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Abstract The paper contains two groups of results. The first are criteria for calm-
ness/subregularity for set-valued mappings between finite-dimensional spaces. We
give a new sufficient condition whose subregularity part has the same form as the
coderivative criterion for “full” metric regularity but involves a different type of
coderivative which is introduced in the paper. We also show that the condition
is necessary for mappings with convex graphs. The second group of results deals
with the basic calculus rules of nonsmooth subdifferential calculus. For each of the
rules we state two qualification conditions: one in terms of calmness/subregularity
of certain set-valued mappings and the other as a metric estimate (not necessar-
ily directly associated with aforementioned calmness/subregularity property). The
conditions are shown to be weaker than the standard Mordukhovich–Rockafellar
subdifferential qualification condition; in particular they cover the cases of convex
polyhedral set-valued mappings and, more generally, mappings with semi-linear
graphs. Relative strength of the conditions is thoroughly analyzed. We also show, for
each of the calculus rules, that the standard qualification conditions are equivalent
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to “full” metric regularity of precisely the same mappings that are involved in the
subregularity version of our calmness/subregularity condition.
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1 Introduction

Qualification conditions is the backbone of subdifferential calculus, both in convex
and nonsmooth analysis. In the finite dimensional calculus with a necessary amount
of compactness automatically guaranteed, a qualification condition is the only as-
sumption in any calculus rule. Since 1976, the research in this area has been deeply
influenced by the pioneering work of B. Mordukhovich. He was the first to use
unconvexified limiting normal cones, subdifferentials and coderivatives which now
occupy the most prominent position in the technical arsenal of modern variational
analysis.

The finite dimensional calculus of limiting subdifferentials developed in [11]
still used qualification conditions formulated in terms of the Clarke–Rockafellar
directional derivative (an equivalent formulation of such conditions in terms of
Clarke subdifferentials was introduced in [31]). It was again Mordukhovich who
completed shortly afterwards the developments by introducing the now standard
qualification conditions in [22]. They are based on limiting subdifferentials and
perfectly compatible with the proofs given in [11]. Applied to the calculation of the
limiting normal cone to a set having a standard constraint structure (e.g. defined
by finitely many smooth equalities and inequalities), these conditions reduce to
the Mangasarian–Fromowitz constraint qualification. In convex analysis, however,
a weaker condition is well-known (relative interiors of the intersecting sets have a
common point). But even this condition does not cover the polyhedral case for which
no qualification condition is needed.

There is also a “gray zone” between the polyhedral case and the domain of the
mentioned relative interior qualification condition in convex analysis. Consider for
instance the intersection of the following sets in R

2: {(x, y) : x � |y|} and {(x, y) :
(x + 1)2 + y2 � 1}. The normal cone to the intersection is the entire plane and
obviously equal to the sum of the normal cones to the sets at zero. But this fact cannot
be deduced either from the corresponding calculus rule of convex analysis (relative
interiors of the sets do not meet) or from its polyhedral counterpart. A similar gray
zone can be found also in nonsmooth analysis.

In this paper we discuss qualification conditions for finite dimensional limiting
subdifferentials which are weaker then the standard qualification conditions. These
conditions are automatically satisfied when the sets or graphs of the mappings in-
volved in the operations are “semilinear”, that is to say, unions of convex polyhedral
sets. The conditions therefore provide for a substantial unification which excludes the
necessity to consider separately the class of semilinear sets and mappings, at least in
the context of subdifferential calculus (and in particular the class of polyhedral sets
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and functions in calculus of convex subdifferentials). Moreover, the conditions cover
a good part of the mentioned gray zone even when applied to the convex case.

Unlike standard qualification conditions usually stated in terms of subdifferentials,
one group of our conditions is formulated as certain metric estimates and is usually
referred to as metric qualification conditions. They were first developed in a series of
papers by Ioffe, Jourani, Penot and Thibault [12, 13, 15–17] for the general situation
of subsets of, functions on, and set-valued mappings between Banach spaces. The
choice of the finite dimensional case in this paper is only dictated by our desire to
fully concentrate on the conditions rather than on the corresponding calculus rules
and not to obstruct the discussion of the first by shifting much of the attention to the
discussion of the compactness properties, unavoidable in infinite dimensional case.

It was shown in [13] that some metric qualification conditions are naturally
associated with the metric subregularity of certain set-valued mappings at the point
of interest. (The metric subregularity property was introduced in [8] for single-
valued maps in the context of necessary optimality conditions. In [13] this property
was called “regularity at a point” and the terminology “metric subregularity” was
suggested in [4].) This naturally leads to an idea to consider qualification conditions
based on the latter property. A close approach based on the concept of calmness was
suggested also in [6].

A multifunction F[Rn ⇒ R
m] is metrically subregular at (x̄, ȳ) ∈ GraphF, pro-

vided there exists a neighborhood U of x̄ and a real number K � 0 such that

d(x, F−1(ȳ)) � Kd(ȳ, F(x)) for all x ∈ U ,1

where d(x, A) stands for the distance of a point x to a set A. It is said that a
multifunction M[Rm ⇒ R

n] is calm at (ȳ, x̄) if there is an L � 0 such that for any
x, y sufficiently close to x̄ and ȳ and such that x ∈ M(y) one has

d(x, M(ȳ)) � Ld(y, ȳ).

It is easily verified that F is metrically subregular at (x̄, ȳ) if and only if M = F−1 is
calm at (ȳ, x̄) with the same constant.

A fundamental and somewhat more familiar concept of the “full” metric regularity
property is obtained if we replace ȳ by y in the above inequality and require in
addition that the inequality holds also for all y of a neighborhood of ȳ. We see
that the standard subdifferential qualification conditions precisely correspond to
the metric regularity property of the same set-valued mappings that appear in the
subregularity qualification conditions.

Calmness as defined above is closely related to the calmness property of the value
function introduced in [3]. This property was also used as an a posteriori qualification
condition in the theory of necessary optimality conditions. Calmness/metric subreg-
ularity also plays an important role in the theory of weak sharp minima and error
bounds, cf., e.g., [29, 33, 34]. For these reasons there is a growing interest in veri-
fiable calmness criteria. Some progress has been already achieved in ([5–7, 18]); in

1The definition of metric subregularity in [4] contains in the right-hand side the distance d(ȳ, F(x) ∩
V), where V is a neighborhood of ȳ. But it can be easily verified that this and our conditions are
equivalent.
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particular, for convex multifunctions a complete characterization of calmness/metric
subregularity in both primal and dual terms has been obtained in [35].

The aim of this paper is twofold. First, we provide a sufficient condition for
calmness/metric subregularity in terms of new, specially tailored derivative-like
objects which we call outer subdifferential and outer coderivative. Earlier (and
weaker) versions of the condition can be found in [9, 34]. In Section 2 we further
examine the relationship of our criterion with some other known calmness/metric
subregularity criteria and show that under additional assumptions our condition is
also necessary.

Section 3 contains a detailed discussion of metric and calmness/subregularity
qualification conditions for a sufficiently complete list of basic calculus rules for
sets, functions and set-valued mappings. The metric qualification conditions all have
a form of certain estimates for distances to the originally given sets, epigraphs of
the functions and graphs of the set-valued mappings. The calmness/subregularity
qualification conditions are stated in terms of set-valued mappings that, although
of course closely connected with the original data, may not appear explicitly in
the statements of the corresponding calculus rules. We usually present the latter
conditions in two forms: as a calmness condition of a certain mapping and as a
subregularity condition for the inverse mapping.

As follows from the definition, the calmness/subregularity qualification condi-
tions can also be formulated in terms of certain metric estimates. These estimates
always imply the estimates in the metric qualification conditions. An interesting
and important circumstance is that the converse implication does not hold in cer-
tain cases which makes metric qualification conditions better (weaker) than their
calmness/subregularity counterparts. This circumstance has not been noticed so far,
although metric estimates of both kinds appeared in earlier publications (estimates
associated with the metric qualification conditions in [13–15], estimates associated
with the calmness/subregularity qualification conditions—without a mention of the
latter—in [17]).

As well-known, composite functions of maps can, in general, be defined in
different ways with the help of different operations. For example a sum of functions
f1(x) + ... + fk(x) can also be viewed as a composition g ◦ F, where F is the diagonal
mapping x �→ (x, ..., x) and g(x1, ..., xk) = f1(x1) + ... + fk(xk). Another interesting
fact to be mentioned in this connection is that, applying our results to different
representation of the same set, function or mapping, we typically get different
qualification conditions. All of them, however, will be better than the standard
qualification conditions. Thus, along with some natural qualification condition, we
actually propose an approach that gives enough flexibility to find a qualification
condition that looks most suitable in one or another situation.

