristic
functions. The Shapley mapping, when it exists, associates to each fuzzy coalition in the game an allocation of the coali-
tional worth satisfying the efficiency, the symmetry, and the null-player conditions. It determines a ‘‘cumulative value’’ that
is the ‘‘sum’’ of all coalitional allocations for whose computation we provide an explicit formula.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let N :¼ f1; 2; . . . ; ng be the set whose elements are called players. As usual, by a coalition we mean a subset
of N. A fuzzy coalition is a vector A ¼ ðAð1Þ; . . . ;AðnÞÞ with coordinates AðiÞ contained in the interval ½0; 1� (cf.
[1,2]). The number AðiÞ is called the membership degree of player i to the fuzzy coalition A. We denote by P the
set of all coalitions and by F the set of all fuzzy coalitions. When referring to coalitions we do not notationally
distinguish between a coalition S and its indicator vector ðSð1Þ; . . . ; SðnÞÞ, where the coordinates SðiÞ are either
one or zero depending on whether i belongs or not to S. In this way we can view P as a subset of F. A fuzzy
coalition A can be also seen as a partition of the set of players into coalitions

At :¼ fi 2 N : AðiÞ ¼ tg; t 2 ½0; 1�;
such that all players belonging to At for some t 2 ½0; 1� have the same degree of membership to A. Clearly, all
but at most n coalitions At are non-empty.
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A (characteristic function n-person cooperative) game is a function u : P! R such that uð;Þ ¼ 0. The func-
tion u associates to each coalition S its worth uðSÞ, measuring the utility of forming coalition S. We presume
that, besides coalitions, formation of fuzzy coalitions in the game u is also possible: the worth of a fuzzy coa-
lition A is the aggregated worth of the coalitions At weighted by a quantity wðtÞ which depends on the degree
of membership t. In other words, the worth of a fuzzy coalition A in the game u is given by

uwðAÞ ¼
X

t2½0;1�
wðtÞuðAtÞ: ð1Þ

Note that the sum occurring here is well-defined since all but finitely many terms of it are zero. In this context
it is natural to assume that the function w : ½0; 1� ! R is such that the coalition A1 of fully fledged members of
A gets its full worth while the coalition A0 of players who are not members of A does not contribute to the
worth uwðAÞ. Therefore, all over this paper we make the following assumption:

Assumption 1. ðwðtÞ ¼ 0() t ¼ 0Þ and ðwð1Þ ¼ 1Þ.

A function w : ½0; 1� ! R with this property is called a weight function.
In what follows, a function v : F! R satisfying vð;Þ ¼ 0 is called a fuzzy game – cf. [1,2]. We denote by

G½w� the set of fuzzy games v satisfying

vðAÞ ¼
X

t2½0;1�
wðtÞvðAtÞ: ð2Þ

It is easy to see that, if v 2 G½w�, then the restriction u of v to P is a game such that v ¼ uw. The game u is called
the underlying game of v. Clearly, a fuzzy game v 2 G½w� and its underlying game u completely determine each
other. Also, observe that G½w� is a linear space with the usual operations induced from R. It is worth mention-
ing that the class of games G½w� represents a certain scheme for calculating a profit of a fuzzy coalition, which
is justified and developed in detail from the economic point of view in Example 1 of Section 4.

A first question we are dealing with in this paper is whether, in games in which formation of fuzzy coalitions
is possible and the worth of each fuzzy coalition is determined according to (2), there are ways of ‘‘fairly’’ dis-
tributing the worth of all fuzzy coalitions among the players. Of course, the answer to this question essentially
depends on the meaning of ‘‘fairness’’. In order to make this precise, recall (cf. [9,10]) that if v is a fuzzy game
and if A is a fuzzy coalition, then the fuzzy coalition B is called a v-carrier of A if the following two conditions
are satisfied:

(i) Bt � At for every t 2 ð0; 1�;
(ii) if C 2F and Ct � At for every t 2 ð0; 1�, then vðBt \ CtÞ ¼ vðCtÞ for every t 2 ð0; 1�.

As usual, for every permutation p of N, every A 2F, and any fuzzy game v, we denote pA :¼ A � p�1 and
pvðAÞ :¼ vðp�1AÞ. Clearly, if v belongs to G½w�, then the function pv : A 7! pvðAÞ from F to R is still a fuzzy
game in G½w�. With these in mind we can define the following notion which describes a concept of fairness
according to which each fuzzy coalition allocates its worth to its members obeying the principles intrinsic
to the Shapley value, that is, efficiency, null-players get nothing, symmetry, and linearity (see [13]).

