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ABSTRACT

The topic of the paper is to estimate parameters of the
camera motion using images taken at initial and current po-
sitions of the camera. An original method handling defo-
cused images or images blurred in other ways is proposed.
The method is based on registering the images by means
of detected control points (CPs) and so-called combined in-
variants. These features are invariant both to rigid-body
transform and to blurring caused by convolution with an ar-
bitrary centrosymetric point-spread function (PSF). Thanks
to this, the camera position can be estimated directly from
defocused images without any deblurring.

1. INTRODUCTION

To estimate a current position of an uncalibrated moving
camera with respect to its previous position is a frequent
task in computer vision. Information which is available con-
sists of images taken at the initial and current positions of
the camera, sometimes additional prior knowledge can be
available (for example the kind of motion). Provided the
images have at least partial overlap, an accurate estimation
of the parameters of the spatial transformation between the
images is the key to solving this problem.

There are basically two main approaches to the esti-
mation of transform parameters: correspondence-based and
correspondenceless ones. In the first one, any method of
image-to-image registration can be employed to find cor-
responding CPs and to estimate the parameters of the trans-
form via interpolation or least-square fit. This approach was
chosen for instance in the well-known experiment by Zheng
and Chellappa [1]. They were estimating the wind velocity
by means of images taken from a floating balloon.

Correspondenceless methods look at the images glob-
ally and try to find the transform parameters directly. Typi-
cal examples are phase correlation in the Fourier domain [2]
and image normalization. The latter approach uses global
image moments to transform each image into a canonical
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form [3]. Between-image transform is obtained as a com-
position of canonical transformations. The correspondence-
less methods are simpler but their common drawback is their
globality. They require a complete overlap of the images
that is not realistic in practice.

In this paper, our attention is paid to the estimation of
the moving camera position in the situation when one of
the images is blurred in an unknown manner. The blur can
be introduced by various factors such as wrong focus, atmo-
spheric turbulence (important particularly in remote sensing
and astronomy), diffraction and camera vibration, among
others. The motion blur is not addressed explicitly because
short-exposure imaging is assumed.

Since general-purpose registration methods do not em-
ploy any blur invariant property, they are not supposed to
handle blurred images correctly. Only few papers consider-
ing blurred images have been published. Myles and Lobo
[4] proposed an iterative method originating from the direct
motion estimation approach [5] and modified it particularly
for blurred images. Although it was proven to converge in
most cases and to be robust to noise, it has severe limita-
tions: the blurring function is assumed to be a Gaussian or
pillbox-like, the scene must be flat (or, at least, it must con-
sist of large planar patches) and a significant image overlap
is required. Moreover, good initial estimate of the transla-
tion is required. Zhang et al. [6] proposed an affine normal-
ization method that does not depend on the blurring func-
tion. To bring the images into canonical form, blur invariant
moments (introduced by Flusser and Suk [7]) were used to
define the normalization constraints. Thanks to this, neither
the type nor the level of the blur influences the motion pa-
rameter estimation. Pei and Wu [8] used the same idea to
register images deformed by a rigid-body transform. These
two methods are robust to noise and computationally effi-
cient but they require the complete image overlap to yield
reliable results. Kubota et al. [9] proposed a two-stage reg-
istration method based on a hierarchical matching. In the
first stage, they perform a full search in the space of trans-
form parameters, without taking the blur into account at all,
to find a coarse match. Then the refined match is found
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Fig. 1. Images of the indoor scene, sized 384 x 512 pixels, (a) - left image: camera at the initial position, (b) - right image:
after the camera moved. The image taken by the moved camera has an out-of-focus blur, caused by the inserted foreign
object. 30 detected CPCs are marked by crosses. The CPCs which form the corresponding CP pairs are numbered.

block-wise, considering the blur radius as another param-
eter of the search space. All possible Gaussian blurs are
generated and examined to find an optimal match.