Since it does not lead to any confusion, we will omit the adverb “metrically”,
whenever we speak about (metrically) subregular mappings and the adjective “met-
ric”, if we speak about (metric) subregularity qualification conditions. Our notation
is basically standard. If f is an extended-real-valued function on R

n, then [ f � α]
stands for the level set {x ∈ R

n : f (x) � α} and |∇| f (x) = lim sup
u→x
u�=x

( f (x) − f (u))+

‖x − u‖ is

the slope of f at x.
For the reader’s convenience, let us recall now the definitions of limiting subd-

ifferentials, normal cones and coderivatives (see [26, 32] for details). Let f be an
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extended-real-valued lower semicontinuous function on R
n which is finite at x. A

Fréchet subgradient of f at x is any x∗ ∈ R
n which satisfies

f (x + h) − f (x) � 〈x∗, h〉 + o(‖h‖).
The set ∂F f (x) of all Fréchet subgradients of f at x is called the Fréchet subdifferen-
tial of f at x. The limiting (Mordukhovich) subdifferential ∂ f (x) of f at x, introduced
in [20], is the upper (outer) limit of the Fréchet subdifferentials with respect to
the f -convergence. This means that x∗ ∈ ∂ f (x) if and only if there are sequences
xk →

f
x (i.e. xk → x and f (xk) → f (x) ) and x∗

k → x∗ with x∗
k ∈ ∂F f (xk).

Let S ⊂ R
n be a closed set and x ∈ S. The indicator δS of S is the function equal

to zero on S and ∞ outside of S. The (Fréchet, limiting) subdifferential of δS at x
is a closed cone called the (Fréchet, limiting) normal cone to S at x and denoted by
NF(S, x), N(S, x), respectively.

Finally, let F[Rn ⇒ R
m] be a set-valued mapping with closed graph and y ∈ F(x).

In [21], Mordukhovich introduced the set-valued mapping (from R
m into R

n) which
is defined by

y∗ �→ D∗ F(x|y)(y∗) := {x∗ ∈ R
n : (x∗,−y∗) ∈ N(graphF, (x, y))}.

It is called the (limiting) coderivative of F at (x, y). For properties of all above notions
the reader is referred to [32] and [26].

As we have mentioned, we shall use a new concept of outer subdifferential to be
denoted ∂> f . It is defined by

∂> f (x) : =
{

lim
k→∞

x∗
k : ∃ xk →

f
x, f (xk) > f (x), x∗

k ∈ ∂ f (xk)
}

=
{

lim
k→∞

x∗
k : ∃ xk →

f
x, f (xk) > f (x), x∗

k ∈ ∂F f (xk)
}
.

2 A Calmness Criterion

All results in this section are derived on the basis of the following statement.

Theorem 2.1 Let f [Rn → R] be lower semicontinuous in a neighborhood of x̄ ∈ R
n

and f (x̄) = 0. Fix a γ̄ > 0 and consider the following properties:

(a) For any γ <γ̄ there is a δ>0 such that d(x, [ f � 0]) � γ −1 f +(x) if ‖x − x̄‖ <δ;
(b) For any γ < γ̄ there is a δ > 0 such that lim inf ‖hk‖−1 f (xk + hk) � γ whenever

f (xk) � 0, ‖xk − x̄‖ � δ and hk → 0, hk ∈ NF([ f � 0], xk) \ {0};
(c) For any γ < γ̄ there is a δ > 0 such that ‖x∗‖ � γ if x∗ ∈ ∂ f (x) for some x

satisfying ‖x − x̄‖ < 2δ and 0 < f (x) < δγ ;
(d) ‖x∗‖ � γ̄ if x∗ ∈ ∂> f (x̄);
(e) For any γ < γ̄ there is a δ > 0 such that |∇ f |(x) � γ if ‖x − x̄‖ < 2δ and 0 <

f (x) < δγ .

Then (e)⇒(d)⇔(c)⇒(a)⇐(b).

Proof The equivalence of (c) and (d) is immediate from the definition. The im-
plication (e)⇒(d) is well known [13, Proposition 3.2]; it follows from the fact that
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|∇ f |(x) � ‖x∗‖ if x∗ is a Fréchet subgradient of f at x. Hence we only have to prove
that (c) implies (a) and (b) implies (a).

Let (c) hold and take an x satisfying ‖x − x̄‖ < δ. If f (x) � γ δ, then

d(x, [ f � 0]) � ‖x − x̄‖ � δ � γ −1 f (x).

So we assume that 0 < f (x) < γ δ and thus γ −1 f (x) < δ. Put g := f +. Applying the
variational principle of Ekeland to g with ε = f (x) and an arbitrary λ ∈ (γ −1ε, δ), we
find a w such that f (w) � f (x), ‖w − x‖ � λ and the function g(·) + (ε/λ)‖ · −w‖
attains minimum at w. If f (w) > 0, then g and f coincide in a neighborhood of
w and we have to conclude that there is an x∗ ∈ ∂ f (w) such that ‖x∗‖ � ε/λ < γ

in contradiction with the assumptions as ‖w − x̄‖ � ‖w − x‖ + ‖x − x̄‖ < 2δ and
f (w) < γ δ. Thus f (w) � 0 and therefore d(x, [ f � 0]) � ‖w − x‖ � λ. Since this is
true for each λ ∈ (γ −1ε, δ) (with a suitable w), one also has the (sharper) inequality
d(x, [ f � 0]) � γ −1 f (x). This proves the implication (c)⇒(a).

Assume finally that (b) holds. If (a) were not valid, then for some γ < γ̄ we could
find a sequence (uk) converging to x̄ such that γ d(uk, [ f � 0]) > f +(uk). It follows
that uk �∈ [ f � 0], and we arrive at a contradiction with (b) by taking xk to be a closest
point to uk in [ f � 0] and hk = uk − xk. ��

Note that a slightly different form of the implication (b)⇒(a) was introduced in
[7]. The implication (c)⇒(a) cannot be reversed. Indeed, consider e.g. f [R → R]
given by

f (x) =
⎧⎨
⎩

1 for x � −1
i−1 for x ∈ [− 1

i , − 1
i+1

)
, i = 1, 2, . . .

0 otherwise

with x̄ = 0. The same is true for (b)⇒(a): consider the function f (x) = d(x, Q) (on
R

2), where Q = Q1 ∪ Q2 with Q1 = {x = (ξ, η) : η � ξ 2} and Q2 = −Q1. Let x̄ =
(0, 0). Then (a) is fulfilled, but (b) is violated. Indeed, it suffices to consider, e.g.,
the sequences xk = (

1
k , 1

k2

) ∈ Q1 and hk ∈ NF(Q1, xk) such that xk + hk ∈ Q2 for all
k ∈ N.

On the other hand (d)⇒(e) if f is continuous (as is immediate from Proposition
3.1 of [13]).

We also note that the two examples in the previous paragraph show that the
conditions (c), (d) and (e), on the one hand, and (b), on the other hand, are
independent: the first three are satisfied in the second example but not in the first,
whereas (b) holds in the first example but not in the second one.

As in the general theory of metric regularity (e.g. [2, 13]), we can use Theorem
2.1 as a basis for sufficient condition for calmness/subregularity properties of a set-
valued mapping F[Rn ⇒ R

m]. All we need is to apply Theorem 2.1 to the function
f (x) = d(ȳ, F(x)) and notice that

(a) [ f � 0] = F−1(ȳ);
(b) If ȳ �∈ F(x), then ∂ f (x) belongs to the union of D∗ F(x|y)(y∗) over all pairs

(y, y∗) such that y ∈ F(x), ‖y − ȳ‖ = d(ȳ, F(x)) (that is to say, y ∈ ProjF(x)(ȳ))
and y∗ = ‖y − ȳ‖−1(y − ȳ) [26, Theorem 1.105].
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To state the corresponding result, it is convenient to introduce the mentioned
“outer coderivative” of a set-valued mapping F, in the spirit of the outer subdif-
ferential ∂> defined in the Introduction.

Definition Let F map R
n into (subsets of) R

m and let ȳ ∈ F(x̄). The outer coderiv-
ative D∗

> F(x̄|ȳ) of F at (x̄, ȳ) is the multifunction from R
m into (subsets of) R

n,
whose graph consists of all pairs (y∗, x∗) such that there is a sequence of quadruples
(xn, yn, x∗

n, y∗
n) converging to (x̄, ȳ, x∗, y∗) and such that

ȳ �∈ F(xn), yn ∈ ProjF(xn)(ȳ), y∗
n = λn(yn − ȳ), λn > 0, x∗

n ∈ D∗ F(xn|yn)(y∗
n).

Thus the paragraph preceding the definition justifies the following two statements.

Proposition 2.2 Let F[Rn ⇒ R
m] be a multifunction with closed graph contain-

ing (x̄, ȳ). Assume that there is a γ > 0 such that ‖x∗‖ � γ ‖y∗‖ whenever x∗ ∈
D∗

> F(x̄|ȳ)(y∗). Then F is subregular at (x̄, ȳ) with modulus not exceeding γ −1.

