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Abstract

The paper is devoted to the recognition of objects and patterns deformed by imaging geometry as well as by unknown
blurring. We introduce a new class of features invariant simultaneously to blurring with a centrosymmetric PSF and to a#ne
transformation. As we prove in the paper, they can be constructed by combining a#ne moment invariants and blur invariants
derived earlier. Combined invariants allow to recognize objects in the degraded scene without any restoration.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recognition of objects and patterns that are deformed in
various ways has been a goal of much recent research. The
degradations (geometric as well as graylevel degradations)
are introduced during the image acquisition process by such
factors as imaging geometry, illumination changes, wrong
focus, lens aberration, systematic and random sensor errors,
object occlusion, etc. Finding a set of invariant descriptors
is a key step to recognizing degraded objects regardless of
the particular deformations.

Many papers have been devoted to invariants with respect
to spatial coordinate transforms, like rigid-body, a#ne, and
projective transforms (see Refs. [1,2] for a survey and other
references). Moment invariants [3–8], Fourier descriptors
[9], di?erential invariants [10–12], and point sets invariants
[13–15] belong to the most popular classes of geometric
invariants.
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Much less attention has been paid to invariants with
respect to changes of the image intensity function (we
call them radiometric invariants) and to combined
radiometric–geometric invariants. In fact, just the invari-
ants both to radiometric and geometric image degradations
are necessary to resolve practical object recognition tasks
because usually both types of degradations are present in
input images.

VanGool et al. introduced the so-called a#ne-photometric
invariants of graylevel [16] and color [17] images. These
features are invariant to the a#ne transform and to the
change of contrast and brightness of the image simulta-
neously. Some other authors used various local features
(mostly derivatives of the image function) to Ind invariants
to rigid-body transform and contrast/brightness changes
[18,19]. This technique has become popular namely in
image retrieval. Numerous references can be found in
Ref. [18].

An important class of radiometric degradations we
are faced with often in practice is image blurring. Blur-
ring can be caused by camera defocus, atmospheric
turbulence, vibrations, sensor and/or scene motion, and/or
by interpolation-based enlargement of the image. If the
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scene is Dat and the imaging system is linear and space
invariant, blurring can be described by a convolution
g(x; y) = (f ∗ h)(x; y), where f is an original (ideal)
image, g is an acquired image and h is a point spread func-
tion (PSF) of the imaging system. Since in most practical
tasks the PSF is unknown, having the invariants to con-
volution is of prime importance when recognizing objects
in a blurred scene. An alternative approach, that would
not require convolution invariants, must include blind im-
age deconvolution, which is an ill-posed and practically
unsolvable problem.

A pioneer work on this Ield was done by Flusser and
Suk [20] who derived invariants to convolution with an
arbitrary centrosymmetric PSF. From the geometric point
of view, their descriptors were invariant to translation
only. Despite of this, the invariants have found success-
ful applications in face recognition on out-of-focused
photographs [21], in normalizing blurred images into the
canonical forms [22,34], in template-to-scene matching
of satellite images [20], in blurred digit and character
recognition [23,24], in registration of images obtained by
digital subtraction angiography [25] and in focus/defocus
quantitative measurement [26]. Other sets of blur invari-
ants (but still only shift-invariant) were proposed for
some particular kinds of PSF—axisymmetric blur invari-
ants [27] and motion blur invariants [28,29]. A signiIcant
improvement motivated by a problem of registration of
blurred images was made by Flusser and Zitov&a. They
introduced the so-called combined blur-rotation invariants
[30] and reported their successful usage in satellite image
registration [31] and in camera motion estimation [32].
Most recently, Flusser et al. proposed a group-theoretic
approach to extension of the combined invariants into
3-D [33].

However, in a real world, the imaging geometry is pro-
jective rather than rigid-body. If the scene is Dat and the
camera is far from the object in comparison to its size, the
projective transform can be well approximated by an a#ne
transform. Thus, having combined a#ne-blur invariants is
in great demand. The Irst attempt to Ind such invariants was
published by Zhang et al. [34]. They did not derive com-
bined invariants explicitly. They transformed the image into
canonical form and then they calculated pure blur invariants
[20] from this normalized image.

In this paper, we introduce explicit combined invariants
to a#ne transform and to convolution with an arbitrary cen-
trosymmetric PSF. They can be calculated directly from the
degraded image; there is no need to perform any geometric
normalization and/or deblurring of the image.

In Section 2, we brieDy recall the basic terms and earlier
results of the theory of moment invariants. Section 3 per-
forms the core of this work—we present the theorem which
allows to construct arbitrary number of combined invariants
in explicit form. The proof of this theorem is a major result
of the paper. Section 4 demonstrates the numerical proper-
ties and recognition power of the invariants.