We present a new correspondence-based method of the
camera motion estimation from blurred images. We assume,
that the relationship between the images taken at initial cam-
era position (f(x,y)) and at the current camera position
(9(z,y)) can be described as

9(r(z,y)) = a(f x h)(z,y) + n(z,y). )

In this model, n(z,y) is additive random noise, a is a con-
stant describing the global change of contrast, « denotes 2-D
convolution and h(z, y) is the PSF of the camera at the time
of the acquisition of g(, y). Ideally, h(z, y) equals to Dirac
delta-function, in practice the PSF is a composition of Airy
function. The PSF might have also a component depending
on changes in imaging geometry. Since we do not attempt to
recover the blur and all the PSF components are considered
unknown, we can group them under one symbol h(x,y)
without loss of generality. In the following text the PSF is
assumed to be centrosymmetric (i.e. h(x,y) = h(—z, —y))
and energy preserving ([~ [%_h(z,y)dzdy = 1). This
is not a significant limitation from practical point of view,
because these assumptions hold for most real sensors and
blurring functions. 7 on the left hand side of the equa-
tion (1) stands for a transform of spatial coordinates due to
the changes in imaging geometry. The type of 7 depends on
the number of degrees of freedom of the camera motion and
on the character of the scene. Methodology of the motion
estimation is influenced by the actual character of 7. We
solve the task for 7 consisting of translation and rotation.
Although not addressed explicitly, small scale changes are
allowed too.

2. IMAGE REGISTRATION APPROACH

The proposed method of the camera motion estimation is
based on image registration — the process of overlaying
two or more images of the same scene acquired from differ-
ent viewpoints and/or at different times so that the pixels of
the same coordinates in the images correspond to the same
part of the scene. Here, we do not need actually to overlay
the images, we only look for the coordinate transform that
describes the spatial relationship between them.

Image registration starts with the selection of control
point candidates (CPCs) both in f(z,y) and g(z, y) frames.
Significant corners and other corner-like dominant points
are considered as the candidates. To detect them, a method
developed particularly for blurred images [10] is employed.

The most difficult step is a matching of the CP can-
didates. The correspondence between the CPCs from the
initial frame and those from the current frame must be es-
tablished and the candidates having no counterparts should
be rejected. This step is realized by means of a new class
of features, called combined invariants, introduced in [11].
The combined invariants I are invariant simultaneously to
convolution with an arbitrary centrosymmetric PSF and ro-
tation around the origin (additional invariance to translation
and scaling can be obtained) and are defined as follows:

n n
I=1[Kw@pa)", D kilpi—a)=0, ()

j=1 j=1
where n > 1 and k;,p; and ¢;;5 = 1,---,n, are non-

negative integers such that (p; + ¢;) is odd for each j. The
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Image R R \Y \Y% H H
angle (°) | diff | shift | diff | shift | diff

m, s 6.38 0.10 | -25.3 | 0.6 | -35.3 | -0.9
m, b 10.65 -0.02 | -40.3 | 0.1 |-56.0 | 0.0
A s 6.20 0.07 | -20.4 | -0.6 | -148 | 0.2
A b 11.00 0.08 | -37.7 | 0.0 | -410 | 0.2
B, s 6.28 0.11 | -19.7 | 0.0 | -15.7 | -0.9
B, b 10.82 0.03 |-381| 0.2 |-411 |-03
mean 0.06 0.1 -0.3
STD 0.05 0.4 0.5

Table 1. Parameters of the camera motion. Estimates of
the rotation (R) and of the translations in vertical (V) and
horizontal (H) directions (in pixels) and the difference be-
tween the computed values and the ground truth. Images
were blurred (manual defocus, inserted objects A and B),
rotated (big angle, approximately 10.8°; small angle, ap-
proximately 6.2°) and translated.

K(pj,qj) : Z x Z — C ( Z is the set of non-negative in-
tegers and C is the set of complex numbers) are convolution
invariants ([11]). If (p; +¢;) is even then K (p;, ¢;)/) =0,

if (p; + g;) is odd then
45
> ()G
o n m

0<n+m<p;+q;

1 &
K (pj, q;) = cﬂu‘@ >

00 n=0

xK(pj —n,q; —m)Y) - cif).

The c%{ in the definition stands for the complex mo-

ments. The complex moment ¢\, of order (n 4+ m), where
n > 0andm > 0, of image f(x,y) is defined as

=] [ @rire-mri@odd, ©

where i denotes the imaginary unit.

A vector of such invariants is computed for each CPC
over its circular neighborhood. Two CPC pairs with the
minimum distance of their invariant vectors are found as
the most-likely corresponding CPCs (more robust match-
ing likelihood coefficients algorithm [12] can be used for
correspondence estimation). The other CPCs from the cur-
rent frame are transformed using a rigid-body transform the
coefficients of which are calculated by means of the two
above mentioned CPC pairs. The correspondence between
the transformed CPCs from the current frame and CPCs in
the initial frame is found via the thresholded nearest neigh-
bor rule in the spatial domain. Finally, for each CP in the
current frame, its improved position is found in its local
neighborhood by means of combined invariants.