Definition 1. A Shapley mapping is a linear function U : G½w� ! ðRN ÞF satisfying the following conditions for
any v 2 G½w� and any A 2F:

Axiom 1. (Coalitional Efficiency) For every v-carrier B 2F of A we haveX
i2N :BðiÞ>0

UiðvÞðAÞ ¼ vðBÞ: ð3Þ

Axiom 2 (Non-Member). If AðjÞ ¼ 0, then UjðvÞðAÞ ¼ 0.

Axiom 3 (Symmetry). If p is a permutation of N, then
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UpiðpvÞðpAÞ ¼ UiðvÞðAÞ; i ¼ 1; . . . ; n: ð4Þ
Note that a Shapley mapping associates to each fuzzy game v 2 G½w� and to any fuzzy coalition A a vector
UðvÞðAÞ ¼ ðU1ðvÞðAÞ; . . . ;UnðvÞðAÞÞ, that satisfies the basic principles of efficiency, null-player condition, sym-
metry and linearity characterizing the Shapley value [13] when extrapolated to fuzzy coalitional levels. The
following result, whose detailed proof is given in Section 2, shows that these principles uniquely determine
a Shapley mapping on G½w�.

Theorem 1. There exists a unique Shapley mapping U : G½w� ! ðRN ÞF and it is given by the following formula:

UiðvÞðAÞ ¼
wðrÞ

P
S2PiðArÞ

ðjSj�1Þ!ðjAr j�jSjÞ!
jAr j! ðvðSÞ � vðS n figÞÞ; if AðiÞ ¼ r > 0;

0; otherwise;

8<
: ð5Þ

where

PiðArÞ ¼ fR � N ji 2 R and R � Arg:
A second problem we are addressing in this paper concerns the expected total allocation UiðvÞ of player i in

the cooperative process in which fuzzy coalitions allocate to their members their worth. Precisely, we consider

UiðvÞ :¼
Z
F

UiðvÞðAÞdA; ð6Þ

where the integral over the set of fuzzy coalitions F is taken with respect to the Lebesgue measure. It is inter-
esting to know whether the total-payoff vector UðvÞ ¼ ðU1ðvÞ; . . . ;UnðvÞÞ, which we call the cumulative value of
the fuzzy game v, is well-defined and, if possible, to estimate its coordinates. The following result, that is
proved in Section 3, contains an answer to that question.

Theorem 2. If the weight function w is bounded and (Lebesgue) integrable, then, for any v 2 G½w�, the cumulative

value UðvÞ ¼ ðU1ðvÞ; . . . ;UnðvÞÞ, given by (6) is well defined and we have

UiðvÞ ¼ vðfigÞ
Z 1

0

wðtÞdt ð7Þ

for each i 2 N .

As noted above, the Shapley mapping models a scheme of allocating each coalition’s worth to its member
following some ‘‘fairness criteria’’. Theorem 2 essentially says that if a cooperative game u is extended to a
fuzzy game (i.e., to a game in which formation of fuzzy coalitions is possible) according to the rule (1) (or,
equivalently, (2)), then the scheme underlying the Shapley mapping is no more and no less than a procedure
through which each player is re-evaluating his personal worth by taking into account the ‘‘weight’’ of his mem-
bership degrees to fuzzy coalitions. Along this procedure a weight function w with average value

R 1

0
wðtÞdt > 1

favors players i with positive individual worth vðfigÞ, while a weight function w with average valueR 1

0
wðtÞdt < 1 favors players with negative worth vðfigÞ.
Using (7) it is easy to deduce that the function v 7! UðvÞ is a semi-value on G½w�, that is, it has the null-player

property, it is symmetric and linearly dependent on v. Moreover, on the linear subspace of G½w� consisting of
all games having the property