Proposition 2.3 Let M[Rm ⇒ R
n] be a multifunction with closed graph contain-

ing (ȳ, x̄). Assume that there is a γ > 0 such that ‖x∗‖ � γ ‖y∗‖ whenever y∗ ∈
D∗

>M(ȳ|x̄)(x∗). Then M is calm at (ȳ, x̄) with modulus not exceeding γ −1.

Observe that

y∗ ∈ D∗
>M(ȳ|x̄)(x∗) ⇔ −x∗ ∈ D∗

> F(x̄|ȳ)(−y∗) whenever M = F−1.

For example, consider the multifunction F[R ⇒ R] defined by F(x) =
[ f (x),+∞), where f (x) = x+. Put (x̄, ȳ) = (0, 0). By Propositions 2.2, 2.3 we have
to consider only sequences xn → 0 with xn > 0. For such sequences yn = xn and
x∗

n ∈ D∗ F(xn|yn)(y∗
n) iff x∗

n = y∗
n � 0. Thus, we have

D∗
> F(0|0)(y∗) =

{
y∗, provided y∗ � 0
∅, otherwise,

D∗
>M(0|0)(x∗) =

{−x∗, provided x∗ � 0
∅, otherwise.

It is to be emphasized that if in assumptions of the propositions we replace the
outer coderivative by the usual limiting coderivative D∗, we get a necessary and
sufficient condition for metric regularity of F and Aubin property (Lipschitz-like
property) of M, respectively. The latter could be expected to be a strictly stronger
assumption and the example following Proposition 2.4 confirms this.

A useful specification of Propositions 2.2, 2.3 arises when we consider the “pertur-
bational” multifunction M[Rm ⇒ R

n] given by

M(y) := {x ∈ R
n : ϕ(x) + y ∈ Q}, (2.1)

where ϕ[Rn → R
m] is continuously differentiable and Q ⊂ R

m is closed. Set ȳ = 0
and choose an x̄ ∈ M(0). This multifunction can be viewed as a perturbation of
the constraint set {x ∈ R

n : ϕ(x) ∈ Q} which typically appears in mathematical
programming. The inverse of M is the “feasibility mapping”

F(x) = M−1(x) = Q − ϕ(x). (2.2)
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For any (x, y) ∈ Graph F we have

D∗ F(x|y)(y∗) =
{

(Jϕ(x))T y∗, if y∗ ∈ N(Q, (ϕ(x) + y)),

∅, otherwise,
(2.3)

where Jϕ(x) stands for the Jacobian matrix of ϕ at x. By Proposition 2.2 we must
consider only those y∗ which also satisfy y∗ = λy, where λ > 0 and y ∈ ProjF(x)(0).
The latter means that y = z − ϕ(x), where z ∈ ProjQ(ϕ(x)). Taking into account the
definition of the outer coderivative, we arrive at

Proposition 2.4 Let M be given by (2.1), and let x̄ ∈ M(0). Assume that there is a
positive γ such that ‖x∗‖ � γ ‖y∗‖ whenever there is a sequence (xn, yn, y∗

n) converging
to (x̄, 0, y∗) and such that ϕ(xn) �∈ Q,

yn ∈ ProjQ(ϕ(xn)) − ϕ(xn), y∗
n = λn yn, λn > 0, and x∗ = lim

n→∞(Jϕ(xn))
T y∗

n.

Then M is calm at (0, x̄) with modulus not greater than γ −1.

The subdifferential characterization of the metric regularity of F/Aubin property
of M is provided by the (generalized) Mangasarian–Fromowitz constraint qualifica-
tion (MFCQ)

0 = (Jϕ(x̄))Tw∗
w∗ ∈ N(Q, ϕ(x̄))

}
⇒ w∗ = 0, (2.4)

cf. [32, Example 9.44]. Let us compare condition (2.4) with the qualification condition
of Propositions 2.2–2.4. By virtue of (2.3), condition (2.4) says that KerD∗ F(x̄|ȳ) =
{0} which is equivalent to the existence of a γ > 0 such that

‖x∗‖ � γ ‖y∗‖ if x∗ ∈ D∗ F(x̄|ȳ)(y∗). (2.5)

We conclude:

Proposition 2.5 [24, Theorem 3.2]. Inequality (2.5) is equivalent to metric regularity
of F near (x̄, ȳ).

Thus the condition of Proposition 2.4 is all the more satisfied if MFCQ holds. The
converse implication does not hold already in a very simple case of convex constraint
systems (see also [7], Example 4 of which the example below is a substantial
simplification).

Example Let ϕ[R → R
2] be defined by ϕ(x) = (x, x), let Q = {(ξ, η) ∈ R

2 : ξ �
0, η � 0} (the fourth quadrant of the plane), and let x̄ = 0. Then Ker (Jϕ(0))T =
{(ξ, η) : ξ + η = 0} and the normal cone to Q at zero is the second quadrant, so
that, e.g., (−1, 1) belongs to both sets and the MFCQ fails to hold. On the other
hand, ϕ(x) �∈ Q for x �= 0 and the projection of ϕ(x) onto Q is either (x, 0) if x > 0 or
(0, x) if x < 0. In either case ‖x∗‖ = ‖y∗‖ for both normals y∗ in question and so the
condition of Proposition 2.4 holds true with γ = 1.

Under a strengthening of the assumptions imposed in Theorem 2.1 on f the
properties (a), (c) and (d) turn out to be equivalent. This follows from the next
statement.
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Proposition 2.6 Suppose the existence of a neighborhood U of x̄ such that

(1) bd[ f � 0] ∩ U ⊂ f −1(0);
(2) There exists a positive real ϑ such that for all x ∈ U with 0 < f (x) < ϑ and for

all x∗ ∈ ∂ f (x) one has

f (x′) − f (x) � 〈x∗, x′ − x〉 − o(‖x′ − x‖) for all x′,

where the function o does not depend on x.
Then for the properties (a), (d), stated in Theorem 2.1, one has (a) ⇒ (d).

Proof Assume that there exists a sequence
(
xk, x∗

k

)
such that xk −→

f
x̄, f (xk) >

0, x∗
k ∈ ∂ f (xk) and ‖x∗

k‖ � γ̄ − ε for some ε > 0. Let x̄k ∈ Proj[ f�0](xk) so that
x̄k → x̄ and, by assumption (1), f (x̄k) = 0 for all k sufficiently large. By virtue of
assumption (2) for these indices

f (x̄k) − f (xk) = − f (xk) � 〈x∗
k, x̄k − xk〉 − o(‖x̄k − xk‖).

Evidently, to ε we can find k̄ such that

o(‖x̄k − xk‖) < ε/2‖x̄k − xk‖ for all k � k̄.

Thus, for k � k̄ and sufficiently large for (1) to apply, one has

f (xk) �
(‖x∗

k‖ + ε/2
) ‖x̄k − xk‖.

Consequently,

d(xk, [ f � 0]) = ‖xk − x̄k‖ � 1

‖x∗
k‖ + ε/2

f (xk) > (1/γ̄ ) f (xk),

which contradicts (a). ��

Condition (2) is automatically fulfilled if f is convex. It holds true, however,
e.g. for a much broader class of the so-called weakly convex functions, cf. [1,
Theorem 4.1].

If f is convex, we have also the following result.

Proposition 2.7 In the setting of Proposition 2.6 let f be convex. Then properties (a)
and (b) of Theorem 2.1 are equivalent.

Proof Assume the existence of γ := γ̄ −ε with some ε>0, and sequences xk → x̄,

hk → 0 with xk ∈ [ f � 0], hk ∈ NF([ f � 0], xk) � {0} such that

lim
k→∞

‖hk‖−1 f (xk + hk) � γ.

Thus, one can find an index k̄ such that for all k � k̄ one has xk ∈ U [specified in the
assumption (1) of Proposition 2.6] and

‖hk‖−1 f (xk + hk) � γ + ε/2. (2.6)
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Since the normals hk are nonzero, xk ∈ bd[ f � 0] and thus f (xk) = 0 for all k � k̄.
Moreover, by convexity of [ f � 0], for these indices k one has f (xk + hk) > 0 and

‖hk‖ = d(xk + hk, [ f � 0]).

From (2.6) it follows that

d(xk + hk, [ f � 0]) � f (xk + hk)

γ + ε/2
>

f (xk + hk)

γ̄
,

which contradicts (a) and we are done. ��

On the basis of Propositions 2.2, 2.4 we now easily arrive at the following
statement.

Theorem 2.8 Let F[Rn ⇒ R
m] be a multifunction with closed and convex graph

and let (x̄, ȳ) ∈ GraphF. Then F is subregular at (x̄, ȳ) if and only if there is a γ > 0
such that

‖x∗‖ � γ ‖y∗‖ whenever x∗ ∈ D∗
> F(x̄|ȳ)(y∗). (2.7)

Proof Under the posed assumptions the function f (x) = d(ȳ, F(x)) is convex and
one has

bd[ f � 0] ⊂ [ f � 0] = f −1(0).