As soon as the control point correspondence is estab-
lished, we can find an ”optimal” rigid-body mapping func-

tion whose parameters are calculated via least-square tech-
nique. Knowing these parameters (rotation angle, scaling
factor and translation vector) and the initial camera posi-
tion, the current position can be easily estimated.

Since our approach is based on local properties of im-
ages, a partial overlap of the frames is sufficient. The method
is time effective. In the correlation-like and direct methods,
each registration parameter increases the dimension of the
search space. For instance, in case of rigid-body transform
and blurring we have 5-D optimization problem which is
time expensive even if multiscale approach is employed. In
the invariant-based approaches, as our method is, the use of
the invariants reduces the search space significantly. Fur-
ther reduction is achieved by the preliminary detection of
control points.

3. INDOOR EXPERIMENT

The proposed method was tested on the estimation of the
motion parameters and the current position of the camera in
the real indoor scene. The camera (Nikon Coolpix 950, 250
cm distant from the wall of the room) was variously rotated
and translated from its initial position (common for all cases
under consideration). Using images (sized 384 x 512) taken
at the start and at the end of moves of the camera, the motion
parameters were estimated. Fig. 1 shows images taken at the
initial position (a) and after the camera was moved (b). Im-
ages were blurred by out-of-focus blur caused by a manual
defocus or by the insertion of foreign objects between the
camera and the scene (see Fig. 1 (b)). In the latter, the blur
is generated by the automatic focusing of the camera on the
foreign object in front. The inserted objects produces also
partial occlusion of the scene. The parameters of camera
motion were estimated by means of the proposed method
( sets of 30 CPCs were used; in Fig. 1, detected CPCs are
marked by crosses, the matched CPs are numbered).

The accuracy of the method was evaluated by the com-
parison of the computed values with the ground truth. 1l-
lustrative examples of the parameter comparison are sum-
marized in the Table 1. Six situations are introduced here,
images were blurred by the out-of-focus blur (the manual
defocus and the insertion of two different foreign objects
A and B), translated, and differently rotated (small and big
rotation, approximately 6.2° and 10.8°), respectively. The
change of scale in the images is negligible and the same
in all cases. The translation parameters are given in pixels
(1 pixel =2 0.4 cm). In the last two rows there are means
and standard deviations of the errors.

In all cases the estimates corresponds well to the ref-
erence values and the standard deviations are small ( the
differences are mostly below the level of the discretization
error). Even when parts of the scene are occluded by the
foreign objects, the variations are negligible.
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The experiments which were carried out proved the ap-
plicability of the proposed method for the estimation of the
camera motion. In contrast to other existing methods even
in situations when the scene is partially occluded and the
images have only partial overlap due to camera rotation and
translation the achieved estimation accuracy is satisfactory.
The proposed method was able to handle situations when
images are blurred without strong limitation on the type of
the blur.

4. CONCLUSION

In this paper, a new method of estimation of camera mo-
tion parameters from blurred images is introduced. The
method is based on registering the images by means of con-
trol points and their invariant descriptors. Combined invari-
ants, invariant to translation, rotation, and to blurring caused
by a convolution with an arbitrary centrosymmetric PSF are
employed. Thus, the camera position can be estimated from
defocused images directly without any deblurring.

Our approach has numerous advantages. Firstly, it is
able to handle blurred frames. Since in our method the reg-
istration is established by means of local features, a partial
overlap is sufficient. Thus, full overlap of the frames, as in
the method designed particularly for blurred images [6], [8],
using global image normalization, is not required. Compar-
ing to iterative registration methods [4], proposed algorithm
does not require any initial motion estimation and is faster.
Moreover, our method works well for any type of blurring,
it is not limited to certain type of blur (Gaussian, pillbox-
like). The only assumption is the centrosymmetry of the
PSF. The blur can even vary within the frame (but not within
the neighborhood of one CP). Thanks to this, our method
can handle images of 3-D scene where the local defocusa-
tion depends on the depth of the scene.

The major limitation of our method is that it cannot reg-
ister images with significant unknown scaling differences.
The invariants can be easily made invariant also to scal-
ing but the CP neighborhoods (if taken of the same size
in the both frames) comprise different areas of the scene.
Thus, the invariant features of the actually corresponding
CPs would be different. Theoretically, this can be avoided
by using multiscale approach. However, using & resolution
levels increases k-times the dimension of the feature space
which makes the computation time-expensive. In practice,
the scaling difference should be roughly estimated (prefer-
ably using prior knowledge about the scene or about the
camera setting) before the registration algorithm is applied.
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