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Abstract Feature point (FP) detection is an important pre-
processing step in image registration, data fusion, objec-
t recognition and in many other tasks. This paper deals with
multiframe FP detection, i.e. detection in two or more images
of the same scene which are supposed to be blurred, noisy,
rotated and shifted with respect to each other. We present a
new method invariant under rotation that can handle differ-
ently blurred images. Thanks to this, the point sets extracted
from different frames have relatively high number of common
elements. This property is highly desirable for further multi-
frame processing. The performance of the method is demon-
strated experimentally on satellite images and application on
medical data is

1 Introduction

Detection of feature points (FP) or landmarks is an impor-
tant step in image processing and computer vision. It pro-
vides input information for further operations, such as image
registration, image fusion, time-sequence analysis and object
recognition. By feature points we understand the points that
are easy to identify in the image, such as corners, line inter-
sections, T-junctions, etc.

In this paper, we address a multiframe version of this
problem: having two or more images of the same scene, the
aim is to detect feature points in each of them. Multiframe FP
detection methods must fulfill the condition of repeatability.
This property means that the results should not be affected
by imaging geometry, radiometric conditions and by addi-
tive noise and that the sets of points detected in all frames
should be identical. Since the last requirement is not realistic
in practice, ”maximum overlap” is usually required instead
of identity.

In this paper we assume that the individual frames may be
rotated and shifted with respect one another, they may have
different contrast, they may be degraded by a linear shift-
invariant blur and corrupted by additive random noise. Our
primary motivation comes from the area of remote sensing,
where the registration of images with such kinds of distor-
tions is a very frequent task. Having the FP detection method
which works on differently distorted frames and which yields

high repetition rate is a fundamental requirement.

2 Present state-of-the-art

Numerous methods for single-frame feature point detection
in gray-level images have been published in last two decades.
Most of them are known as corner detectors. A survey of
basic methods along with a comparison of their localization
properties can be found in [9].

Kitchen and Rosenfeld [5] proposed a corner detection
scheme based on a differential operator that consists of first
and second order partial derivatives of the imagef(x, y):
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K(x, y) represents the curvature of a plane curve perpendic-
ular to the gradient of the image function. Corners are iden-
tified as local extrema of this operator.

Brunnstr̈om et al. [2] proposed a modified version of the
Kitchen and Rosenfeld’s corner detector. Their method looks
for local extrema of the numerator ofK(x, y). In that way,
preference is given to the points with high value of the gradi-
ent.

Another modification of the Kitchen and Rosenfeld’s ap-
proach comes from Zuniga and Haralic [13] who detec-
t edges first and then they look for extrema ofK(x, y) nor-
malized by the gradient magnitude over edge pixels only.

Beaudet [1] proposed to calculate Hessian determinant

|H(x, y)| = fxxfyy − f2
xy (2)

of the image function and to find corners as local extrema of
this determinant.

In Dreschler’s and Nagel’s approach [3] the local extrema
of Gaussian curvature of the image function are identified
and corners are localized by interpolation between them.

Unlike the above mentioned methods, the corner detec-
tor proposed by F̈orstner [4] uses first-order derivatives only.
Förstner determines corners as local maxima of

F (x, y) =
f2
x f

2
y − (fxfy)2

f2
x + f2

y

(3)

123 1231

mailto:zitova@utia.cas.cz


Feature point detection in multiframe images

where bars denote mean values over some neighborhood of
(x, y). Harris’ method belongs to the same family of corner
detectors as F̈orstner one. Here, corners are determined as
local minima of1/F (x, y). In several comparative studies
(see [10] for instance), Harris detector was evaluated as the
best corner detector, although it is relatively time-consuming.
To reduce its computational cost, Trajkovic and Hedley [10]
proposed to calculate the cost functionF (x, y) for pixels
with high gradient only.

Simple and fast corner detector has been introduced re-
cently by Trajkovic and Hedley [10]. It is based on the
idea that the change of image intensity at the corners should
be high in all directions. Thus, corners are found as local
maxima of minimum change of intensity. Although it is very
fast, this detector performs slightly worse than Harris detec-
tor because it sometimes gives false responses on the straight
lines.

Many of the corner detection methods were developed on
the basis of edge detectors but most edge detectors perfor-
m poorly on corners, because they assume an edge to be of
infinite extend. For this reason Mehrotra [8] developed his
half-edge detectors based on the first and second directional
derivatives of Gaussian, respectively. Among others, more
recently developed methods are an approach of Liu and Tsai
[6] which is based on preserving gray and mass moments, a
method developed by Xie [12] who combines different cues
(edginess, curvature and region dissimilarity) in a cost func-
tion to be minimized, and a biologically inspired approach of
Würtz and Lourens [11] who utilize a model for end-stopped
cells of the visual cortex over several scales and even gener-
alize it to color images.

Most of the above mentioned methods can be used in the
multiframe case too, but their repeatability is not sufficient in
the case of blurred frames.

3 Description of the proposed method

Our newly proposed method for the detection of feature
points uses a parameter approach to handle differently dis-
torted images. Points, which belong to two edges with an
angle from the interval[π/2 − da, π/2 + da] (da is user de-
fined parameter) in between regardless of its orientation are
understood here as feature points. The described method is
based on this definition.