In this way d(ȳ, F(x)) fulfills all assumptions of Proposition 2.6 and so the
respective properties (a) and (d) are equivalent. Since (d) amounts to condition (2.7),
the result follows. ��

Another condition, necessary and sufficient for subregularity was obtained in
[35, Theorem 3.1]. It involves normals to the graph of F at all points (x, ȳ) with
x ∈ bdF−1(ȳ) and close to x̄. This, of course, does not mean that the condition in
Theorem 2.8 is always easier to verify. We wish, however, to draw the reader’s
attention to the fact that by replacing the outer coderivative in Eq. 2.7 by the
usual limiting coderivative we get the necessary and sufficient condition for metric
regularity (valid for all, not just convex-graph) mappings.

On the basis of Proposition 2.6 we can also obtain the following global error bound
result.

Proposition 2.9 Let f be proper convex, lower semicontinuous and bd[ f � 0] ⊂
f −1(0). Then the following two conditions are equivalent.

(1) For any γ < γ̄ one has d(x, [ f � 0]) � γ −1 f +(x) for all x ∈ R
n;

(2) ‖x∗‖ � γ̄ whenever x∗ ∈ ∂> f (x), x ∈ bd[ f � 0].
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3 Metric and Calmness/Subregularity Qualification
Conditions in Subdifferential Calculus

In this section we present a set of basic calculus rules together with the corresponding
“weak” qualification conditions. It is divided into three subsections, devoted to sets,
real-valued functions and multifunctions. Rules from these subsections are denoted
by (S1), (S2),..., (F1), (F2),..., and (M1), (M2),..., respectively.

For each case we subsequently

(a) State the rule and two qualification conditions: a metric qualification condition
and two equivalent forms of the calmness/subregularity condition;

(b) Discuss the relationship between the qualification conditions, showing in
each case that the metric qualification condition follows from the calm-
ness/subregularity condition and, wherever possible, giving either a proof of
their equivalence or a contradictory example;

(c) Prove that the metric qualification condition (hence the calmness/subregularity
qualification condition) imply the calculus rule;

(d) Show that metric regularity of the mapping that appears in the definition of
the calmness/subregularity condition is equivalent to the standard qualification
condition (that can be found e.g. in [23, 26, 32]).

The key element in proofs of the calculus rules is the following well-known
property of the limiting subdifferential of the distance function.

Proposition 3.1 Let C ⊂ R
n, and let f be an extended-real-valued and lower semicon-

tinuous function which possess the following two properties:

(1) f (x) = 0, ∀x ∈ C;
(2) f (x) � d(x, C), ∀x.

Then ∂d(x, C) ⊂ ∂ f (x), ∀x ∈ C.

Proof By [32, Example 8.53], (see [12, Lemmas 3 and 5], for a more general original
result)

∂d(x, C) = lim sup
u→

C
x

∂Fd(u, C).

As follows from properties (1) and (2), ∂Fd(u, C) ⊂ ∂F f (u) for all u ∈ C. Therefore

∂d(x, C) = lim sup
u→

C
x

∂Fd(u, C) ⊂ lim sup
u→x

∂F f (u) = ∂ f (x)

as claimed. ��

Other facts that will be used in subsequent discussion consist of “elementary”
calculus rules. Herewith we mean e.g. the inclusion

∂( f1 + ... + fk)(x) ⊂ ∂ f1(x) + ... + ∂ fk(x)

if all functions are Lipschitz near x, and the inclusion

∂(ϕ ◦ F)(x) ⊂
⋃

y∗∈∂ϕ(F(x))

D∗ F(x)(y∗)
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if F is a continuous mapping and ϕ is a Lipschitz function [26, 32].2 A nice
methodical consequence of this is that the most general calculus rules are actually
consequences of their elementary (Lipschitz) counterparts.

3.1 Normal Cones to Sets

(S1) Intersection: C =
k⋂

i=1

Ci, Ci ⊂ R
n;

Assumptions: Ci are closed sets, x̄ ∈ C;

Calculus rule:

N(C, x̄) ⊂ N(C1, x̄) + ... + N(Ck, x̄); (3.1)

Qualification conditions:

• Metric qualification condition: there are γ > 0 and δ > 0 such that

d(x, C) � γ
[
d(x, C1) + ... + d(x, Ck)

]
, (3.2)

provided ‖x − x̄‖ < δ;
• Calmness qualification condition: the set-valued mapping

M[Rkn ⇒ R
n] : M(x1, ..., xk) = {x : x + xi ∈ Ci, i = 1..., k} (3.3)

is calm at ((0, ..., 0), x̄);
• Subregularity qualification condition: the set-valued mapping

F[Rn ⇒ R
nk] : F(x) = (C1 − x) × ... × (Ck − x) (3.4)

is subregular at (x̄, (0, ..., 0)).

The mappings M and F are mutually inverse, so the last two conditions are
equivalent forms of the same condition. To see that the metric qualification condition
is also equivalent to them, we notice that x ∈ M(0, ..., 0) means that 0 ∈ Ci − x for all
i, i.e., x ∈ C. On the other hand (if we take the sum norm in the product of k copies
of R

n)

d((0, ..., 0), F(x)) = d((x, . . . , x), C1 × . . . × Ck) =
k∑

i=1

d(x, Ci),

so (3.2) is precisely the subregularity condition for F at (x̄, (0, ..., 0)).

Proposition 3.2 Inequality (3.2) ⇒ inclusion (3.1).

Proof Set f (x) = γ [d(x, C1) + ... + d(x, Ck)]. By Proposition 3.1 and the Lipschitz
sum rule

∂d(x̄, C) ⊂ ∂ f (x̄) ⊂ γ [∂d(x̄, C1) + ... + ∂d(x̄, Ck)].

2In the cited monographs the results are obtained as consequences of more general calculus rules
based on the standard qualification conditions. However the elementary Lipschitz versions of the
rules were established earlier in [10, 19], and admit simplified independent proofs, see [26].
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It remains to remember that the normal cone is precisely the cone generated by the
subdifferential of the distance function. ��

The standard subdifferential qualification condition for inclusion (3.1) is

x∗
i ∈ N(Ci, x̄), i = 1, ..., k

x∗
1 + ... + x∗

k = 0

}
⇒ x∗

1 = ... = x∗
k = 0, (3.5)

(see [26, 32]).

Proposition 3.3 Condition (3.5) is equivalent to metric regularity of F (given by (3.4))
near (x̄, 0, ..., 0).

Proof We can write F(x) as Q − ϕ(x), where Q = C1 × ... × Ck and ϕ(x) = (x, ..., x)

is the canonical mapping of R
n into the diagonal of (Rn)k. Equation 3.5 amounts then

exactly to the respective MFCQ (2.4). ��

Remark Observe that our qualification conditions are satisfied in the example
mentioned below Proposition 2.5 whereas condition (3.5) is not.

(S2) Constraint set. Let ϕ[Rn → R
m], P ⊂ R

n, Q ⊂ R
m and

C = {x ∈ P : ϕ(x) ∈ Q} = P ∩ ϕ−1(Q);
Assumptions: ϕ satisfies the Lipschitz condition near x̄; P and Q are closed sets.
Calculus rule:

N(C, x̄) ⊂
⋃

y∗∈N(Q,ϕ(x̄))

D∗ϕ(x̄)(y∗) + N(P, x̄); (3.6)

Qualification conditions:

• Metric qualification condition: there are γ > 0 and δ > 0 such that

d(x, C) � γ
(
d(x, P) + d(ϕ(x), Q)

)
, (3.7)

provided ‖x − x̄‖ < δ;
• Calmness qualification condition: the set-valued mapping

M[Rm ⇒ R
n] : M(y) = P ∩ ϕ−1(Q − y)

is calm at (0, x̄);
• Subregularity qualification condition: the set-valued mapping

F[Rn ⇒ R
m] : F(x) =

{
Q − ϕ(x), if x ∈ P

∅ otherwise

is subregular at (x̄, 0).
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The calmness and the subregularity qualification conditions are again the same as
they involve mutually inverse mappings. Furthermore we notice that M(0) = C and

d(0, F(x)) =
{

d(ϕ(x), Q), if x ∈ P

∞ otherwise.

Hence, calmness of M at (0, x̄) means that there is a γ > 0

d(x, C) � γ d(ϕ(x), Q) (3.8)

for all x ∈ P sufficiently close to x̄. Clearly (3.7) implies (3.8). On the other hand, if
Eq. 3.8 holds and x �∈ P, then, taking a closest element of P to x, say x′, we have

d(x, C) � d(x, P) + d(x′, C) � d(x, P) + γ d(ϕ(x′), Q)

� (1 + γ (1 + L))(d(x, P) + d(ϕ(x), Q)),

where L is the Lipschitz constant of ϕ near x̄. Thus the metric qualification condition
in this case is also equivalent to the calmness/subregularity condition.

Next we show that inequality (3.7) implies the desired calculus rule.

Proposition 3.4 Inequality (3.7) ⇒ inclusion (3.6).