2. Recalling the theory of the moment invariants

In this section we introduce some basic terms and brieDy
recall the theorems on the moment invariants which will be
used later in this paper.

2.1. Basic terms

De�nition 1. By image function (or image) we understand
any real function f(x; y) having a bounded support and a
Inite nonzero integral.

De�nition 2. Central moment �(f)
pq of order (p+ q) of the

image f(x; y) is deIned as

�(f)
pq =

∫ ∞

−∞

∫ ∞

−∞
(x − xc)

p(y − yc)
qf(x; y) dx dy; (1)

where the coordinates (xc; yc) denote the centroid of
f(x; y).

De�nition 3. A9ne transform is a transformation of spa-
tial coordinates (x; y) into new coordinates (u; v) deIned by
the equations

u = a0 + a1x + a2y;

v = b0 + b1x + b2y: (2)

Proposition 1. Every PSF mentioned in this paper is as-
sumed to be centrosymmetric and energy-preserving, i.e.

h(x; y) = h(−x;−y);

∫ ∞

−∞

∫ ∞

−∞
h(x; y) dx dy = 1:

The assumption of centrosymmetry is not a signiIcant
limitation of practical utilization of the method. Most real
sensors and imaging systems, both optical and non-optical
ones, have the PSF with certain degree of symmetry. In
many cases they have even higher symmetry than the cen-
tral one, such as axial or radial symmetry. Thus, the central
symmetry is general enough to handle almost all practical
situations.

Note that because of centrosymmetry all moments of odd
orders of the PSF equal zero.

2.2. Blur invariants

In our earlier paper [20], the following theorem of blur
invariants was proven.

Theorem 1. Let f(x; y) be an image function. Let us de-
;ne the following function C(f):N0×N0 → R. If (p+q)
is even then

C(p; q)(f) = 0:
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If (p + q) is odd then

C(p; q)(f) = �(f)
pq − 1

�(f)
00

p∑
n=0

q∑
m=0

0¡n+m¡p+q

(
p

n

) (
q

m

)

×C(p − n; q − m)(f) · �(f)
nm : (3)

Then C(p; q) is invariant to convolution with any cen-
trosymmetric function h(x; y), i.e.

C(p; q)(f) = C(p; q)(f∗h)

for any p and q.

2.3. A9ne moment invariants

A#ne moment invariants (AMIs) were introduced inde-
pendently by Reiss [35] and Flusser and Suk [36,37]. They
originate from the classical theory of algebraic invariants
[38,39]. The fundamental theorem, which was used for the
derivation of the explicit forms of the invariants, can be for-
mulated as follows.

Theorem 2. If the binary form of order p has an algebraic
invariant of weight w and order k

I(a′p;0; : : : ; a
′
0;p) =�wI(ap;0; : : : ; a0;p)

(� denotes the determinant of the respective a9ne trans-
form) then the moments of order p have the same invariant
but with the additional factor |J |k :
I(�′

p0; : : : ; �
′
0p) =�w |J |k I(�p0; : : : ; �0p);

where |J | is the absolute value of the Jacobian of the a9ne
transform.

We refer to [36,35] for the proof of Theorem 2 and for a
deeper explanation of the theory of the AMIs.

3. Combined blur and a!ne invariants

By combined blur-a#ne invariants (CBAIs) we under-
stand any functional deIned on the set of image functions
whose value does not change if the image function is con-
volved with a centrosymmetric PSF and transformed by an
a#ne transform. Note, that the convolution and the a#ne
transform are commutative here. The following theorem not
only guarantees the existence of the CBAIs but also pro-
vides an explicit algorithm how to construct them.

Theorem 3. Let I(�00; : : : ; �PQ) be an a9ne moment in-
variant. Then I(C(0; 0); : : : ; C(P; Q)), where C(0; 0) = �00

and all other blur invariants C(p; q) are de;ned by Theo-
rem 1, is a combined blur-a9ne invariant.

Proof. Since I(C(0; 0); : : : ; C(P; Q)) is a function of blur
invariants C(p; q) only, it is also a blur invariant. To prove

its invariance to a#ne transform, it is su#cient to prove that

@I(C(0; 0); : : : ; C(P; Q))
@a

≡
P∑

p=0

Q∑
q=0

@I(C(0; 0); : : : ; C(P; Q))
@C(p; q)

@C(p; q)
@a

= 0 (4)

for each parameter a∈{a0; a1; a2; b0; b1; b2} of the a#ne
transform.

