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Abstract

This contribution focuses on the modelling of vibikgt of returns in Czech and US stock
markets using a two-factor stochastic volatilitydab i.e. the volatility process is modeled as
a superposition of two autoregressive processesthAsvolatility is not observable, the
logarithm of the daily range is employed as thexprorhe estimation of parameters and
volatility extraction are performed using the Kamfiiter. We have obtained a meaningful
decomposition of the volatility process into onghly persistent factor and another quickly
mean-reverting factor. Moreover, we have shown #i#tough the overallevel of the
volatility of returns is roughly the same in botlankets, the US market exhibits substantially
lower volatility of the volatility process.
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1. Theory
1.1. Stochastic volatility models

The fact that volatility is not constant in mosténcial time series such as stock prices
and exchange rates is widely recognised. From aipah point of view, estimating volatility
is important in several fields within finance suah option pricing, portfolio optimization or
risk management. There exist two prominent appremcto deal with time-dependent
variances: ARCH/GARCH and stochastic volatility (Sapproaches. The GARCH model
(Bollerslev, 1986) focuses on capturing the clusterof volatility in returns when the
conditional variance at timeis modelled as a deterministic function of laggedues of
conditional variances and squared returns. On tiner dnand, the stochastic volatility models
understand the time-varying variance as a stoechpsbicess which can be a continuous-time
diffusion (Hull and White, 1987) or a more genekaélvy process (Barndorff-Nielsen and
Shepard, 2001). For econometric purposes, it iv@oent to work with some discretized
version of the model (pioneered by the seminal papglor, 1982).



Now we introduce a simple example of a stochastiatility model. Let the asset
price P(s) follow the geometric Brownian motion with locallatlity o(s) and suppose that
log-volatility evolves as a mean-reverting Ornstgimenbeck process with medng and
mean reversion parametar>0:

dP(9 =R $ dso( b P)s d\(v) (1a)
dino(s)=a(Ing-Ing(9) ds- B dW( X (1b)

where W, (g and W,(9 are independent Brownian motions. This specificaticads to a
lognormal SV model which is widely used in volagilimodelling. One reason for its
popularity is given by the econometric tractabibifyits discrete-time counterpart, represented
by a linear Gaussian first order autoregressivegss.

1.2. Volatility proxies

It is important to note that the log-volatility & latent variable and therefore is not
directly observable. Instead, we are able to olessme of itgproxy contaminated by a
measurement error. Early attempts (for instance ,RL994, or Harvey et al., 1994) focused
on squared returns as a volatilgsoxy, however the performance of Kalman filter turn taut
be quite poor due to substantial skewness of squatarns. A novel and promising approach
(Alizadeh et al., 2002) relies instead on the lmgge defined in the following way

R = suep(9- ot (3] 2

s{0,]]

wherep(s)denotes the log price and supremum and infimuntaken over the daily interval
which is normalized to unity purely for ease ofatain.

It turns out that the log range exhibits severaimdle properties: first, it is more
efficient due to lower variance of the measuremamors relative to log absolute returns.
Second, the log range is known to be robust taterharket microstructure effects as bid-
ask bounce. Finally, contrary to log absolute mefu the distribution of the log range is
nearly Gaussian. The asymptotic distribution of lagge has been studied in Alizadeh et al.
(2002); it is easily obtained in the series formgéd on the result of Feller, 1951) but for
practical purposes it can be well approximatednayrtormal distribution with mean 0.43ht+

and variance 0.08 wherg Eln(at) is the daily log-volatility. On the other hand,eth

distributional properties of the log absolute ratare quite different. Recall that returns in
discrete-time SV model are generated by

I =uo, 3)

with u, ~ nid(0,1). Equation (3) implies

In(|r,|) = -0.64+h +¢ (4)



where the measurement errgr=In(|u|)- En(ju|) has zero mean, variance /8=1.22

and is highly skewed.

However, a word of caution is needed here. Indisamples, the distribution of range
estimators depends also on the number of obsemgaper unit of time (day in this case).
Therefore, we investigated the impact of discrétimaon mean and variance of the log range
by a Monte Carlo simulation (results are reproducebable 1). The pattern is clear: reducing
the number of observations during a trading daultesn lower mean and higher variance.
Nevertheless, the variance of the proxy seems tqulie close to the asymptotic one even for
50 trades per day.