X
i2N

vðfigÞ
 !Z 1

0

wðtÞdt ¼ vðNÞ; ð8Þ

the cumulative value of v is also efficient, that is,X
i2N

UiðvÞ ¼ vðNÞ; ð9Þ

and, thus, the function v 7! UðvÞ is a value.
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The concepts of fuzzy coalition and the possibility of extending games to games with fuzzy coalitions nat-
urally emerged from the works of Aumann and Shapley where ‘‘ideal set’’ and ‘‘ideal set functions’’ (fuzzy
coalitions and fuzzy games, respectively) are technical tools in the study of games with infinitely many players
[7]. However, it was Aubin who not only introduced notions of fuzzy coalition and fuzzy game but also stud-
ied them per se (see [1–6]). The notion of Shapley mapping studied in this article was introduced in [10], where
the existence of a Shapley mapping was proved for a particular class of fuzzy games. The existence theorem for
Shapley mapping given above (Theorem 1) as well as the form of the cumulative value given in Theorem 2
essentially depend on the specific way in which the worth of each fuzzy coalition is aggregated from the worth
of its level sets in formula (2). There are other meaningful ways of embedding games into fuzzy games. The
oldest among them, as far as we know, is Owen’s multilinear extension [12] which can be seen as a fuzzy game
extending a game (see [11], Section 19). More recently, Tsurumi et al. [14] proposed another way of extending
a game to a fuzzy game and have shown that by using their extension, which is more regular than the one given
by (2), one can also obtain Shapley mappings on a class of necessarily continuous games. As one can see from
the examples from Section 4, fuzzy games defined by (2) need not be continuous. The notion of cumulative
value introduced here measures the pay-off each player should expect from his participation in the extended
fuzzy game. It is an interesting open question whether different rules of aggregating fuzzy games from games
and, in particular, that of [14] and other mentioned above, leads to well-defined cumulative values and whether
it is possible to estimate them.

We have noted above that the vector UðvÞ is a semi-value on G½w�, which is even a value on some subspace
of G½w�. It is natural to ask how this new value relates with the other value concepts already discussed in lit-
erature. In Section 4 we point out that the cumulative value exists for some fuzzy games for which the other
existing value concepts need not be defined.

2. Proof of Theorem 1

We start our proof by observing that if v 2 G½w� and if B is a v-carrier of A, then vðAtÞ ¼ vðBtÞ for all
t 2 ð0; 1� and, therefore, vðAÞ ¼ vðBÞ because of (2). We follow Shapley [13] and to any non-empty coalition
S we associate the simple game wS : P! f0; 1g defined by

wSðAÞ ¼
1; if S � A;

0; otherwise;

�
ð10Þ

and the number

cSðvÞ ¼
X

B2P:B�S

ð�1ÞjSj�jBjvðBÞ: ð11Þ

It is known (see Lemma 3 in [13]) that the set G0 of all simple games is a basis in the linear space G of all games,
and, if u is a game, then it can be uniquely written as

u ¼
X

S2P:S 6¼;
cSðuÞwS : ð12Þ

We prove below that there exists a unique Shapley mapping on G½w�. Our proof consists of a sequence of
lemmata.

Lemma 1. If v 2 G½w�, then

v ¼
X

S2P:S 6¼;
cSðvÞww

S : ð13Þ

Proof. Let v 2 G½w� and A 2F. Then, applying (12) to the restriction of v to P, we obtain
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vðAÞ ¼
X

t2½0;1�
wðtÞvðAtÞ ¼

X
t2½0;1�

wðtÞ
X

S2P:S 6¼;
cSðvÞwSðAtÞ ¼

X
S2P:S 6¼;

cSðvÞ
X

t2½0;1�
wðtÞwSðAtÞ

¼
X

S2P:S 6¼;
cSðvÞww

S ðAÞ: �

Observe that, according to (1), for every fuzzy coalition A and for every non-empty coalition S the fuzzy game
ww

S can be represented as

ww
S ðAÞ ¼

wðrÞ; if S � Ar for some r 2 ð0; 1�;
0; otherwise:

�

We denote

G0½w� ¼ ww
S jS 2 P; S 6¼ ;

n o
:

Note that, according to Lemma 1, G0½w� is a basis of G½w�. With these remarks and notations in mind we can
state the following result.

Lemma 2. Let U : G0½w� ! ðRN ÞF be the function defined by

Uiðww
S ÞðAÞ ¼

wðrÞ
jSj ; if i 2 S � Ar for some r 2 ð0; 1�;
0; otherwise:

(
ð14Þ

The function U satisfies the Coalitional Efficiency, the Non-Member, and the Symmetry Axiom given in Defini-

tion 1 for games in G0½w�.

