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Extended abstract 
We show that the cusp catastrophe model explains the crash of stock exchanges much better than 
alternative linear and logistic models. On the data of U.S. stock markets we demonstrate that the crash of 
October 19, 1987 may be better explained by cusp catastrophe theory, which is not true for the crash of 
Sept. 11, 2001. With the help of sentiment measures, such as index put/call options ratio and trading 
volume (the former models the chartists, while the latter the fundamentalists), we have found that the 1987 
returns are clearly bimodal and contain bifurcation flags. The cusp catastrophe model fits these data better 
than alternative models. Therefore we may say that the crash may have been led by internal forces. 
However, the causes for the crash of 2001 are external, which is also evident in much weaker presence of 
bifurcations in the data. Thus alternative models may be used for its explanation. 
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1. Introduction 

Unexpected stock market crashes has been a nightmare for the financial world ever since the capital 
market existed. The catastrophe theory attempts to unfold a part of information we might need to 
understand the crash phenomenon. It describes how small, continuous changes in control parameters, or 
independent variables influencing the state of the system, can have sudden, discontinuous effects on 
dependent variables. In the paper, we apply the theory to sudden stock market changes that are known as 
crashes. Zeeman [7] was the first to qualitatively describe the "unstable behavior of stock exchanges" by 
Thom [5] catastrophe theory. We extend his ideas by incorporating quantitative analysis. 
The article is rather empirical as it puts the theory to test on financial data. As only a few papers deal with 
an empirical analysis of catastrophe theory, this paper may contribute to this research. We build on the 
Zeeman's qualitative description, and primary aim of the research is to answer the question of whether 
catastrophe models are capable of indicating the stock market crashes. 
What we regard as the most significant aspect is testing on the real-world financial data. Our key assertion 
is that the cusp catastrophe model is able to fit the data more properly than an alternative linear 
regression model, and/or nonlinear (logistic) model. We fit the catastrophe model to the data of October 
19, 1987 crash, known as Black Monday which was the greatest single-day loss (31%) that Wall Street 
has ever suffered in continuous trading. As for comparison, we use another large crash, that of September 
11, 2001. The final part is devoted to the assumption that while in 1987 the crash was caused by internal 
forces, in 2001 it was external forces, namely 9/11 terrorist attack. Thus the catastrophe model should fit 
the data of 1987 well, as the bifurcations leading to instability are present. However, it does not seem to 
perform better than linear regression on the 2001 data. As the control variables we use the measures of 
sentiment, precisely OEX1 Put/Call ratio which appears to be very good measure of the speculative money 
in the capital market, against trading volume as good proxy for large, fundamental investors. 
 
2. The Cusp Catastrophe Model 

Let us assume one dependent variable  Y  , and a set of  n   independent variables  X1 ,X2 , . . . ,Xn   . 

Then  y   represents realization of a random variable  Y , and  x i   represents realizations of  Xi  . To 
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obtain greater flexibility than using linear regression technique, 2n  2  additional degrees of freedom are 
introduced. This could be done by defining control factors 0 1 1 ...x n nx x        

and
0 1 1 ...x n nx x       . These factors determine the predicted values of  y   given realizations of  

x 1 ,x 2 , . . . ,xn   , meaning that for each value  x   there might be three predicted values of the state 
variable. The predictions will be roots of the following canonical form 

 3
0 ( ) / ( ) /x x y y          , (1) 

which describes the cusp catastrophe response surface containing a smooth pleat.   and   are location 

and scale parameters. In the literature on catastrophe theory,  x   and  x   are so called normal and 
splitting factors, however, we prefer the notions asymmetry and bifurcation factors, respectively. Hence 

the statistical estimation problem is to find the estimates for the  2n  4   parameters: 

 0 0, , ,..., , ,...,n n       from  n   observations of the  n  1variables Y,X1 , . . . ,Xn . 

 
2.1. Stochastic Dynamics and Probability Density Function (PDF) 

Let  yt   be the function of time  t   for  t  0,T  . From a dynamic system's point of view, Equation (1) 

can be considered as the surface of the equilibrium points of a dynamic system of the state variable  yt   

which follows the ordinary differential equation ( , )t tdy g x y dt , where  gx,yt   is the right hand side of 

Equation (1). For real world applications, it is necessary to add a non-deterministic behavior into the 
system, as the system usually does not determine its next states entirely. We may obtain a stochastic 
form by an adding of the Gaussian white noise term2. The system is then described by a stochastic 
differential equation of the form 
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and  yt
2

  is an instantaneous variance of the process  yt  . The  Wt   is a standard Wiener process and  

dWt  N0,dt  . Hartelman [4] has established a link between a deterministic function of catastrophe 

system and a pdf of the corresponding stochastic process. He showed that the pdf  fyt    will converge in 

time to a pdf  f Sy    corresponding to a limiting stationary stochastic process. This has led to a definition 
of stochastic equilibrium state and bifurcation which is compatible with their deterministic counterpart. 
Instead of fitting the deterministic process where the equilibrium points of the system are of a main 

interest, the attention is drawn to relative extremes of the conditional density function of  y  . Following 