The a#ne invariance of I(�00; : : : ; �PQ) implies that

@I(�00; : : : ; �PQ)
@a

≡
P∑

p=0

Q∑
q=0

@I(�00; : : : ; �PQ)
@�pq

@�pq

@a
= 0: (5)

Thus, it is su#cient to prove that the partial derivatives
of C(p; q) are identical to the derivatives of moments �pq,
when substituting C(p; q) for �pq, i.e.

@C(p; q)
@a

=
@�pq

@a

∣∣∣∣
�pq=C(p;q)

(6)

for each parameter a.
To prove this, we decompose the a#ne transform (2) into

six one-parametric transformations:
Horizontal translation:

u = x + �;

v = y:
(7)

Vertical translation:

u = x;

v = y + �:
(8)

Uniform scaling:

u = sx;

v = sy:
(9)

Stretching:

u = rx;

v =
y
r
:

(10)

Horizontal skewing:

u = x + ty;

v = y:
(11)

Vertical skewing:

u = x;

v = y + zx:
(12)

We prove that (6) holds for each of these simple transfor-
mations.

Constraint (6) holds trivially for translations (7) and (8).
Without loss of generality, we assume in the rest of the proof
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that (xc; yc) = (0; 0). For uniform scaling (9) we have
@�pq

@s
=

@
@s

∫ ∞

−∞

∫ ∞

−∞
upvqf′(u; v) du dv

=
@
@s

∫ ∞

−∞

∫ ∞

−∞
sp+q+2xpyqf(x; y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
(p + q + 2)sp+q+1xpyqf(x; y) dx dy

=
p + q + 2

s

∫ ∞

−∞

∫ ∞

−∞
upvqf′(u; v) du dv

=
p + q + 2

s
�pq

and

@C(p; q)
@s

=
p + q + 2

s
�pq −

p∑
n=0

q∑
m=0

0¡n+m¡p+q

(
p

n

)

×
(

q

m

)[
�nm

�00
· @C(p − n; q − m)

@s

+ C(p − n; q − m) · @
@s

�nm

�00

]
:

At this moment we use the induction principle. Clearly, (6)
holds for p + q = 3 because in that case C(p; q) = �pq (if
p+q¡ 3 then (6) holds trivially). Let us assume the validity
of (6) for all orders less than p + q. Using this assumption
and performing the derivatives we obtain
@C(p; q)

@s

=
p + q + 2

s
�pq −

p∑
n=0

q∑
m=0

0¡n+m¡p+q

(
p

n

) (
q

m

)

×
[
(p + q − n − m + 2)�nm

s�00
· C(p − n; q − m)

+
(n + m + 2)�nm

s�00
· C(p − n; q − m)

− 2�nm

s�00
· C(p − n; q − m)

]

=
p + q + 2

s
�pq −

p∑
n=0

q∑
m=0

0¡n+m¡p+q

(
p

n

) (
q

m

)

× (p + q + 2)�nm

s�00
· C(p − n; q − m)

=
p + q + 2

s
· C(p; q);

which proves the validity of (6) in case of scaling.

Similarly, for stretching (10) we get

@�pq

@r
=

@
@r

∫ ∞

−∞

∫ ∞

−∞
rp−qxpyqf(x; y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
(p − q)rp−q−1xpyqf(x; y) dxdy

=
p − q

r
�pq

and

@C(p; q)
@r

=
p − q

r
�pq − 1

�00

p∑
n=0

q∑
m=0

0¡n+m¡p+q

(
p

n

)

×
(

q

m

) [
�nm

@C(p − n; q − m)
@r

+
n − m

r
C(p − n; q − m)�nm

]
:

By means of induction, similarly to the previous case, we
get

@C(p; q)
@r

=
p − q

r
C(p; q):

Finally, for horizontal skewing (11) we have

@�pq

@t
=

@
@t

∫ ∞

−∞

∫ ∞

−∞
(x + ty)pyqf(x; y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
p(x + ty)p−1yq+1f(x; y) dx dy

= p�p−1; q+1

and

@C(p; q)
@t

= p�p−1; q+1− 1
�00

p∑
n=0

q∑
m=0

0¡n+m¡p+q

(
p

n

)(
q

m

)
×

[
�nm

@C(p−n; q−m)
@t

+C(p−n; q−m)
@�nm

@t

]
:

Employing the induction principle we get

@C(p; q)
@t

=p�p−1; q+1 − 1
�00

p∑
n=0

q∑
m=0

0¡n+m¡p+q

(
p

n

)(
q

m

)

×[(p − n)�nmC(p − n − 1; q − m + 1)

+nC(p − n; q − m)�n−1;m+1]:
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Shifting the indices and using the identities

(p − n)