Proof. Let S be a non-empty coalition and A be a fuzzy coalition. We claim that U satisfies the Coalitional
Efficiency Axiom. In order to prove this claim, let B be ww

S -carrier of the fuzzy coalition A. Then there exists
only one r 2 ð0; 1� such that S � Br � Ar. Note that, according to (14), if i 62 S then Uiðww

S ÞðAÞ ¼ 0. Conse-
quently, we haveX

i2N :BðiÞ>0

Uiðww
S ÞðAÞ ¼

X
i2S

Uiðww
S ÞðAÞ ¼

X
i2S

wðrÞ
jSj ¼ wðrÞ ¼ ww

S ðBÞ;

proving our claim. We prove next that U satisfies the Symmetry Axiom too. Let p be a permutation of N. We
obviously have

pww
S ðAÞ ¼ ww

S ðp�1AÞ ¼ wðrÞ; if S � p�1Ar for some r 2 ð0; 1�;
0; otherwise;

�

and since S � p�1Ar if and only if pS � Ar, it results that

pww
S ðAÞ ¼ ww

pSðAÞ: ð15Þ
If i 2 N , then

Upiðpww
S ÞðpAÞ ¼ Upiðww

pSÞðpAÞ;

where by (14), we have that

Upiðww
pSÞðpAÞ ¼

wðrÞ
jpSj ; if pi 2 pS � pAr for some r 2 ð0; 1�;
0; otherwise:

(

Since jpSj ¼ jSj and the condition pi 2 pS and pS � pAr is equivalent to i 2 S and S � Ar, respectively, we
have

Upiðpww
S ÞðpAÞ ¼ Uiðww

S ÞðAÞ:
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Observe that if AðjÞ ¼ 0 for some j 2 N , then we have Ujðww
S ÞðAÞ ¼ 0 by (14). Hence, the Non-Member

Axiom is also verified. h

Lemma 3. The function U defined by (14) is the only function from G0½w� to ðRN ÞF which simultaneously satisfies

the Coalitional Efficiency, the Non-Member, and the Symmetry Axiom for any v 2 G0½w�.

Proof. Suppose that U0 : G0½w� ! ðRN ÞF is another function satisfying the Coalitional Efficiency and Symme-
try Axioms for every fuzzy game in G0½w�. Let A be a fuzzy coalition and S be a non-empty coalition. We dis-
tinguish two possible cases.

Case 1: S � Ar for some r 2 ð0; 1�. Note that the fuzzy coalition B defined by

BðiÞ ¼
AðiÞ; if i 2 S;

0; otherwise;

�

is a ww
S -carrier of A. Therefore we haveX
i2S

U0iðw
w
S ÞðAÞ ¼

X
i2N :BðiÞ>0

U0iðw
w
S ÞðAÞ ¼ ww

S ðBÞ ¼ wðrÞ 6¼ 0: ð16Þ

Fix i; j 2 S such that i 6¼ j. Let p be a permutation of N such that

pk ¼
j; if k ¼ i;

i; if k ¼ j;

k; otherwise:

8<
:

Observe that pS ¼ S and pA ¼ A. Consequently, by the Symmetry Axiom and (15) we obtain

U0iðw
w
S ÞðAÞ ¼ U0jðpww

S ÞðpAÞ ¼ U0jðw
w
pSÞðpAÞ ¼ U0jðw

w
S ÞðAÞ:

This, together with (16), implies

U0iðw
w
S ÞðAÞ ¼

wðrÞ
jSj

for every i 2 S. Hence in this situation we have

U0iðw
w
S ÞðAÞ ¼ Uiðww

S ÞðAÞ ð17Þ
for any i 2 S. Now, take k 62 S and denote T ¼ S [ fkg. The fuzzy coalition B 0 defined by

B0ðiÞ ¼
AðiÞ; if i 2 T ;

0; otherwise;

�

is a ww
S -carrier of A and, therefore, by the Coalitional Efficiency Axiom and (16) we getX
i2S

U0iðw
w
S ÞðAÞ ¼ ww

S ðB0Þ:

By consequence we have

ww
S ðB0Þ ¼

X
i2N :B0ðiÞ>0

U0iðw
w
S ÞðAÞ ¼

X
i2T

U0iðw
w
S ÞðAÞ

and hence U0kðw
w
S ÞðAÞ ¼ 0. Combining this fact with (17), we conclude that Uðww

S ÞðAÞ ¼ U0ðww
S ÞðAÞ.

Case 2: S 6� Ar for every r 2 ð0; 1�. In this case, it can be easily verified that any B 2F such that Bt � At for all
t 2 ð0; 1� is a ww

S -carrier of A. Let j 2 N . If AðjÞ ¼ 0, then U0jðw
w
S ÞðAÞ ¼ 0 due to the Non-Member

Axiom. If AðjÞ 6¼ 0, then we define the fuzzy coalition C as follows:

CðiÞ ¼
AðjÞ; if i ¼ j;

0; otherwise:

�
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Obviously, Ct � At for all t 2 ð0; 1� because Ct ¼ fjg, if t ¼ AðjÞ, and Ct ¼ ;, otherwise. If B is a fuzzy coalition
such that Bt � At for all t 2 ð0; 1�, then there is no t 2 ð0; 1� such that S � Bt because otherwise S � At. Con-
sequently, we have

wSðBt \ CtÞ ¼ 0 ¼ wSðBtÞ;
showing that the fuzzy coalition C is a ww

S -carrier of A. Hence, by the Coalitional Efficiency Axiom and (14),
we get

U0jðw
w
S ÞðAÞ ¼

X
i2N :CðiÞ>0

U0iðw
w
S ÞðAÞ ¼ ww

S ðCÞ ¼ 0 ¼ Ujðww
S ÞðAÞ:

Summarizing, in both cases U 0 and U coincide which contradicts our initial assumption. h

According to Lemma 1 it is possible to extend the function U defined by (14) from G0½w� to G½w� by letting

UiðvÞðAÞ ¼
X

S2P:S 6¼;
cSðvÞUiðww

S ÞðAÞ: ð18Þ

Lemma 4. The function U defined by (18) is the unique Shapley mapping over G½w�.

Proof. The fact there is no more than one Shapley mapping over G½w� results from Lemmas 1 and 3 because
they show that all Shapley mappings coincide on the set of generators G0½w� of G½w�. It remains to show that
the function U defined by (18) is indeed a Shapley mapping on G½w�, that is, it satisfies the axioms given in
Definition 1. The mapping U is linear because, for each non-empty subset S of N, the function v 7! cSðvÞ is
linearly dependent on v 2 G½w�.

In order to show that U satisfies the Coalitional Efficiency Axiom, assume that B 2F is a v-carrier of a
fuzzy coalition A. Hence, we have

X
i2N :BðiÞ>0

UiðvÞðAÞ ¼
X

i2N :BðiÞ>0

X
S2P:S 6¼;

cSðvÞUiðww
S ÞðAÞ ¼

X
i2N :BðiÞ>0

X
S2PiðABðiÞÞ

cSðvÞ
wðBðiÞÞ
jSj

¼
X

i2N :BðiÞ>0

wðBðiÞÞ
X

S2PiðABðiÞÞ
cSðvÞ

1

jSj ¼
X

t2½0;1�
wðtÞ

X
i2Bt

X
S2PiðAtÞ

cSðvÞ
1

jSj : ð19Þ

Let t 2 ð0; 1� and let ut be the game with the set of players At defined by utðT Þ ¼ vðT Þ, for all T 2 PðAtÞ, where
PðAtÞ is the set of all sub-coalitions of At. Let uðutÞ 2 RAt be the Shapley value (as defined in [13]) associated to
the game ut. According to [13], the coordinates of uðutÞ are given by

uiðutÞ ¼
X

S2PiðAtÞ
cSðvÞ

1

jSj ð20Þ

for all i 2 At. Note that if the fuzzy coalition B is a v-carrier of A, then, for each t 2 ð0; 1�, the coalition Bt is a
ut-carrier of At. Due to the efficiency and null-player properties of the Shapley value uðutÞ, we haveX

i2Bt

uiðutÞ ¼ utðBÞ:

Combined with (20), this implies thatX
i2Bt

X
S2PiðAtÞ

cSðvÞ
1

jSj ¼ utðBtÞ ¼ vðBtÞ:

By substituting the previous formula into the last expression of (19) we getX
i2N :BðiÞ>0

UiðvÞðAÞ ¼
X

t2½0;1�
wðtÞvðBtÞ ¼ vðBÞ

and the Coalitional Efficiency Axiom is thus satisfied.
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Now, we show that the function U also satisfies the Symmetry Axiom. To this end, observe that, according
to Lemma 1,

pvðAÞ ¼
X

S2P:S 6¼;
cSðpvÞww

S ðAÞ

for every A 2F. According to (18), for any i 2 N , we have that

UpiðpvÞðpAÞ ¼
X

S2P:S 6¼;
cSðpvÞUpiðww

S ÞðpAÞ ¼
X

S2P:S 6¼;
cp�1SðvÞUpiðpðp�1ww

S ÞÞðpAÞ

¼
X

S2P:S 6¼;
cp�1SðvÞUiðp�1ww

S ÞðAÞ ¼
X

S2P:S 6¼;
cp�1SðvÞUiðww

p�1SÞðAÞ

¼
X

S2P:S 6¼;
cSðvÞUiðww

S ÞðAÞ ¼ UiðvÞðAÞ;

where the second equality is true because cSðpvÞ ¼ cp�1SðvÞ and the third equality results from the symmetry of
U over G0½w� (see Lemma 2). The last two equalities show that UpiðpvÞðpAÞ ¼ UiðvÞðAÞ for every i 2 N and
A 2F and, hence, the Symmetry Axiom is verified.