Wagenmarkers [6], the pdf of  y   is: 
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The constant     normalizes the pdf so it has unit integral over its range. The modes and antimodes of the 

cusp catastrophe pdf can be obtained by solving the equation  dfS . . dy.  0  , which will yield exactly  
 
implicit cusp surface equation - Equation (1). The parameters will be estimated by method of estimation 
developed by Hartelman [4], Wagenmarkers [6]. 
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As  x   changes from negative to positive, the pdf  f Syx    changes its shape from unimodal to 

bimodal. It is also the reason why the  x   factor is called bifurcation factor. For  x  0  , the pdf is 

symmetrical, other values control asymmetry, thus  x   is asymmetry factor. Thoughtful reader has 
certainly noted that catastrophe theory models are an extension to traditional models, therefore they have 
to satisfy the requirement of the empirical testability. It should be remembered, that there is no single 
statistical test for acceptability of the catastrophe model. Due to the multimodality of cusp catastrophe, 
traditional measure for goodness of fit cannot be used. Considered residuals can be determined only if the 
probability density function at time  t  is one-peaked, and as the model generally offers more than one 
predicted value, it is difficult to find a tractable definition for a prediction error. In testing we follow 
Hartelman [4] approach. A comparison of the cusp and a linear regression model is made by means of a 
likelihood ratio test, which is asymptotically chi-squared distributed with degrees of freedom being equal to 
the difference in degrees of freedom for two compared models. As it may not be sufficient to reliably 
distinguish between catastrophe and non-catastrophe models, Hartelman [4] compares catastrophe model 
also to a nonlinear logistic model. As the cusp catastrophe model and the logistic model are not nested, 
Akaike information criterion (AIC), and Bayesian information criterion (BIC) statistics are used in a testing 
routine to compare the models. 
 
3. Empirical Testing 
 
3.1. Data Description 
 
We primarily test the model on the set of daily data which contains most discussed stock market crash of 
October 19, 1987, known as Black Monday. The crash was the greatest single-day loss that Wall Street 
had ever suffered in continuous trading, 31%. The reasons for Black Monday have been widely discussed 
among professional investors and academics. However, not until today is there a consensus on the real 
cause. For comparison, we use another large crash, that of September 11, 2001. Our assumption is that 
while in 1987 the crash was caused by internal forces, the 2001 crash happened due to external force, 
namely the terrorist attack on the twin towers. Therefore the catastrophe model should fit the data of 1987 
well as bifurcations leading to instability are present.  
The data represents the daily returns of S&P 500 in the years 1987-1988 and 2001-2002 as the crashes 
took place inside these intervals. For the asymmetry side, we have chosen the daily change of down 
volume representing the volume of all declining stocks in the market. The trading volume represents good 
measure of the fundament, as it correlates with the volatility, and more importantly, good measure of what 
the large funds, representing fundamental investors, are doing. For bifurcation side OEX Put/Call ratio 
represents very good measure of speculative money. It is a ratio of daily put volume divided by daily call 
volume of the options with underlying Standard and Poor's 100 index. As financial options are the most 
popular vehicle for speculation, it represents the data of speculative money, while extraordinary biased 
volume or premium suggests excessive fear or greed in the stock market. These should be internal forces 
which causes the bifurcation. 
 
3.2. Results 
 
All the data are differenced once in order to gain stationarity. It can be seen that the data are leptokurtic, 
and much more interestingly, multimodal. For illustration of bimodality, we use kernel density estimation - 
see Graphs 1 and 2 (we use Epanechnikov kernel which is of following form:      23