(
p

n

)
= p

(
p − 1

n

)
= (n + 1)

(
p

n + 1

)
;(

q

m

)
+

(
q

m − 1

)
=

(
q + 1

m

)

we obtain the Inal relation

@C(p; q)
@t

= p�p−1; q+1− 1
�00



p−1∑
n=0

q∑
m=0

0¡n+m¡p+q

p

(
p−1

n

)

×
(

q

m

)
C(p − n − 1; q − m + 1)�nm

+
p−1∑
n=0

q+1∑
m=1

0¡n+m¡p+q

(n + 1)

(
p

n + 1

)

×
(

q

m − 1

)
C(p − n − 1; q − m + 1)�nm




= p�p−1; q+1 − 1
�00

p−1∑
n=0

q+1∑
m=0

0¡n+m¡p+q

p

(
p − 1

n

)

×
(

q + 1

m

)
C(p − n − 1; q − m + 1)�nm

= pC(p − 1; q + 1):

Because of symmetry, the same is true for vertical skew-
ing (12). Thus, the constraint (6) holds for each a#ne pa-
rameter and, consequently, I(C(0; 0); : : : ; C(P; Q)) is a com-
bined invariant.

To express the simplest CBAIs in explicit forms, we take
six a#ne moment invariants of the third, Ifth and seventh
orders. The Irst two can be found in Ref. [2], the others
have been derived newly.

• Third order only:

I1 = (�2
30�

2
03 − 6�30�21�12�03 + 4�30�

3
12

+4�3
21�03 − 3�2

21�
2
12)=�

10
00 :

• Fifth order only:

I2 = (�2
50�

2
05 − 10�50�41�14�05 + 4�50�32�23�05

+16�50�32�
2
14 − 12�50�

2
23�14 + 16�2

41�23�05

+9�2
41�

2
14 − 12�41�

2
32�05 − 76�41�32�23�14

+48�41�
3
23 + 48�3

32�14 − 32�2
32�

2
23)=�

14
00 :

• Third and Ifth order:

I3 = (�2
30�12�05−�2

30�03�14−�30�
2
21�05−2�30�21�12�14

+4�30�21�03�23 + 2�30�
2
12�23 − 4�30�12�03�32

+�30�
2
03�41 + 3�3

21�14 − 6�2
21�12�23 − 2�2

21�03�32

+6�21�
2
12�32+2�21�12�03�41−�21�

2
03�50−3�3

12�41

+�2
12�03�50)=�

11
00 :

I4 = (2�30�12�41�05 − 8�30�12�32�14 + 6�30�12�
2
23

−�30�03�50�05 + 3�30�03�41�14 − 2�30�03�32�23

−2�2
21�41�05 + 8�2

21�32�14 − 6�2
21�

2
23

+�21�12�50�05 − 3�21�12�41�14 + 2�21�12�32�23

+2�21�03�50�14 − 8�21�03�41�23 + 6�21�03�
2
32

−2�2
12�50�14 + 8�2

12�41�23 − 6�2
12�

2
32)=�

12
00 :

I5 = (�30�41�23�05−�30�41�
2
14−�30�

2
32�05+2�30�32�23�14

−�30�
3
23 − �21�50�23�05 + �21�50�

2
14 + �21�41�32�05

−�21�41�23�14−�21�
2
32�14+�21�32�

2
23+�12�50�32�05

−�12�50�23�14−�12�
2
41�05+�12�41�32�14+�12�41�

2
23

−�12�
2
32�23 − �03�50�32�14 + �03�50�

2
23

+�03�
2
41�14 − 2�03�41�32�23 + �03�

3
32)=�

13
00 :

• Seventh order only:

I6=(�2
70�

2
07−14�70�61�16�07+18�70�52�25�07

+24�70�52�
2
16−10�70�43�34�07−60�70�43�25�16

+40�70�
2
34�16+24�2

61�25�07+25�2
61�

2
16−60�61�52�34�07

−234�61�52�25�16 + 40�61�
2
43�07 + 50�61�43�34�16

+360�61�43�
2
25 − 240�61�

2
34�25 + 360�2

52�34�16

+81�2
52�

2
25 − 240�52�

2
43�16 − 990�52�43�34�25

+600�52�
3
34 + 600�3

43�25 − 375�2
43�

2
34)=�

18
00 :

Now we can substitute C(p; q) for �pq. Since the
even-order C(p; q)’s equal zero by deInition (even-order
blur invariants cannot exist in principle), only those AMIs
composed from odd-order moments are meaningful for this
purpose. The explicit forms of C(p; q)’s can be found in
Ref. [20] or derived directly from Theorem 1. Those needed
for substitution into the above AMIs are listed below.