Proof Set f (x)=γ(d(x, P)+d(ϕ(x), Q)). Then by Proposition 3.1 one has ∂d(x̄, C)⊂
∂ f (x). The function x �→ d(ϕ(x), Q) is a composition of a Lipschitz function d(·, Q)

and a Lipschitz mapping ϕ. Therefore the limiting subdifferential of the function at x̄
lies in the union of D∗ϕ(x̄)(y∗) over all y∗ ∈ ∂d(·, Q)(ϕ(x̄)). The rest of the argument
is identical to that in the proof of Proposition 3.2. ��

The standard subdifferential qualification condition for inclusion (3.6) is (see
[26, 32]):

D∗ϕ(x̄)(y∗) ∩ −N(P, x̄) �= ∅
y∗ ∈ N(Q, ϕ(x̄))

}
⇒ y∗ = 0. (3.9)

Proposition 3.5 Condition (3.9) implies metric regularity of F near (x̄, 0).

The statement follows directly from [23, Theorem 6.10] combined with the
standard coderivative criterion of metric regularity/Aubin property, cf. [32, Theorem
9.40], [26, Theorem 4.10].

Remark Results concerning intersections of sets considered in the beginning of the
section are consequences of the just established facts. Take for simplicity the case of
two sets P, Q ⊂ R

n; if ϕ is the identity map, then ϕ−1(Q) = Q, D∗ϕ(x)(y∗) = y∗ etc.
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3.2 Subdifferentials of Functions.

Here we for the first time encounter a situation when a “natural” metric qualifi-
cation condition is strictly better than an “equally natural” calmness/subregularity
condition.

(F1) Sums of functions: f (x) = f1(x) + ... + fk(x), x ∈ R
n;

Assumptions: all functions are extended-real-valued, lower semicontinuous and
finite at x̄ ;

Calculus rule:

∂ f (x̄) ⊂ ∂ f1(x̄) + ... + ∂ fk(x̄), ∂∞ f (x̄) ⊂ ∂ f ∞
1 (x̄) + ... + ∂ f ∞

k (x̄); (3.10)

Here ∂∞ f (x) = {x∗ : (x∗, 0) ∈ N(epi f, (x, f (x)))} is the collection of vectors cor-
responding to “horizontal” normals to the epigraph of f .

Qualification conditions:

• Metric qualification condition: there are γ > 0, δ > 0 such that

d((x, α), epi f ) � γ

k∑
i=1

d((x, αi), epi fi), (3.11)

provided ‖x − x̄‖ < δ, |αi − fi(x̄)| < δ and α1 + ... + αk = α.
To state the other qualification conditions, we set for i = 1, . . . , k

Ci := {(x, α1, ...αk) ∈ R
n × R

k : αi � fi(x)}
(in other words, up to permutation of components, Ci = epi fi × R

k−1).
• Calmness qualification condition: the set-valued mapping

M[(Rn × R
k)k ⇒ R

n × R
k] :

M
(
(x1, α11, ..., α1k), ..., (xk, αk1, ..., αkk)

) = ⋂k
i=1(Ci − (xi, αi1, ..., αik))

is calm at
((

(0, 0, ..., 0), ..., (0, 0, ..., 0)
)
, (x̄, f1(x̄), ..., fk(x̄))

)
;

• Subregularity qualification condition: the set-valued mapping

F[Rn × R
k ⇒ (Rn × R

k)k] :
F(x, α1, ..., αk) = (C1 − (x, α1, ..., αk)) × ... × (Ck − (x, α1, ..., αk))

is subregular at
(
(x̄, f1(x̄), ..., fk(x̄)),

(
(0, 0, ..., 0), ..., (0, 0, ..., 0)

))
.

The set-valued mappings F and M appear naturally in the context of summation
of functions. To see that, we notice that

C :=
k⋂

i=1

Ci = {(x, α1, ..., αk) : αi � fi(x), i = 1, ..., k}= M
(
(0, 0, ..., 0), ..., (0, 0, ..., 0)

)
,

so that epi f is the image of C under the linear mapping

T : (x, α1, ..., αk) → (x, α1 + ... + αk)

from R
n × R

k onto R
n × R.
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The latter, along with the fact that the only point in C which belongs to the
preimage of (x, f (x)) under T is (x, f1(x), ..., fk(x)) implies that (x∗, β) belongs to the
normal cone to epi f at (x, f (x)) precisely when (x∗, β, ..., β) belongs to the normal
cone to C at (x, f1(x), ..., fk(x)).

On the other hand,

N(Ci, (x, α1, ..., αk)) = {
(x∗, β1, ..., βk) : (x∗, βi) ∈ N(epi fi, (x, αi)), β j = 0, j �= i

}
.

Therefore the desired calculus rule will follow from the inclusion N(C, ·) ⊂∑
N(Ci, ·), where the dot stands for (x̄, f1(x̄), ..., fk(x̄)). Next we observe that M

and F are the set-valued mappings that appear if (S1) applies to these specific sets Ci.
Calmness of M at ((0, ..., 0), ..., (0, ..., 0)) (if we take the sum norm in the range

space of F) means that

d((x, α1, ..., αk), C) � L
∑

d((x, α1, ..., αk), Ci) = L
∑

d((x, αi), epi fi) (3.12)

for all (x, α1, ..., αk) close to (x̄, f1(x̄), ..., fk(x̄)).
It is an easy matter to see that

d((x, α), epi f )) � d((x, α1, ..., αk), C)

for any (x, α, α1, ..., αk) with
k∑

i=1
αi = α, that is (3.12) implies (3.11). The converse

implication does not hold, which suggests the possibility that for the operation of
summation of functions the metric qualification condition is strictly better than the
calmness/subregularity qualification condition. The following example shows that
this is indeed the case.

Example Consider the following two functions on R:

f1(x) =
{−√

1 − (1 − |x|)2, if − 2 � x � 0,

0, if x � 0 or x � −2

and

f2(x) =
{−√

1 − (1 − |x|)2, if 2 � x � 0,

0, if x � 0 or x � 2.

Then f (x) = f1(x) + f2(x) = min{ f1(x), f2(x)}, so that epi f = epi f1 ∪ epi f2. We
claim that the metric qualification condition (3.11) is satisfied in a neighborhood of
x̄ = 0. Indeed, if α < f (x) (the only case of interest) and hence α < 0, then

d((x, α), epi f ) =
√

((1 − |x|)2 + α2 − 1 ∼= α2/2 − (|x| − x2/2
)

(where ∼= means equality up to higher order terms).
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In calculating the right-hand part of (3.11), we can assume due to symmetry that,
say, x � 0, that is f1(x) = f (x), f2(x) = 0. We have (again assuming that α1 and α2

are non-positive – otherwise all is trivial)

d((x, α1), epif1) =
√

(1 − |x|)2 + α2
1 − 1;

d((x, α2), epif2) = min

{√
(1 + |x|)2 + α2

2 − 1, |α2|
}

.

If the minimum in the last equality is attained at the first quantity, then (recall that
α1 + α2 = α, that is one of αi must not exceed α/2)

d((x, α1), epif1) + d((x, α2), epif2) ∼= x2 + α2
1 + α2

2

2
� x2 + α2/4 � 1/2d((x, α), epif ).

Consider now the case when d((x, α2), epif2) = −α2. As we are interested in a
small neighborhood of zero, we may assume that α > −1. We have

−α2 + d((x, α1), epif1) = −α2 + d((x, α − α2), epif1)

= −α2 + √
(1 − |x|)2 + (α − α2)2 − 1

∼= −α2 + x2 + (α − α2)
2

2
− |x| � x2 + α2

2
− |x|

and we again arrive at the desired inequality.
On the other hand, the calmness/subregularity condition (3.12) does not hold.

Indeed, take the point (0, α) with α<0 and α1 =α2 =α/2. Then for any (u, β1, β2)∈C
either β1 � 0 or β2 � 0. It follows that

d ((0, α/2, α/2) , C) � −α/2,

that is d((0, α/2), epif1) + d((0, α/2), epif2) = o(d((0, α/2, α/2), C)).
As the metric qualification condition holds, the calculus rule (3.10) is, of course,

valid. One may directly verify that ∂ f (0) = ∅ and

∂∞ f (0) = R = ∂∞ f1(0) + ∂∞ f2(0).

The example can be easily modified to make ∂ f (0) �= ∅. To this end we take a
small ε > 0 and replace both functions fi by lower semicontinuous functions gi such
that | fi(x) − gi(x)| � ε| fi(x)| and the negative part of the epigraph of gi is bounded
by line segments which are either vertical or have the same slope ξ for g1 and −ξ for
g2. In this case the relationship between the distance quantities remain unchanged
but ∂g(0) = (−∞,−ξ ] ∪ [ξ,∞).

Proposition 3.6 ([14]). Inequality (3.11) ⇒ inclusions (3.10).