4 1 1K u u u    with 

smoother bandwidth so the bimodality can be seen): 
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Graph 1 Graph 2 
Kernel density of the 2 year returns of 1987 and 1988 shows clear bimodality, and so does the kernel 
density of the second set of the data, i.e. years 2001 and 2002. The first test we consider is Hartelman's 
test for multimodality. It is evident from the previous figures that the returns are far from being unimodal. 
However as noted in Wangenmakers [6], there may occur inconsistencies between the pdf and the 
invariant function with respect to the number of stable states: examples of which can be found in 
Wangenmakers [6]. Thus, we make use of the proposed Hartelman's kernel program to test for the 
multimodality and we have found that there is 75% probability that the 1987-1988 data contains at least 
one bifurcation point, and 26% probability that the the 2001-2002 data contains at least one bifurcation 
point. These results are also consistent with our assumption, that the first crisis was drawn by internal 
market forces (c.f. the presence of the bifurcations in the data), whereas the 2001 crash was caused 
mainly due to external forces, 9/11 attack. 
Encouraged by the knowledge that bifurcations are present in our datasets we can now move to cusp 
fitting. As has been mentioned before, we use Hartelman's cuspfit software3 for this purpose. The 
methodology is simple. First, the linear, nonlinear (logistic) and the cusp catastrophe models have been 
fitted to the data. Then we have tested whether the cusp catastrophe model fits the data better than the 
other two models by the procedure described at the beginning of the empirical part of this paper. We have 
obtained the following results: 
In Table 1 there are the results of the cusp fit to the data of 1987-1988 which contains the crash of 
October 19, 1987. We can see that log likelihood is largest for the cusp catastrophe model. Chi-squared 
test, Akaike and Schwarz-Bayesian information criteria also favor the catastrophe model, and  R2  is again 
much better for the cusp catastrophe. Thus we can conclude that the cusp catastrophe model offers a 
more suitable explanation for the 1987 stock market crash. We believe that the quality of the fit arises from 
the choice of the variables. We have also tried other possible variables in order to explain the bifurcations, 
but none has proved as successful. The choice of the variables is logical as the tests for the bifurcations in 
the data confirmed their presence. 
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Table 1: Results of the fits to the 1987-1988 dat

model linear logistic

0.1452 0.2558

log likelihood -6.09 10 -5.17 10

AIC 1.23 10 1.05 10

BIC 1.24 10 1.07 10

parameters 4 5

R

  
  
  

cusp

0.4025

-4.95 10

1.00 10

1.03 10

6
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Table 2: Results of the fits to the 2001-2002 dat

model linear cusp

0.1128 0.2023

log likelihood -0.61 10 -0.55 10

AIC 0.12 10 0.11 10

BIC 0.12 10 0.11 10

parameters 4 6

R

  
  
  

logistic

0.4682 

0.45 10

0.91 10

0.93 10

5

a

 

Let us have a look at the second set of the data that of years 2001-2002. The results are in Table 2, and 
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we can see, that the catastrophe model in this case is rather superfluous. The log likelihood is greater 
than in the linear model, but lower than in the logistic model. Also other information criteria favor the 
logistic model. These results are in fact expected as of our earlier assumption, (i.e. that the 1987 crash 
was driven by internal forces, and the 2001 crash by external). While the 2001 data does have some 
bifurcations, the cusp catastrophe model clearly cannot fit the data significantly better than other models. 
This seems to be true, and for these data the catastrophe model did not perform better. However, for the 
1987 crash the model seems to fit the data much better, and that is the sign, that the crash has occurred 
due to internal market forces. 
 
4. Conclusions 
 
Uncertain behavior of stock markets has always been on the leading edge of the research. Using the 
Cobb [1], Hartelman [4] and Wagenmarkers [6] results we have managed to test cusp catastrophe theory 
on the financial data, and we have arrived at very interesting results which may help to move the frontier 
of understanding the stock market crashes further on. We may thus confirm, that the catastrophe models 
explains the stock market crash much better then alternative linear regression models, or nonlinear logistic 
model. We have fitted the data of the two stock market crashes, the first being the crash of October 19, 
1987, and the second September 11, 2001. We have used the sentiment measures to model the 
proportion of technical and fundamental players in the market. OEX put/call ratio is a very good measure 
of the technical players and represents the speculative money in our model and the trading volume is the 
measure of fundamental players and represents the excess demand. 
We have clearly identified the bimodality of the returns using the test for multimodality which confirms that 
there is 75% probability that there is at least one bifurcation point in the data. Finally, the cusp catastrophe 
model fits these data much better than other models that have been used. Hence we conclude that the 
internal processes of the first dataset led to the crash in 1987. On the other hand, the crash of the 
September 11, 2001 can be better explained by the alternative logistic model. We have also found only 
26% probability that there is at least one bifurcation point in these data, which is also in line with our 
second assumption: that due to the fact that this crash was caused by external forces the presence of the 
bifurcations in the data is much weaker. 
Our findings may contribute to the frontier of the research, as it is the first attempt to quantitatively explain 
stock market crashes by cusp catastrophe theory. The testing has been conducted only on the restricted 
datasets. Thus further work is to test on different data which describes the situations when the changes in 
speculative money in the stock market lead to a crash. The main significant question, that of whether cusp 
catastrophe theory may help with an early indication of the stock market crashes still remains to be 
answered. 
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