• Third order:

C(3; 0) = �30;

C(2; 1) = �21;
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C(1; 2) = �12;

C(0; 3) = �03:

• Fifth order:

C(5; 0) = �50 − 10�30�20

�00
;

C(4; 1) = �41 − 2
�00

(3�21�20 + 2�30�11);

C(3; 2) = �32 − 1
�00

(3�12�20 + �30�02 + 6�21�11);

C(2; 3) = �23 − 1
�00

(3�21�02 + �03�20 + 6�12�11);

C(1; 4) = �14 − 2
�00

(3�12�02 + 2�03�11);

C(0; 5) = �05 − 10�03�02

�00
:

• Seventh order:

C(7; 0) = �70 − 7
�00

(3�50�20 + 5�30�40) +
210�30�2

20

�2
00

;

C(6; 1) = �61 − 1
�00

(6�50�11 + 15�41�20 + 15�40�21

+ 20�31�30) +
30
�2
00
(3�21�

2
20 + 4�30�20�11);

C(5; 2) = �52 − 1
�00

(�50�02 + 10�30�22 + 10�32�20

+ 20�31�21 + 10�41�11 + 5�40�12)

+
10
�2
00
(3�12�

2
20 + 2�30�20�02 + 4�30�

2
11

+12�21�20�11);

C(4; 3) = �43 − 1
�00

(�40�03 + 18�21�22 + 12�31�12

+4�30�13 + 3�41�02 + 12�32�11 + 6�23�20)

+
6
�2
00
(�03�

2
20 + 4�30�11�02 + 12�21�

2
11

+12�12�20�11 + 6�21�02�20);

C(3; 4) = �34 − 1
�00

(�04�30 + 18�12�22 + 12�13�21

+4�03�31 + 3�14�20 + 12�23�11 + 6�32�02);

+
6
�2
00
(�30�

2
02 + 4�03�11�20 + 12�12�

2
11

+12�21�02�11 + 6�12�20�02);

C(2; 5) = �25 − 1
�00

(�05�20 + 10�03�22 + 10�23�02

+20�13�12 + 10�14�11 + 5�04�21)

+
10
�2
00
(3�21�

2
02 + 2�03�02�20 + 4�03�

2
11

+12�12�02�11);

C(1; 6) = �16 − 1
�00

(6�05�11 + 15�14�02 + 15�04�12

+20�13�03) +
30
�2
00
(3�12�

2
02 + 4�03�02�11);

C(0; 7) = �07 − 7
�00

(3�05�02 + 5�03�04) +
210�03�2

02

�2
00

:

It should be noted that some a#ne moment invariants
themselves are also invariant to convolution, for instance I1
(because �03 = C(0; 3), �12 = C(1; 2), etc.) and I3 (because
the additional terms introduced by substituting C(p; q)’s
cancel each other). However, this is not a rule and the AMIs
cannot be used directly when the image is blurred, as will
be demonstrated in the next section.

4. Numerical experiments

In this section, we study numerical properties of the pro-
posed invariants and the possibility of using them as fea-
tures for recognition of objects on blurred and geometrically
deformed images.

4.1. Simulated data

The aim of the Irst experiment is to demonstrate numer-
ical behavior of the combined invariants when both a#ne
transform and blurring are computer generated. The Lena
subimage of the size 101×101 was used as the test image. It
was gradually skewed with parameter t (see Eq. (11)) rang-
ing from 0 to 1 by 0.1. This parameter expresses the tangent
of the skew angle. Each image was then blurred by approx-
imately circular mask with diameter from 1 to 15 pixels to
simulate out-of-focus blur. Examples of the test images are
shown in Fig. 1.

For each image the values of the combined invariants
were calculated. Relative error (i.e. the relative distance be-
tween the original and deformed images in the space of
the invariants) was taken as a measure of stability of the
invariants. Relative errors of I1 and I2 are visualized in
Fig. 2. It can be seen that the errors caused by blurring
are negligible comparing to the errors caused by skewing.
Higher skewing errors are consequences of discretization,
because the images had to be interpolated and resampled
during the computer-generated skewing. The error depends
signiIcantly on the interpolation method. For illustration,
the maximum relative error of I1 using the nearest-neighbor
interpolation is 9%. Bilinear interpolation which is more re-
alistic (and which was used in this experiment) produces
much lower error—only 0.1% (see the graphs in Fig. 2),
and bicubic interpolation which is almost ideal yields only
0.0003% relative error. This illustrates the perfect invari-
ance of the proposed features under simulated degradations
that exactly meet the assumptions.