Proof Set

ψ(x, α, α1, ..., αk−1) :=
k∑

i=1

ψi(x, α, α1, ..., αk−1)



216 A.D. Ioffe, J.V. Outrata

with

ψi(x, α, α1, ..., αk−1) := d((x, αi), epifi), i = 1, ..., k − 1,

ψk(x, α, α1, ..., αk−1) := d

((
x, α −

k−1∑
i=1

αi

)
, epifk

)
,

and put

ϕ(x, α) := inf
α1,...,αk−1

ψ(x, α, α1, ..., αk−1).

It is clear that ϕ satisfies the Lipschitz condition and ϕ(x, α) = 0 when α � f (x).
Therefore by Proposition 3.1

∂d((x, f (x)), epif ) ⊂ ∂ϕ(x, f (x))

for any x from the domain of f .
We next observe that (as we are interested in the behavior near x̄ and all

functions are lower semicontinuous and finite at x̄) we can harmlessly assume that
all functions are bounded from below. This guarantees that ψ(x, α, α1, ...αk−1) → ∞
when maxi |αi| → ∞. Indeed, this is obvious if one of αi goes to −∞. If, on the other
hand, all αi remain bounded from below while their maximum goes to infinity, then

clearly α −
k−1∑
i=1

αi goes to minus infinity. It follows that the infimum in the definition of

ϕ is always attained. Moreover, it is clear that the mapping (x, α) �→ argminψ(x, α, ·)
is lower semicompact.3 As follows from Theorem 3 of [15], this allows to conclude
that

∂ϕ(x, α) × {(0, ..., 0)} ⊂
⋃

(α1,...,αk−1)∈argminψ(x,α,·)
∂ψ(x, α, α1, ..., αk−1).

All ψi are Lipschitz continuous and the last one is, in addition, a composition of
a linear operator and a Lipschitz function. Applying the corresponding rules of
subdifferential calculus, we can for any (x∗, β) ∈ ∂ϕ(x̄, f (x̄)) find α1, ..., αk−1 and
(x∗

i , βi0, ..., βi(k−1)) ∈ ∂ψi(x̄, f (x̄), α1, ..., αk−1), i = 1, ..., k, such that

d((x̄, αi), epi fi) = 0, i = 1, ..., k,

(
αk = fk(x̄) −

k−1∑
i=1

αi

)

x∗
1 + ... + x∗

k = x∗;
β10 + ... + βk0 = β;
β1j + ... + βkj = 0, j = 1, ..., k − 1. (3.13)

3A set-valued mapping F(x) is lower semicompact if for any sequence (xm, ym) such that ym ∈ F(xm)

and (xm) converges to a certain x, there is a subsequence (yms ) converging to some y ∈ F(x)—see
[28]. In finite dimensions this property holds whenever F is uniformly bounded.
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The equalities in the first line of (3.13) imply that αi = fi(x̄), i = 1, ..., k. Further-
more, taking into account the special structure of ψk and the fact that the functions
ψi, i = 1, ..., k − 1, depend only on x and αi, we conclude that

βi0 = 0, for i = 1, ..., k − 1;

βij = 0, if k �= i, i �= j, j �= 0;

βk1 = ... = βkk−1 = −βk0.

Setting βi = βii, i = 1, ..., k − 1, βk = βk0, we see that β1 = ... = βk = β and get
finally the existence of x∗

1, ..., x∗
k such that

(x∗
i , β) ∈ ∂d((x̄, fi(x̄)), epifi), i = 1, ..., k, ; x∗

1 + ... + x∗
k = x∗.

This basically concludes the proof. Indeed, if x∗ ∈ ∂ f (x̄), then there is a positive
λ such that (x∗,−1) ∈ λ∂d((x̄, f (x̄)), epif ), hence there are x∗

i such that (x∗
i ,−1) ∈

λ∂d((x̄, fi(x̄)), epifi), that is x∗
i ∈ ∂ fi(x̄), and x∗ = ∑

x∗
i . Likewise, if x∗ ∈ ∂∞ f (x̄),

then (x∗, 0) ∈ ∂d(·, epif )(x̄, f (x̄)) and the same argument leads to the conclusion that
x∗ is the sum of certain x∗

i ∈ ∂∞ fi(x̄). ��

The standard subdifferential qualification condition for inclusions (3.10) is

x∗
i ∈ ∂∞ fi(x̄), i = 1, ..., k

x∗
1 + ... + x∗

k = 0

}
⇒ x∗

1 = ... = x∗
k = 0. (3.14)

Proposition 3.7 Condition (3.14) is equivalent to metric regularity of F near

((x̄, f1(x̄), ..., fk(x̄)), ((0, 0, ..., 0), ..., (0, 0, ...0))).

Proof Set w = (x, f1(x), ..., fk(x)), w̄ = (x̄, f1(x̄), ..., fk(x̄)). Then

F(w) = (C1 − w) × ... × (Ck − w).

As mentioned in connection with (S1), F is metrically regular near (w̄, 0, ..., 0) if and
only if

w∗
i ∈ N(Ci, w̄), w∗

1 + ... + w∗
k = 0 ⇒ w∗

1 = ... = w∗
k = 0. (3.15)

By definition w∗
i = (x∗

i , βi1, ..., βik), where x∗
i ∈ R

n and βij ∈ R. As Ci contains the
entire copy of the jth real line for j �= i, for any w∗

i ∈ N(Ci, w̄) we have βij = 0 if i �= j
and (x∗

i , βii) ∈ N(epifi, (x̄, fi(x̄))). Thus any collection of w∗
i , i = 1, ..., k, must satisfy

βij = 0 for all i, j, so that x∗
i ∈ ∂∞ fi(x̄) and

∑
x∗

i = 0. Moreover, the condition on the
right-hand side of (3.15) reduces to the condition on the right-hand side of (3.14). ��
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(F2) Maximum of functions: f (x) = sup
1�i�k

fi(x);

Assumptions: all functions are continuous near x̄;

Calculus rule:

∂ f (x) ⊂
⋃
J⊂I0

⎛
⎝
{∑

i∈J

αi∂ fi(x̄) : αi � 0,
∑
i∈J

αi = 1

}
+

∑
i∈I\J

∂∞ fi(x̄)

⎞
⎠ ,

∂∞ f (x̄) ⊂
∑
i∈I

∂∞ fi(x̄),

where

I = {i : fi(x̄) = f (x̄)}, I0 = {i ∈ I : ∂ fi(x̄) �= ∅};
Qualification conditions:

• Metric qualification condition: there are γ > 0, δ > 0 such that

d((x, α), epif ) � γ

k∑
i=1

d((x, α), epifi)

provided ‖x − x̄‖ < δ, |α − f (x̄)| < δ;
• Calmness qualification condition: the set-valued mapping

M
[
R

k(n+1) ⇒ R
n+1

] : M((x1, α1), ..., (xk, αk)) = {(x, α) : (x, α) + (xi, αi) ∈ epifi}
is calm at (((0, 0), ..., (0, 0)), (x̄, f (x̄)));

• Subregularity qualification condition: the set-valued mapping

F
[
R

n+1 ⇒ R
k(n+1)

] : F(x, α) = (epif1 − (x, α)) × ... × (epifk − (x, α))

is subregular at ((x̄, f (x̄)), ((0, 0), ..., (0, 0))).

The standard subdifferential qualification condition is similar to that for the sum:

x∗
i ∈ ∂ fi(x̄), i ∈ I,

∑
i∈I

x∗
i = 0 ⇒ x∗

i = 0, ∀ i ∈ I.

Here epif is the intersection of epifi, so all reduces to (S1): the qualification
conditions are equivalent, imply the rule and the standard qualification condition
is necessary and sufficient for metric regularity of F.

(F3) Composition: f = g ◦ ϕ;

Assumptions: ϕ[Rn → R
m] is continuous near x̄ ∈ R

n; g is an extended-real-
valued lower semicontinuous function on R

m which is finite at ȳ = ϕ(x̄).

Calculus rule:

∂ f (x̄) ⊂
⋃

y∗∈∂g(ȳ)

D∗ϕ(x̄)(y∗), ∂∞ f (x) ⊂
⋃

y∗∈∂∞g(ȳ)

D∗ϕ(x̄)(y∗); (3.16)



On metric and calmness qualification conditions 219

Qualification conditions:

• Metric qualification condition: there are γ > 0, δ > 0 such that

d((x, α), epif ) � γ [d((x, y), Graphϕ) + d((y, α), epig)], (3.17)

provided ‖x − x̄‖ < δ, |α − f (x̄)| < δ, ‖y − ȳ‖ < δ;
• Calmness qualification condition: the set-valued mapping M[Rn × (Rm)2 × R ⇒

R
n × R

m × R] defined by

M(x, y1, y2, α) = {(u, z, β) : (u, z) ∈ Graphϕ − (x, y1), (z, β) ∈ epig − (y2, α)}
is calm at ((0, ..., 0), (x̄, ȳ, f (x̄)));

• Subregularity qualification condition: the set-valued mapping F[Rn × R
m × R ⇒

R
n × (Rm)2 × R] defined by

F(x, y, α) = (Graphϕ − (x, y)) × (epig − (y, α))

is subregular at ((x̄, ȳ, f (x̄)), (0, ..., 0)).