Information about the number of edges passing through
each pixel and about the angle between them is acquired from
the number and distribution of local sign changes in the dif-
ference between the image function and its local mean values
(see (6)).

However, the list of candidates thus produced (Step 5 of
the algorithm) usually contains also some undesirable points:
points that are not corners but which are close to a straight
line and also points which are true corners but with a small
variation in gray levels. At first, points closer to a straight
line than given threshold are eliminated and then the final
choice of the best FP from the list of candidates is done by
maximizing the weight functionW (5), which quantifies the
”significance” of each point. In this way we eliminate false

candidates. Furthermore, the requirement not to yield two
FP closer to each other than a user-defined distance is incor-
porated. Finally, the algorithm will produce a user requested
number of extracted FP which satisfy the criteria above and
maximize the weight function.

More formally, the proposed method is described in the
following algorithm.

Algorithm Find FP

1. Inputs:

f – the image of the sizeN × N in which FP should be
detected.
NFP – the desired number of feature points.
M – the radius of the neighborhood for the mean value
computation.
r – the radius of the neighborhood for computing sign
changes.
da – determines the interval, where the angle between FP
candidate’s edges has to be from.
s – the minimum allowed distance between FP candidate
and a straight line.
ds – the maximum allowed curvature divergence for
straight line candidates.
t – the minimum allowed distance between two feature
points.

2. InitializeC – zero matrix of the sizeN ×N .

3. Calculate functiong of local mean values off

g(i, j) =
1

πM2

∑
Ωi,j,M

f(k, l), (4)

whereΩi,j,M denotes a circular neighborhood of(i, j) of
the radiusM .

4. Calculate the weight function of local variations:

W (i, j) =
∑

Ωi,j,M

(f(k, l)− g(i, j))2. (5)

5. Detection of FP candidates:

FORi = r + 1 TON − r
FORj = r + 1 TON − r

Construct one pixel thick closed digital
circleR of radiusr centered at(i, j):

R = {(i1, j1), · · · , (ik, jk)}

wherei1 = i andj1 = j + r and next
points follow in the clockwise order.
Calculate the number of sign changes
Nsc(i, j) in the sequence

f(i1, j1)−g(i, j), · · · , f(ik, jk)−g(i, j), f(i1, j1)−g(i, j)
(6)
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IF Nsc(i, j) = 2 THEN
Denote the positions of the sign
changes as(ia, ja) and(ib, jb),
respectively.
Calculate

αi,j = angle((ia, ja), (i, j), (ib, jb)).

IF |αi,j − π/2| < da THEN
C(i, j) = 1

END IF
END IF

END FOR
END FOR

6. Elimination of false candidates:
FOR each pixel(i, j) whereC(i, j) = 1

IF exists pixel(if , jf ) such that
the distance of which from(i, j) is less thans,
Nsc(if , jf ) = 2 and|αif ,jf − π| < ds
THEN

C(i, j) = 0
END IF

END FOR

7. Selecting feature points:
FORm = 1 TONFP

Find point(i0, j0) as

(i0, j0) = arg max
i,j:C(i,j)=1

W (i, j).

SetPm = (i0, j0).
For each point(i, j) the distance of which from
(i0, j0) is less thant setW (i, j) = 0.

END FOR

The resulting sequenceP1, · · · , PNFP contains the coor-
dinates of the detected feature points.

The role of the weight function can be explained as fol-
lows. If the candidate is a corner with low contrast between
the adjacent regions, its value ofW is small. In the case of
ideal cornerW is high.

If the noise is present in the image, the sequence

f(i1, j1), · · · , f(ik, jk), f(i1, j1) (7)

can be smoothed before the sign changes computing in (6).
It can be seen that the described algorithm has a property

of rotation invariance. Whenf ′ is a rotated version of image
f , the functionsg′ andW ′ are equal tog andW , respectively,
rotated in the same manner. The circleR′ contains the same
pixels asR but labeled differently. Nevertheless, the number
of sign changesN ′sc is the same asNsc. Since alsoα′ij =
αij , the set of feature points detected inf ′ is the same (except
for the rotation) as that one found in imagef .

During the FP detection several user-defined parameters
are used. They allow handling differently blurred and cor-
rupted images, as it is demonstrated in the next Section. This
variability is an important feature of the proposed method.

4 Numerical experiments

In this Section, practical capabilities of the proposed FP de-
tection method are demonstrated and a comparison with the
classical techniques [5] and [4] is shown. Since the intend-
ed major application area is the area of remote sensing, the
experiments are performed on satellite images.

A subscene covering the landscape near Prague (Czech
capital city) of the size180× 180 pixels was extracted from
the SPOT image of the central part of the Czech Republic.
This subscene was rotated several times by angles fromπ/36
to π/4 and/or blurred by convolving with square masks of
various sizes to simulate degraded multiframe acquisition.