To investigate numerical behavior of the invariants in the
presence of noise, we repeated the previous experiment with
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Fig. 1. The Lena subimage used in the Irst experiment: (a) original, (b) maximum skew, (c) maximum blurring, and (d) maximum skew
and blurring.
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Fig. 2. The relative error of I1 and I2 of the skewed and blurred images.

the same data but each blurred image was corrupted also by
additive white noise the SNR of which gradually increased
from 26 to 62 dB. The results are shown in Fig. 3. (On each
noise level, 20 realizations of noisy image were generated
and their invariants were averaged to get the “representa-
tive” value.) One can observe that relative errors are much

higher than in a noise-free case and that they depend almost
exclusively on the noise level. The e?ect of image blurring is
negligible thanks to the invariance property. The relative er-
rors on ”reasonable” noise levels (i.e. where SNR¿ 40 dB)
is far below 10%, which illustrates good robustness of the
invariants.
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Fig. 3. The relative error of I1 and I2 of the blurred and noisy images.

4.2. Real data

Another experiment was carried out to test the per-
formance of the invariants on images degraded by real
out-of-focus blur.

A sequence of Ifteen pictures of a comb laying on a
black background was taken by digital camera Nikon 900.
The images di?er from each other by viewing angles and
by the level of out-of-focus blur. We used Ive viewing an-
gles ranking from orthogonal view (0◦) to approximately
75◦, that yielded perspective deformations of the image of
various extent. From each angle the picture was captured
three times from the same position but with di?erent focus
depth, that was set manually. The Irst exposure was focused
on 50 cm, that corresponds to “ideal” focusing. In order to
introduce out-of-focus blur, the second exposure was fo-
cused on 10 cm (weak defocus) and the third one on 0:2 cm
(strong defocus). The images were normalized to the same
contrast and the background was segmented and zeroed. All
the test images are depicted in Fig. 4.
The values of Ive combined invariants from Section 3

were computed for each image (see Table 1). We can see
that the values of the invariants are fairly stable with respect
to image blurring. They change a bit more when changing
the viewing angle. This is because the invariants are in-
variant to a#ne transform but not to perspective projection,
which occurs in this experiment. It is well known that a#ne
transform is a good approximation of perspective projection

when the size of the object is small in comparison with the
camera-object distance, but this was not exactly true in this
experiment. Due to this fact we can observe the loss of in-
variance property when taking the picture from sharp angles.
On the other hand, we may notice a reasonable stability in
case of weak perspective projections.

4.3. Digit recognition

This experiment was carried out to demonstrate the dis-
crimination power of the combined invariants in case of
a#nely deformed and blurred objects and to compare it to
the discrimination power of the pure a#ne moment invari-
ants.

Binary pictures of the size 48×32 of 10 digits 1; 2; : : : ; 9; 0
were generated (see Fig. 5a). Each of them was deformed
by ten a#ne transforms and every instance was blurred by
ten di?erent masks. The parameters of the a#ne transforms
were generated as random values with Gaussian distribu-
tion, the “mean value” was identity transform, the standard
deviation of the translation was 8 pixels and the standard
deviation # of the other parameters was set to 0.25. The
convolution masks were also created randomly. The mask
coe#cients were generated as Gaussian-distributed random
values with the means one for the central coe#cient and zero
for the other coe#cients, respectively, and with the standard
deviations #m = 10e−$r , where r is the distance from the
mask center. The parameter $ was chosen 0.2, the size of the
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Fig. 4. The comb. The viewing angle increases from 0◦ (top row) to 75◦ (bottom row). The extent of out-of-focus blur increases from left
to right.

Table 1
The values of the combined invariants of the comb

Viewing angle (deg) Focus depth (cm) I1[10−6] I2[10−7] I3[10−8] I4[10−7] I5[10−9]

0 50 −1:391 −1:488 2.084 4.775 −1:266
0 10 −1:291 −1:531 2.301 4.533 −1:748
0 0.2 −1:221 −1:514 2.228 4.377 −1:747

30 50 −1:175 −1:057 2.426 3.762 −1:586
30 10 −1:085 −1:174 2.565 3.715 −2:141
30 0.2 −1:067 −1:138 2.554 3.632 −2:154
45 50 −1:202 −1:120 2.671 3.889 −1:947
45 10 −1:118 −1:229 2.843 3.843 −2:479
45 0.2 −1:104 −1:199 2.853 3.776 −2:510
60 50 −1:260 −1:219 2.982 4.119 −2:424
60 10 −1:174 −1:309 3.121 4.043 −2:871
60 0.2 −1:166 −1:288 3.184 4.003 −2:945
75 50 −0:8072 −0:2247 3.426 1.925 −1:493
75 10 −0:8642 −0:2231 4.681 2.225 −1:516
75 0.2 −0:8068 −0:03673 6.182 2.001 −4:480

masks was 47 × 47. Only one half of the coe#cients were
generated randomly; the others were determined by the con-
straint of centrosymmetry. Examples of the deformed digits
can be seen in Fig. 5b. All deformed digits were classiIed

independently by two minimum-distance classiIers—the
Irst one operates in the space of nine a#ne moment in-
variants while the second classiIer operates in the space
of nine corresponding combined invariants. The results are
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Fig. 5. (a) Original digits and (b–e) examples of the deformed digits used in the experiment.