As in the two previous cases, we can justify the introduction of the set-valued
mappings M, F by reference to (S1). Indeed, consider the sets

C1 = {(x, y, α) : (x, y) ∈ Graphϕ} and C2 = {(x, y, α) : (y, α) ∈ epig}.
Then the epigraph of f is the projection of C = C1 ∩ C2 onto the (x, α)-space.
Applications of the constructions of (S1) to this intersection gives precisely the above
mappings M and F.

We see further that M(0, ..., 0) = C, so calmness of M at (0, ..., 0) reduces to

d((x, y, α), C) � K[d((x, y, α), C1) + d((x, y, α), C2)].
The right-hand side of this inequality is identical to that in inequality (3.17). On

the other hand, it is obvious that

d((x, α), epif ) � d((x, y, α), C),

actually even

d((x, α), epif ) = inf
y

d((x, y, α), C), (3.18)

which again suggests a possibility that the metric qualification condition is weaker.
For the moment, however, it is not clear whether this is the case or not.

Proposition 3.8 Inequality (3.17) ⇒ inclusions (3.16).

Proof The proof is basically the same as the proof of Proposition 3.6. We may assume
that g(y) → ∞ as ‖y‖ → ∞, which would guarantee that the set-valued mapping

(x, α) �→ argmin(d((x, ·), Graphϕ) + d((·, α), epig))
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is lower semicompact. Application of Proposition 3.1 and Proposition 3.3 of [15] then
gives

(x∗, β) ∈ ∂d((x̄, f (x̄)), epif ) ⇒ (x∗, 0, β)

∈ γ
[
∂d((x̄, ϕ(x̄)), Graphϕ) + ∂d((ȳ, g(ȳ)), epig)

]
.

It follows that there is a y∗ such that

(x∗,−y∗) ∈ N(Graphϕ, (x̄, ϕ(x̄))), (y∗, β) ∈ N(epig, (ȳ, g(ȳ))),

which proves the claim. ��

Remark

1. Applying this result to g being the indicator of a closed set Q ⊂ R
m, we conclude

that the inclusion

N(ϕ−1(Q), x̄) ⊂
⋃

y∗∈N(Q,ϕ(x̄))

D∗ϕ(x̄)(y∗)

holds also for a continuous mapping ϕ under the qualification condition: there
are γ > 0 and δ > 0 such that

d
(
x, ϕ−1(Q)

)
� γ (d((x, y), Graphϕ) + d(y, Q)),

whenever ‖x − x̄‖ < δ, ‖y − ȳ‖ < δ (cf. Proposition 3.4).
2. More can be said in the case when ϕ satisfies the Lipschitz condition. In this

case d((x, y), Graphϕ) = ‖y − ϕ(x)‖ if we take a suitable norm in R
n × R

m (e.g.
‖(x, y) − (u, v)‖ = L‖x − u‖ + ‖y − v‖ with L being a Lipschitz constant of ϕ).
Moreover,

inf
y

{‖y − ϕ(x)‖ + d((y, α), epig)} � d((ϕ(x), α), epig),

which suggests the following (clearly weaker) qualification conditions:

• Metric qualification condition: there are γ > 0, δ > 0 such that

d((x, α), epif ) � γ d((ϕ(x), α), epig), (3.19)

provided ‖x − x̄‖ < δ, |α − f (x̄)| < δ;
• Calmness qualification condition: the set-valued mapping

M
[
R

m × R ⇒ R
n × R

] : M(y, α) = {(u, β) : (ϕ(u), β) ∈ epig − (y, α)}
is calm at ((0, 0), (x̄, f (x̄)));

• Subregularity qualification condition: the set-valued mapping

F[Rn × R ⇒ R
m × R] : F(x, α) = epig − (ϕ(x), α)

is subregular at ((x̄, f (x̄)), (0, 0)).

The fact that these conditions imply inclusions (3.16) follows easily from Proposi-
tion 3.4 if we observe that epif = �−1(epig), where

�(x, α) =
[

ϕ(x)

α

]
. (3.20)
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Moreover, in this case we can be sure that the metric condition (3.19) is equiva-
lent to the subsequent calmness/subregularity condition. Indeed, M(0, 0) = {(x, α) :
(ϕ(x), α) ∈ epig}, so that (3.19) is precisely the calmness property of M at zero.

Let us return to the general case. The standard subdifferential qualification
condition for inclusions (3.16) is (see [26, Theorem 3.38])

y∗ ∈ ∂∞g(ϕ(x̄))

0 ∈ D∗ϕ(x̄)(y∗)

}
⇒ y∗ = 0. (3.21)

Proposition 3.9 Condition (3.21) implies metric regularity of F near ((x̄, f (x̄)), (0, 0)).

Proof Indeed, condition (3.21) amounts exactly to the condition (3.9) with P=R
n×R,

Q = epig and ϕ replaced by the mapping � given in (3.20). ��

We mentioned in the Introduction that different representations of the same op-
eration may lead to different qualification conditions. Now we can give an illustration
of this statement.

Example We can represent the sum of functions f1, ..., fk on R
n as the com-

position f = g ◦ ϕ, where ϕ(x) = (x, ..., x) is the diagonal mapping R
n → R

nk

and g(x1, ..., xk) = f1(x1) + ... + fk(xk). The calculus rule (3.16) then reduces to
(3.10) (which is obvious as the adjoint map to ϕ is (x∗

1, ..., x∗
k) �→ x∗

1 + ... + x∗
k and

∂g(x1, ..., xk) = ∂ f1(x1) × ... × ∂ fk(xk), due to the separability of g). But the qual-
ification condition which results from (3.17) differs from the metric qualification
condition of (F1). What we get is: there are γ > 0, δ > 0 such that

d((x, α), epif ) � γ d((x, x, . . . , x, α), epig),

provided ‖x − x̄‖ < δ, |α − f (x̄)| < δ.
Clearly, this condition is different from inequality (3.11). Moreover it is almost

obvious that the two conditions are not comparable in the sense that none of them is
weaker than the other one.

3.3 Coderivatives of Multifunctions

We shall consider two operations with set-valued mappings in this subsection:
composition and summation. The discussions of this subsection can be viewed as
elaboration upon the results of [15]. Though differing in some details, the results
presented below are very similar to that proved and used in the previous subsections.
Therefore we can afford to be more sketchy here.

(M1) Composition: S = S2 ◦ S1, S1[Rn ⇒ R
p] and S2[Rp ⇒ R

m] (defined by
S(x) := {⋃ S2(w) : w ∈ S1(x)});

Assumptions:

(1) the graphs of S1 and S2 are closed; (x̄, ȳ) ∈ GraphS;
(2) the map �: (x, y) �→ S1(x) ∩ S−1

2 (y) is locally bounded around (x̄, ȳ);
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Calculus rule:

D∗S(x̄, ȳ)(y∗) ⊂
⋃

w̃∈�(x̄,ȳ)

D∗S1(x̄, w̃) ◦ D∗S2(w̃, ȳ)(y∗). (3.22)

Qualification conditions:

• Metric qualification condition: there are γ > 0, δ > 0 such that

d((x, y), GraphS) � γ (d((x, w), GraphS1) + d((w, y), GraphS2)) (3.23)

for all x, w, y satisfying ‖x − x̄‖ < δ, d(w, S1(x̄) ∩ S−1
2 (ȳ)) < δ, ‖y − ȳ‖ < δ;

• Calmness qualification condition: the set-valued mapping

M
[
R

n × (Rp)2 × R
m ⇒ R

n × R
p × R

m] :
M(x, w1, w2, y) = {

(u, v, z) : (u, v) ∈ GraphS1 − (x, w1),

(v, z) ∈ GraphS2 − (w2, y)
}

is calm at ((0, 0, 0, 0), (x̄, w, ȳ)), for any w ∈ �(x̄, ȳ);
• Subregularity qualification condition: the set-valued mapping

F
[
R

n × R
p × R

m ⇒ R
n × (Rp)2 × R

m] :
F(x, w, y) = (GraphS1 − (x, w)) × (GraphS2 − (w, y))

is subregular at ((x̄, w, ȳ), (0, 0, 0, 0)), for any w ∈ �(x̄, ȳ).

We have M(0, . . . , 0) = {(u, v, z) : (u, v) ∈ GraphS1, (v, z) ∈ GraphS2} so that,
similarly as in (F3),

d((x, y), GraphS) = inf
w

d((x, w, y), M(0, . . . , 0)).

It follows that the metric qualification condition is at least not stronger than the
calmness/subregularity condition.

Proposition 3.10 Inequality (3.23) ⇒ inclusion (3.22).