30 feature points were detected in each frame by three d-
ifferent methods: Kitchen and Rosenfeld’s, Harris’ and ours.
In each case we calculated thesuccess rate Qthat is defined
as the number of identical FP detected both in the original
and in the degraded/rotated frame. Two FP were assumed to
be identical if their positions in both images differ from each
other at most by two pixels in each direction.

The results of the experiment are summarized in Table1.
In the first two columns the size of the blurring filter and
the angle of rotation is specified for each frame. In the third
and fourth columns one can see the success rate achieved by
Kitchen and Rosenfeld’s and Harris’ methods, respectively.
The parameter in the fifth column stands for the radius of
the neighborhood over which the mean values of the deriva-
tives used in (3) were calculated from. The last four columns
present the results achieved by our method: the success rate
Q and the values of parametersM (the radius of the neigh-
borhood for mean value computation),r (the radius of the
circle for sign changes analysis) andI (the interval, where
the angle between FP candidate’s edges has to be from), re-
spectively. In each individual case, the parameter values list-
ed in Table1 in Harris’ as well as in our method were selected
to yield the best success rate.

In Fig. 1, one can see what feature points were detected
by each method. On the left-hand side is the original, on
the right-hand side is the image blurred by9 × 9 averaging
mask and rotated byπ/9. The feature points were detected
by Kitchen and Rosenfeld’s method (top), Harris’ method
(middle) and our method (bottom). This figure shows the
situation corresponding to the last but one row of Table1.

Analyzing the results of this experiment, we can make the
following claims.

• In the case of heavy blur and small rotation our method
outperforms the others.

• If the blur is not feature and the rotation angle is about
π/4, then the Harris’ method becomes better than ours.

• In all other cases, Harris’ and our methods are quite com-
parable.

• Kitchen and Rosenfeld’s algorithm gives the worse suc-
cess rate in all cases.

• Computational cost of our method is lower than that of
Harris’ method.
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Figure 1: Detection of feature points in two different frames of the same scene: in the original (left) and in the image blurred by9×9 averaging
mask and rotated byπ/9. The feature points were detected by the Kitchen and Rosenfeld’s method (top), the Harris’ method (middle) and by
our method (bottom).
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Frame K + R Harris Our method
Blur Rotation Q Q h Q M r I
3× 3 – 11 23 6 25 2 4 340 − 1460

5× 5 – 3 17 9 21 2 4 340 − 1460

7× 7 – 4 16 9 18 2 4 340 − 1460

9× 9 – 2 9 9 17 4 8 60 − 1740

– π/8 17 24 9 25 2 4 00 − 1800

3× 3 π/8 13 23 6 24 2 4 00 − 1800

5× 5 π/8 8 19 6 18 2 4 00 − 1800

7× 7 π/8 3 19 6 17 2 4 00 − 1800

7× 7 π/4 5 16 6 14 2 4 220 − 1580

9× 9 π/36 3 11 9 19 4 8 60 − 1740

9× 9 2π/36 5 14 9 18 4 8 60 − 1740

9× 9 4π/36 3 11 9 20 4 8 60 − 1740

9× 9 5π/36 3 12 9 17 4 8 60 − 1740

Table 1: The results of the FP detection. From left to right: the size of the blurring filter, the rotation angle, the success rate of Kitchen and
Rosenfeld’s method, the success rate of Harris’ method,h – the radius of the neighborhood for calculating the mean values of the derivatives,
the success rate of our method,M – the radius of the neighborhood for the mean value computation,r – the radius of the circle for sign changes
analysis,I – the interval, where the angle between FP candidate’s edges has to be from.

5 Application

Medical imagery application area of image registration and
in consequence automatic feature points detection has been
extensively studied during last years due to increasing num-
ber and availability of different sensor types. For image-
based registration of medical images, an extrinsic or an in-
trinsic approach can be used. Extrinsic methods, relying on
artificial objects introduced to the patient space (inside or
outside of the body), are usually fast and can be automatized.
But not in all cases these often invasive and time-demanding
for preparation methods can be applied. Intrinsic solutions
proceed patient-generated image content either entire or just
limited set of features (points, segmented objects) [7]. Here,
our proposed method was used for feature points detection on
nuclear MR images of the human brain. In Fig.2 the 157th
axial slice (left image) and its blurred version (right image)
are shown together with 30 detected feature points. Blur was
introduced by averaging mask7×7 to simulate on the image
pair the difference between images acquired by sensors with
different resolution. Detected FP sets reached required 50%
overlap, which is sufficient for prospective image registration
procedure.

6 Conclusion

In this paper we proposed a novel method for detection of
feature points – corners with high local contrast. The method
works in two stages: all possible candidates are found first
and then the desirable number of resulting feature points is
selected among them by maximizing the weight function.

Although the method can be applied to any image, it is
particularly devoted to FP detection in blurred images be-
cause it provides high consistence. We compared the perfor-
mance of the method with two classical corner detectors. The
number of identical points detected in different frames of the
same scene served as a success rate. Our method was shown

to be superior if at least one of the frames is heavily blurred
and to be comparable with Harris’ detector in most other cas-
es except negligible or small blur and big rotation. Moreover,
our method is much more computationally efficient.
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