summarized in Table 2a. Two important facts are clearly
visible. First, the combined invariants yielded an excellent
success rate 100%. Second, the a#ne moment invariants
perform signiIcantly worse. A part of the results is graph-
ically visualized in Figs. 6 and 7, where one can see the
distribution of digits 1, 2, 4, and 5 in the space of two
combined invariants (Fig. 6) and in the space of two cor-
responding a#ne moment invariants (Fig. 7). In the space
of the combined invariants all digits form compact clus-
ters, well separated from each other. On the contrary, in
the space of a#ne moment invariants all patterns form one
bigger cluster and few outliers. The same situation occurs
in case of the other digits and can be observed also other
feature subspaces than in (I2; I6). This illustrates that the
combined invariants are an actual step toward more robust
object recognition and that they signiIcantly improve the
recognition rate in case of blurred images.

The above experiment was repeated many times with dif-
ferent parameter settings. In Fig. 5c, the absolute values of
the convolution masks generated as indicated above were
used. Thanks to this, each mask is in fact a low-pass smooth-
ing Ilter. In Fig. 5d, the standard deviation # of the param-
eters of the a#ne transforms was increased to 0.5. In Fig.
5e, the size of the blurring masks was decreased to 25× 25

with parameter $ = 0:4. In the last two experiments, the
robustness to the additive noise was examined. Digit defor-
mations and blurring were generated in the same way as in
the Irst experiment (i.e. blurring mask 47 × 47; $ = 0:2,
STD of the a#ne transform parameters #=0:25). Then ad-
ditive white noise of STD =0:025 (inducing signal-to-noise
ratio 26 dB) and of STD =0:1 (inducing signal-to-noise
ratio 14 dB), respectively, was added. (To eliminate the role
of the background, the noise was added to the smallest rect-
angle circumscribed to the digits only.) The results of these
experiments are summarized in Table 2b–f. They are very
similar to the results of the previous experiment. In almost
all cases, the recognition rate of the combined invariants ap-
proached 100% and was twice better than that of the a#ne
moment invariants. Two exclusions are experiment in Fig.
5e, where the AMIs gave 80% because of small blurring
masks, and the last experiment, where the success rate of the
combined invariants decreased to 77% due to heavy noise.

5. Conclusion

The paper concerns the image features which are invariant
simultaneously to blurring by a Ilter with centrally symmet-
ric PSF and to a#ne transformation. The major theoretical
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Table 2
The success rates of the a#ne moment invariants (AMI) and the combined a#ne and blur invariants (CBAI) in digit recognition

1 2 3 4 5 6 7 8 9 0 Overall

(a) Blurring mask 47× 47; $ = 0:2, STD of the a9ne transform parameters # = 0:25 (corresponds to Fig. 5b).
AMI [%] 12 55 39 80 13 13 85 74 25 100 50
CBAI [%] 100 100 100 100 100 100 100 100 100 100 100

(b) Blurring mask 47×47, $=0:2, STD of the a9ne transform parameters #=0:25, positive blurring masks only (corresponds to Fig. 5c)
AMI [%] 10 45 10 91 10 10 100 46 10 100 43
CBAI [%] 100 100 100 100 100 100 100 100 100 100 100

(c) Blurring mask 47× 47, $ = 0:2, STD of the a9ne transform parameters # = 0:5 (corresponds to Fig. 5d)
AMI [%] 14 47 31 63 14 12 77 61 24 80 42
CBAI [%] 90 80 90 90 90 100 90 90 90 80 89

(d) Blurring mask 25× 25, $ = 0:4, STD of the a9ne transform parameters # = 0:25 (corresponds to Fig. 5e)
AMI [%] 56 78 87 92 75 60 94 90 66 100 80
CBAI [%] 100 100 100 100 100 100 100 100 100 100 100

(e) Blurring mask 47× 47, $= 0:2, STD of the a9ne transform parameters #= 0:25. Additive white noise with STD =0:025 was added
AMI [%] 14 50 36 72 15 24 84 74 22 100 49
CBAI [%] 95 100 99 100 100 100 100 100 99 100 99