N 5 10 50 100 200 500 1000
Mean -0.115 0.097 0.300 0.340 0.366 0.401L 0.415
Variance 0.233 0.152 0.104 0.097 0.097 0.08p 0.084

Table 1. Mean and variance of log range for a Wiepmcess with zero drift and unit
variance observed N times during a unit period. Munte Carlo simulation was performed with 1
milion replications.

There exists a closely related estimator proposgdParkinson (1980) given by
R?/4In2 and several modifications thereof: Garman and K({4980) included the open and

close prices in addition to the high and closegwjdRkogers and Satchell (1991) suggested an
estimator which allowed for a nonzero drift andoallsvestigated the discretization bias (see
also Christensen and Podolskij, 2007).

If higher efficiency is needed, intraday data sddug used and appropriated volatility
estimator constructed (realized volatility, see &rsg¢n et al.,, 2001, or realized range, see
Martens and van Dijk, 2007).

1.3. One and two-factor models

Stochastic volatility models can be convenientlytten in the state space form. In the
simplest case with one process governing the Idgtlity the model reads as follows:

h=h+p(h,-h)+n, (5a)
R =Db+ h+¢g (5b)

where h represents the latent Iog-volatility)D(O,l) the autoregression parametérthe
mean of the log-volatility proces® the observed log-volatility proxy (log range)the bias

of the proxy,n, ~ nid(O,a,f) and & ~ nid(0,07) are uncorrelated transition and measurement
errors, respectively.

Equation (5a) is a transition equation which ddémgithe dynamics of the latent
variable, whereas the observation equation (5R}eslthe latent variable and its (observable)
proxy. The dynamics of the latent log-volatility ncdoe enriched by including a second
component. In this case, transition equations ardifned in the following way:



h = ﬁ+ ht + I}t (6&)
h, = oy +17, (6b)
hy = P01+ 17, (6¢)

where h,,h, are volatility factors, p,, pZD(O,]) autoregression parameters ang,/”.,,
mutually uncorrelated.i.d. disturbances.

It is worth discussing in more details the benefitsemploying two-factor models.
Probably the most important reason is the abilitgréof to capture several empirically
observed patterns of the autocorrelation functemg the long memory-like behaviour in
particular. The fact that the superposition of peledent short memory processes (for
instance, Ornstein-Uhlenbeck process in continuboee formulation or autoregressive
process in discrete time) can mimic slow decayhefautocorrelation function or power laws
empirically observed has been explored by sevardioas (LeBaron, 2001 or Barndorff-
Nielsen, 2001, among others). The idea had appexedin the context of GARCH models:
Ding and Granger (1996) suggested a two-compongiiR@- model, one component
describing the short-run effect whereas the persistomponent specified as IGARCH
process.

For the sake of illustration, suppose a compositegss x. =V, + Y, Where both
component processes are modeled as AR(1), i.e.

Ye =V Yot U i=12 (7)

with y; # y, and{u,} {u,} white noise sequences which are uncorrelated deatls and

lags. As the autocovariance function of a summdépendent components is equal to the sum
of the autocovariances, it follows easily trmrr(xt, x_k) = Wy + wys, k=1,2,...,and the

weights are given byw =var(y,)/(vary)+ va(y)). An example of such an
autocorrelation function fow, = w, =0.5,y; = 0.99y, = 0. is shown in Figure 1.

1.4. Model estimation and volatility extraction

We will shortly review the filtering algorithm knawas Kalman filter (for a more
detailed description see Hamilton, 1994). We asstime there exists e x 1) vector of
observed variabley, whose behaviour depends on(rax 1) vector of unobserved (state)

variablesz, . The state space representation of the system is

z, =a+Fz_ +v, (8a)
y, =b+Hz +w, (8b)

wherea, b are(r x 1)and(n x 1)vectors, respectively; andH are(r x r) and(n x r) matrices,
respectively, E(vtvI) =Q for t=7 and 0 otherwise, ancE(wth) =R for t=7 and 0
otherwise. The vectong andw; are uncorrelated for allandz. Moreover, it is convenient to



assume that the initial staig and the innovation{svt,wt} are multivariate Gaussian. If the

assumption of normality is dropped, the Kalmarefilyields optimal (in the mean square
sense) linear projections which in general diffenf conditional expectations.