Finally, we show that the Non-Member Axiom is satisfied. If AðjÞ ¼ 0 for some j 2 N , then Uiðww
S ÞðAÞ ¼ 0,

for every non-empty coalition S, and thus UiðvÞðAÞ ¼ 0 by (18). h

In order to complete the proof of Theorem 1, we still have to prove the following result.

Lemma 5. The function U defined by (18) is also given by formula (5).

Proof. Let i 2 N and denote r ¼ AðiÞ. We distinguish two complementary cases.

Case 1: If r ¼ 0, then Uiðww
S ÞðAÞ ¼ 0 for any non-empty coalition S and thus UiðvÞðAÞ ¼ 0 because of (18).

Case 2: If r > 0, then

UiðvÞðAÞ ¼
X

S2PiðArÞ
cSðvÞUiðww

S ÞðAÞ ¼ wðrÞ
X

S2PiðArÞ
cSðvÞ

1

jSj :

It follows from ([13], formula (13)) that the last sum above is exactlyX
S2PiðArÞ

cSðvÞ
1

jSj ¼
X

S2PiðArÞ

ðjSj � 1Þ!ðjArj � jSjÞ!
jArj!

ðvðSÞ � vðS n figÞÞ

and this completes the proof. h

3. Proof of Theorem 2

In this section we assume, in addition to Assumption 1, that the function w is bounded and (Lebesgue) inte-
grable on ½0; 1�. We begin our proof of Theorem 2 with the following result implicitly showing that the cumu-
lative value is well-defined.

Lemma 6. For every i 2 N and every v 2 G½w�, the function UiðvÞð�Þ is integrable over F.

Proof. Since F is a space F of finite Lebesgue measure it is sufficient to show that for every i 2 N and
v 2 G½w�, the function UiðvÞð�Þ is bounded and measurable over F. By formula (18), in order to prove bound-
edness and measurability of UiðvÞð�Þ, it is enough to show that, for every S 2 P, S 6¼ ;, the function Uiðww

S Þð�Þ
is bounded and measurable over F. Let A 2F. According to (14), we have that

jUiðww
S ÞðAÞj 6

jwðrÞj
jSj 6 jwðrÞj

for some r 2 ð0; 1�. This shows that the function Uiðww
S Þð�Þ is bounded because so is w. For proving measur-

ability of Uiðww
S Þð�Þ, define the function d : ½0; 1�2 ! ½0; 1� by
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dðx1; x2Þ ¼
1; if x1 ¼ x2;

0; otherwise;

�
ð21Þ

and observe that d is measurable over ½0; 1�2 since it is the characteristic function of the closed subset
fðx1; x2Þ 2 ½0; 1�2jx1 ¼ x2g of ½0; 1�2. We claim that the following formula holds true for every A 2F, every
i 2 N , and every non-empty coalition S:

Uiðww
S ÞðAÞ ¼

wðAðiÞÞ
jSj SðiÞ

Y
j2S

dðAðiÞ;AðjÞÞ: ð22Þ

In order to prove this, let i 2 N be fixed. We can distinguish two cases. First, if i 2 S � Ar for some r 2 ð0; 1�,
then r ¼ AðiÞ and dðAðiÞ;AðjÞÞ ¼ 1 for each j 2 S. This implies that the right-hand side of (22) is exactly wðAðiÞÞ

jSj ,

that is, the equality in (22) holds (see 14). Second, we consider the situation when i 62 S or there is no r 2 ð0; 1�
such that S 6� Ar. In this case, SðiÞ ¼ 0 or there exists j 2 S such that AðiÞ 6¼ AðjÞ. Therefore, in this situation
we have

SðiÞ
Y
j2S

dðAðiÞ;AðjÞÞ ¼ 0;

and formula (22) holds because of (14). By (22) we deduce that Uiðww
S Þð�Þ is a product of the measurable func-

tions wðAðiÞÞ and of
Q

j2Sdðxi; xjÞ which is the characteristic function of the closed subset of F defined by
fA 2FjAðjÞ ¼ AðiÞ; for every j 2 Sg, and therefore Uiðww

S Þð�Þ is measurable. h

Now we are going to establish formula (7) and, in this way, to complete the proof of Theorem 2.

Lemma 7. If i 2 N and v 2 G½w�, then UiðvÞ is given by (7).