Proof As � is locally bounded by (2), it is lower semicompact. The result now follows
from Proposition 7.1 of [15]. ��

The standard subdifferential qualification condition for (3.22) is (see [23,
Theorem 5.1])

0 ∈ D∗S1(x̄, w)(w∗)

w∗ ∈ D∗S2(w, ȳ)(0)

}
⇒ w∗ = 0 (3.24)

for any w ∈ �(x̄, ȳ).

Proposition 3.11 Condition (3.24) is equivalent to metric regularity of F near
((x̄, w, ȳ), (0, 0, 0)) for any w ∈ �(x̄, ȳ).
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Proof Clearly, the set-valued mapping F from the subregularity qualification condi-
tion has the structure (2.2) with

Q = GraphS1 × GraphS2, ϕ(x, v, y) =
[

(x, v)

(v, y)

]
.

Condition (3.24) is exactly the respective MFCQ (2.4). ��

If S1 is single-valued and Lipschitz around x̄, then assumption (2) is automatically
fulfilled and the requirements of the respective qualification conditions can be
replaced by the following:

• Metric qualification condition: there are γ > 0, δ > 0 such that

d((x, y), GraphS) � γ d((S1(x), y), GraphS2)

for all x, y satisfying ‖x − x̄‖ < δ, dS−1
2 (ȳ)(S1(x)) < δ, ‖y − ȳ‖ < δ;

• Calmness qualification condition: the set-valued mapping

M
[
R

p × R
m ⇒ R

n × R
m] : M(w, y) = {(u, z) : (S1(u), z) ∈ (GraphS2 − (w, y))

is calm at ((0, 0), (x̄, ȳ));
• Subregularity qualification condition: the set-valued mapping

F
[
R

n × R
m ⇒ R

p × R
m] : F(x, y) = GraphS2 − (S1(x), y)

is subregular at ((x̄, ȳ), (0, 0)).

As in (F3), we can easily verify that these conditions (with single-valued Lipschitz
map S1) are equivalent.

(M2) Sum of multifunctions: S = S1 + . . . + Sk, Si[Rn ⇒ R
m], i = 1, 2, . . . , k.

Assumptions:

(1) The graphs of Si are closed , (x̄, ȳ) ∈ GraphS;
(2) There exist neighborhoods U of x̄ and V of ȳ and a positive real � such that

x ∈ U
yi ∈ Si(x), i = 1, 2, . . . , k
k∑

i=1
yi ∈ V

⎫⎪⎪⎬
⎪⎪⎭

⇒ |yi| < � for i = 1, 2, . . . , k;

Calculus rule: For all y∗ ∈ R
m

D∗S(x̄, ȳ)(y∗) ⊂
⋃

k∑
i=1

ỹi=ȳ,ỹi∈Si(x̄)

D∗S1(x̄, ỹ1)(y∗) + . . . + D∗Sk(x̄, ỹk)(y∗); (3.25)
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Qualification conditions:

• Metric qualification condition: there are γ > 0, δ > 0 such that

d((x, y), GraphS) � γ
(
d((x, y1), GraphS1) + ... + d((x, yk), GraphSk)

)
(3.26)

for all x, y, yi ∈ Si(x) such that ‖x − x̄‖ < δ, ‖y − ȳ‖ < δ and y1 + ... + yk = y;
• Calmness qualification condition: the set-valued mapping

M[(Rn × R
m)k ⇒ R

n × (Rm)k] :
M((x1, v1), ..., (xk, vk))={(x, y1, ..., yk) : (x, yi)∈GraphSi − (xi, vi), i = 1, ..., k}

is calm at points (((0, 0), ..., (0, 0)), (x̄, ỹ1, ..., ỹk)), such that ỹi ∈ Si(x̄),
k∑

i=1
ỹi = ȳ;

• Subregularity qualification condition: the set-valued mapping

F[Rn × (Rm)k ⇒ (Rn × R
m)k] :

F(x, y1, ..., yk) = (GraphS1 − (x, y1)) × ... × (GraphSk − (x, yk))

is subregular at points ((x̄, ỹ1, . . . , ỹk), ((0, 0), ..., (0, 0))), such that ỹi ∈ Si(x̄),
k∑

i=1
ỹi = ȳ.

Proposition 3.12 Inequality (3.26) ⇒ inclusion (3.25).

Proof The set-valued mapping

H(x, y) = {(y1, ..., yk) : yi ∈ Si(x), y1 + ... + yk = y}
is lower semicompact by (2). The result now follows from Proposition 7.2 of [15]. ��

The standard subdifferential qualification condition for sums of set-valued map-
pings is (see [23, Theorem 4.1]):

yi ∈ Si(x̄)

y1 + . . . + yk = ȳ
x∗

i ∈ D∗Si(x̄, yi)(0)

x∗
1 + ... + x∗

k = 0

⎫
⎪⎪⎬
⎪⎪⎭

⇒ x∗
1 = ... = x∗

k = 0. (3.27)

As in all previous cases one has

Proposition 3.13 Condition (3.27) implies metric regularity of F near every point
((x̄, ỹ1, . . . , ỹk), ((0, 0), ..., (0, 0))) such that ỹi ∈ Si(x̄), i = 1, 2, . . . , k, and

∑
ỹi = ȳ.

Proof Again, to prove it, it suffices to note that (3.27) is the MFCQ (2.4) for F if we
write it as

F(x, y1, . . . , yk) = (GraphS1 × ... × GraphSk) − ((x, y1), ..., (x, yk)).

��
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A remark concerning second-order calculus In second-order analysis we often
compute (outer estimates of) coderivatives of composite mappings containing subd-
ifferentials or normal cones. In the respective calculus rules we have then to do with
first- and second-order qualification conditions, cf. e.g. [27, Theorem 3.1]. The above
theory enables us to weaken the second-order conditions. To illustrate it, consider
e.g. the composition investigated in (F3) and assume additionally that ϕ is twice
continuously differentiable on a neighborhood of x̄ and g is convex. It follows that
under the standard subdifferential qualification condition (3.21) one has

∂ f (x) = (∇ϕ(x))∗∂g(ϕ(x)) (3.28)

for all x from a neighborhood of x̄. Let us fix a certain v̄ ∈ ∂ f (x̄) and compute
D∗(∂ f )(x̄, v̄), which is the so-called second-order subdifferential of f at x̄ relative
to v̄ ([23]).

Proposition 3.14 Let f = g ◦ ϕ, where ϕ[Rn → R
m] is twice continuously differen-

tiable and g[Rm → R̄] is proper convex and lower semicontinuous. Let x̄ ∈ R
n be given

such that ϕ(x̄) ∈ domg and condition (3.21) is fulfilled. Further assume that

(1) For a given v̄ ∈ ∂ f (x̄), the mapping S[Rn × R
n ⇒ R

m] with the values

S(x, v) := {y ∈ R
m : y ∈ ∂g(ϕ(x)), (∇ϕ(x))∗y = v}

is lower semicompact at (x̄, v̄);
(2) The mapping

M[Rm × R
m ⇒ R

n × R
m] : M(w, y) = {(u, z) : z + y ∈ ∂g(ϕ(u) + w)}

is calm at (0, 0, x̄, y) for all y ∈ S(x̄, v̄).

Then one has

D∗(∂ f )(x̄, v̄)(v∗) ⊂
⋃

y∈S(x̄,v̄)

[∇2〈y, ϕ〉(x̄)v∗ + (∇ϕ(x̄))∗ D∗(∂g)(ϕ(x̄), y)(∇ϕ(x̄)v∗)
]

(3.29)
for all v∗ ∈ R

n.

Proof The first part of the proof is identical with the proof of [25, Corollary
4.3](reduced to the finite-dimensional setting). In this way one verifies the inclusion

D∗(∂ f )(x̄, v̄)(v∗) ⊂
⋃

y∈S(x̄,v̄)

[∇2〈y, ϕ〉(x̄)v∗ + D∗(∂g ◦ ϕ)(x̄, y)(∇ϕ(x̄)v∗)
]

for all v∗ ∈ R
n. It remains to compute the coderivative of the composition ∂g ◦ ϕ. To

do it, we apply the rule (M1), where S1 = ∂g, and S2 = ϕ is single-valued. Notice that
the graph of ∂g is closed by convexity of g and the respective calmness qualification
condition amounts exactly to assumption (2). It follows that for each y ∈ S(x̄, v̄)

D∗(∂g ◦ ϕ)(x̄, y)(∇ϕ(x̄)v∗) ⊂ (∇ϕ(x̄))∗ D∗(∂g)(ϕ(x̄), y)(∇ϕ(x̄)v∗)

and we are done. ��
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Unfortunately, in this context condition (3.21) cannot be replaced by some
qualification condition from (F3). The reason is that we need to ensure the validity
of Eq. 3.28 on a whole neighborhood of x̄, which cannot be enforced by any from the
“weak” qualification conditions. This phenomenon can be observed in connection
with other rules of second-order analysis as well.

Acknowledgement The authors are very grateful to an anonymous referee for a careful reading
and number of useful suggestions.
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