(f) Blurring mask 47× 47, $ = 0:2, STD of the a9ne transform parameters # = 0:25. Additive white noise with STD =0:1 was added
AMI [%] 13 29 36 55 14 37 85 62 27 96 45
CBAI [%] 26 75 75 100 100 85 67 90 56 100 77

Fig. 6. The digits 1, 2, 4, and 5 in the feature space of the combined
invariants I2 and I6.

result of this work is Theorem 3, showing that the combined
invariants can be constructed by substituting blur invariants
into the formulae of a#ne moment invariants. The numerical
experiment veriIed the theoretical results and also illustrated
the discrimination power of the invariants. We proved ex-
perimentally that the combined invariants form qualitatively
new class of features, which clearly outperform earlier a#ne

Fig. 7. The digits 1, 2, 4, and 5 in the feature space of the a#ne
moment invariants I2 and I6.

moment invariants when one wants to recognize objects on
images Iltered by an unknown PSF, such as out-of-focus
blur, turbulence blur, and motion blur. The method does not
require any prior knowledge of the PSF. The only assump-
tion about its shape—centrosymmetry—is not a signiIcant
limitation for practical utilization of the method. Real imag-
ing systems usually have the PSFs with central or higher
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symmetry such as axial or radial symmetry. Thus, the as-
sumption of central symmetry is general enough to be ful-
Illed in most practical situations. It should be pointed out
that although our primary motivation was to Ind invariants
to low-pass blurring, the invariants described in this paper
are applicable to any centrosymmetric PSF, even if it has
negative values.

Although the theory presented in the paper is formulated
in the continuous domain, its conversion to the discrete do-
main does not cause any serious problems. The invariance
property might be slightly violated (like in case of all other
discrete moment-based invariants) but it has no impact on
applicability of the method. The complexity of the combined
invariants calculation depends solely on the complexity of
calculation of discrete moments themselves. Once the mo-
ments are calculated, all other calculations can be performed
in a low constant time because the invariants are relatively
simple functions of moments and does not directly depend
on the image size. It is well-known that moment calculation
requires in general O(N 2) operations for an N × N image,
which guarantees a reasonable speed. This complexity can
be even substantially reduced for binary or piecewise con-
stant images.

An important issue in recognition tasks is how many
invariants should be involved. There is no general rule, the
answer always depends on the data. If the objects to be rec-
ognized are very di?erent, from three to Ive invariants might
be enough. However, if the inter-class di?erences are only
slight, one may need much more invariants to ensure suf-
Icient discriminability. From theoretical point of view this
is not a problem because there exist an inInite number of
the invariants but in practice one should keep in mind that
the applicability of those comprising high-order moments is
questionable because they are more vulnerable to noise.

We envisage the applications mainly in object recog-
nition in blurred and noisy environment, in template
matching, and in registration of images taken by non-ideal
sensors. There are many application areas where one has
to deal with blurred images. Satellite images are often
blurred due to the composite sensor PSF and atmospheric
turbulence and astronomical images are also degraded by a
low-pass Iltering due to non-ideal observational conditions.
In the area of video surveillance and person authentication,
face recognition from out-of-focused photographs is often
required. Traditional moment invariants which do not take
into account the e?ect of blurring cannot resolve these tasks
successfully.

However, our method has several limitations. When the
invariants are calculated from a certain part (region of inter-
est) of the image only, the gray values along the boundary
of this part is inDuenced by the pixels from the outside and
convolution is not well deIned within the region of interest.
The robustness to this so-called “boundary e?ect” depends
on the size of the region of interest and on the size of the
blurring Ilter. The robustness may be low when both sizes
are comparable, which prevents from using the blur invari-

ants in such cases. In face and character recognition tasks
the limitation is induced by the fact that our invariants (as
well as all other moment-based invariants) are intrinsically
global, i.e. they are calculated from the whole image includ-
ing background. Thus, the object must be segmented from
the background prior calculating the invariants (which may
be problematical in case of heavy blur) or, alternatively,
the background must be the same for all objects entering
the system. Another limitation appears when we want to
distinguish among symmetric objects. It has a deep theo-
retical reason—any shape descriptor invariant to a certain
class of transformations cannot in principle distinguish ob-
jects which di?er from each other only by transformations
from this class. Thus, any invariant (even di?erent from
those presented here) to convolution with a centrosymmet-
ric PSF cannot distinguish di?erent centrosymmetric objects
because it must give a constant response on all centrosym-
metric images (any centrosymmetric image can be consid-
ered as a blurring PSF acting on delta-function).
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