Proof. Denote by F1 the set of all fuzzy coalitions A such that AðkÞ 6¼ AðlÞ for any pair of players k; l 2 N
with k 6¼ l. For any j 2 f2; 3; . . . ; ng and for any set of j pairwise different numbers fi1; . . . ; ijg contained in
N, let Fjði1; . . . ; ijÞ be the set of fuzzy coalitions A such that AðilÞ ¼ Aði1Þ for l ¼ 1; . . . ; j. Denote by Fj

the union of all sets Fjði1; . . . ; ijÞ. Clearly, Fjði1; . . . ; ijÞ is included in the intersection of the set F with a
hyperplane in Rn and, therefore, it has Lebesgue measure zero. Consequently, the set Fj has also Lebesgue
measure zero because it is a finite union of sets with this property. Obviously, we also have that

F ¼
[n
l¼1

Fl

and the sets F1 and F0 :¼
Sn

l¼2Fl are disjoint. So, we deduce that

UiðvÞ ¼
Z
F

UiðvÞðAÞdA ¼
Z
F1

UiðvÞðAÞdAþ
Z
F0

UiðvÞðAÞdA;

where the last integral is null because the set F0 has Lebesgue measure zero. This implies

UiðvÞ ¼
Z
F1

UiðvÞðAÞdA: ð23Þ

Now, let A 2F1. The level sets At are either empty or singletons and thus there are n mutually different
numbers tl 2 ½0; 1� such that Atl are singletons. This implies that, if S is a coalition such that i 2 S � At, we
necessarily have S ¼ At ¼ fig. Hence, the only non-zero term occurring in the summation contained in (5)
is that corresponding to the coalition S ¼ fig and we have

UiðvÞðAÞ ¼ vðfigÞwðAðiÞÞ:

This and (23) show that

UiðvÞ ¼ vðfigÞ
Z
F1

wðAðiÞÞdA ¼ vðfigÞ
Z
F

wðAðiÞÞdA ¼ vðfigÞ
Z 1

0

wðtÞdt;

where the last equality results from Fubini’s theorem. h
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4. Comments and examples

In order to illustrate how the concepts of solution proposed in this paper can be used and to make their
meaning more transparent, we include the following example, which motivates the introduction of the class
of fuzzy games G½w� studied in this paper.

Example 1. Let N be a set of investors and suppose that the capital of each i 2 N is ci. In this model the capital
of a player can be non-positive; in fact, some players may be in need of capital (in this case an investment of a
negative capital is a financing process). A fuzzy coalition A is seen as an organization meant to achieve some
goals, which are common to its members. The endowment of a fuzzy coalition A with the capital it needs for
its activities is done by the members and the degree of membership of player i 2 N to fuzzy coalition A is
measured by the percent of capital ci player i invests in the fuzzy coalition A. Observe that this way of
measuring the degree of membership is different from the more usual one in which the degree of membership is
measured by the share of coalitional capital a player owns. It better reflects the risks players are ready to take
over when investing in a specific organization and also their personal interest in realizing the goals the
organization is meant to achieve: if a player with a capital of $10000 and another player with a capital of
$1000000 invest the same amount of $10000 in organization A, it means that the first player is much more
interested in A and, consequently, more personally involved and assuming a higher risk than the second player
for the realization of the goals of A. In that follows we interpret the membership degree of a player to a fuzzy
coalition as a measure of the risk the player assumes by transferring a part of his capital to the coalition
considered as a collective decision maker.

Now, suppose that a function g : R! R is known (based on past experiences) evaluating the potential
return gðqÞ of investing the amount q in the specific environment in which the game v is played. We assume
that by investing a fraction t 2 ½0; 1� of the capital q a player should expect to get a proportionally modified
return, that is,

if t 2 ½0; 1� and q 2 R; then gðtqÞ ¼ tgðqÞ: ð24Þ
Further we assume that there is a function v : ½0; 1� ! R, which is determined by the rules of the game, indi-
cating how various levels of risk are rewarded in the game by comparison with the most risky situation t ¼ 1,
where vðtÞ ¼ 1. Precisely, we assume that by investing an amount q representing a fraction t of the player’s
capital, the player is rewarded by getting a return vðtÞgðqÞ instead of gðqÞ. Observe that the ‘‘reward’’ can even
be a loss incurred by a player: since the number vðtÞ may happen to be negative, the player gets punished by
getting vðtÞgðqÞ instead of gðqÞ when gðqÞ > 0 as a ‘‘reward’’ for his risk-taking behavior. With these facts in
mind, we define the game with fuzzy coalitions v : F! R by assigning to each fuzzy coalition A the total
expected revenue of its level sets weighted with the rewards for the various levels of risk, that is,

vðAÞ ¼
X

t2½0;1�
vðtÞg t

X
i2At

ci

 !
:

According to (24), this can be equivalently rewritten as

vðAÞ ¼
X

t2½0;1�
vðtÞtg

X
i2At

ci

 !
;

and letting wðtÞ ¼ vðtÞt, we get

vðAÞ ¼
X

t2½0;1�
wðtÞvðAtÞ:

A question of interest in this context is how a player i can predict the expected return of investing a share
AðiÞ of his capital ci in the fuzzy coalition A, assuming that the fuzzy coalition will be formed and that the
coalitional profit vðAÞ will be distributed fairly (in the sense of Shapley) among coalition members. The
Shapley mapping concept is intended to give a solution to this problem: the vector UðvÞðAÞ ¼
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ðU1ðvÞðAÞ; . . . ;UnðvÞðAÞÞ determines the share of vðAÞ each player should expect to receive under the given
conditions. The expected payoffs are the crucial factors considered by each player i when deciding whether
to invest or not a fraction AðiÞ of his capital in the fuzzy coalition A.

Another question of interest is how player’s i participation in the fuzzy coalitions of the game v improves
the payoff vðfigÞ, which the player i expects to get without any cooperation. The cumulative value estimates
the expected total return of each player by considering expected coalitional returns and the way of rewarding
the risk-taking, which are built in the rules of the game. Theorem 2 shows the modification of the return vðfigÞ,
which player i can get without involving himself in any cooperation, after taking into account the player’s par-
ticipation in all fuzzy coalitions and the rules of rewarding risk in the game.

It was mentioned in Section 1 that there are various ways of defining fair allocation in games with fuzzy
coalitions. The oldest among them, as far as the knowledge of authors goes, is Aubin’s concept of value stud-
ied in the series of papers [1–6]. Conceptually speaking, Aubin’s multivalue (see [6]) is essentially different from
our Shapley mapping concept. The multivalue is a point-to-set mapping whose selectors may be seen as values
of the fuzzy games. By contrast, a Shapley mapping associates to each fuzzy game the set of allocations that
fuzzy coalitions may make in accordance with the Shapley’s fairness criteria. It is worth noting that Aubin’s
multivalue is not defined for all fuzzy games in G½w�. This is shown by the following example.

Example 2. Let N ¼ f1; 2g and wðtÞ ¼ t. The game v defined by vðf1gÞ ¼ 1, vðf2gÞ ¼ 1; vðf1; 2gÞ ¼ 3 extends
by the formula (1) to a fuzzy game that is not continuous at ð1; 1Þ, and thus its multivalue is not defined.
According to Theorems 1 and 2, the Shapley mapping gives UiðvÞðAÞ ¼ AðiÞ, i ¼ 1; 2, and the cumulative value
UðvÞ is the vector 1

2 ;
1
2

� �
, respectively.

On the other hand, the class of fuzzy games G½w� essentially depends on the aggregation rule (1). Therefore,
there are fuzzy games for which Aubin’s multivalue exists, but they are not contained in G½w�. Here is an exam-
ple of such a game.

Example 3. Let N ¼ f1; . . . ; ng and

vðAÞ ¼ max
i2N

AðiÞ:

While the Aubin’s multivalue of this fuzzy game is defined and equals the subgradient of v at N, it is clear that
v cannot be expressed in the form (2) and, therefore, it is not contained in G½w�.

The difference mentioned above are not only conceptual but also technical. The necessary condition for the
existence of Aubin’s multivalue is continuity of a fuzzy game in the open neighborhood of the coalition N.
This property is not necessarily shared by all the fuzzy games in G½w�. Hence the cumulative value may exist
for fuzzy games which are discontinuous on the diagonal for which Aubin’s multivalue is not defined at all.

In historical order another value concept was introduced in [9,10]. In fact, the notion of Shapley mapping
discussed in our paper is a generalization of that concept. Among other approaches of extending games there
are fuzzy games studied by Tsurumi et al. [14], which are rather continuous and belong to generalized sharing
games with side payments of Aubin (Definition 13.4 in [6]). Systematic research of alternative value concepts
in games with fuzzy coalitions was carried out by Tijs and his collaborators (see [8] and the references therein).
Inspired by Owen’s multilinear extension [12], they study the so-called diagonal value for continuously differ-
entiable fuzzy games, and also the class of compromise values that are defined for fuzzy games with non-empty
Aubin’s core [6]. For these games a cumulative value may even exist and, if this is the case, it is natural to ask
how such cumulative value relates to Aubin’s multivalue concept.
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