Step 1: Forecasting y, given theinformation at timet-1

Given the initial valuez,=E(z,) with associated mean squared error (MSE)

Py = E{[zl—zllo][zl—zldT} we can compute the forecast pf given the information

observed up to timel as
Y =0 +HZ, 9)

with the corresponding MSE

E|:(yt _yt|t—1) (yt _ytl—l)Tj| =HR_ H' +R= A (10)

Step 2: Updating the inference about z, given vy,

Next we update the inference about the currentevafuhe state variables as a new
observation ofy, becomes available:

Zy =2y 1+ Py HIVE (V= Yiy ) (11)
Pt|t = Ptlt—l - Ptt—lHTVt_u— H Pttl— 1 (12)
Step 3: Forecasting z,,, given theinformation at timet

Subsequently, the transition equation (8b) is usemmpute the forecast af,; based
on the information available at timéogether with its MSE:

Z.y =a+Fz, =a+Fz, +FR,_HV (v, -y, ) (13)
Py =FP,F" +Q (14)

If parameters of the model are unknown, their estia® can be obtained by
maximizing the quasi-loglikelihood defined as (aftenitting constant terms)

13 1q, 1y
_Ez Indet(V,_,) _Ez uy Vet (15)
t=1 t=1

whereu, =y, -y, is a one step ahead prediction error.



The quasi-maximum likelihood (QML) estimation is damn to yield consistent and
asymptotically normal estimates of the unknown peai@rs, however, they are inefficient and
their sampling properties can be quite poor iftbemality approximation is inadequate.

2. Empirical application

2.1. Description of the dataset

CEZ (CZ0005112300)
Telefénica O2 C.R.
(CZ0009093209)
Erste Bank (AT0000652011)
General Electric Co.
Microsoft Corp.
Intel Corp.

Prague Stock Exchange (SPAD)
Prague Stock Exchange (SPAD)

Prague Stock ExchangeHF
New York Stock Exchange
NASDAQ
NASDAQ

Table 2.Stocks included in the dataset.

We use daily high and low prices of six stocks (Sedble 2) for the period from
September 16, 2005 until November 13, 2007 (5435 observations for Czech and US
markets, respectively). The average number of &etiens per day foCEZ, Telefonica O2
C.R. and Erste Bank was 231, 102 and 86, respéctivethe case of Erste Bank there were
only three transactions during the trading day prilAl4, 2006 giving rise to the observed
range very close to zero and a corresponding lawggative outlier in the log range.
Therefore, this observation was excluded from oalysis.

The data are depicted in Figures 2a and 2b togetitlertheir sample autocorrelation
functions and QQ plots. The autocorrelation funwicclearly show a certain degree of

persistency in the volatility proxy. Empirical mons of the log range are reported in Table
3.

Mean Std deviation Skewnes$ Kurtosis
CEZ -3.7541 0.5796 0.1082 3.1717
Telefénica O2 C.R. -4.2106 0.6215 0.2519 3.3516
Erste Bank -4.2254 0.5840 -0.0179 2.9515
General Electric -4.4138 0.3962 0.4316 3.1181
Microsoft -4.2230 0.4194 0.3390 3.0718
Intel -3.9355 0.3821 0.1501 2.7630

Table 3. Unconditional moments of the observeddoge

2.2. Estimation results

Now we proceed to estimate both stochastic vaatitnodels by quasi-maximum
likelihood method. Estimation results are showTables 4 and 5 and smoothed extractions
of volatility factors for the two-factor model adepicted in Figures 3a and 3b. In accordance
with findings of Alizadeh et al. (2002), there d@gis strong evidence that the log-volatility



process can be meaningfully decomposed into onalyhigersistent factor and another
quickly mean-reverting factor (for a more detaiidcussion concerning the inadequacy of
one factor model see Alizadeh et al., 2002).

In order to obtain a better interpretation of oesults, we computed estimated
variances for both volatility factors and the totaliance of the log-volatility process as their
sum (due to zero cross-correlation) (see Tabl&l&g. variance of both factors is roughly the
same with notable exceptions of Erste Bank andl mwteere the second (less persistent
component) seems to be much more volatile. CompaCirech and US markets, the most
striking feature is substantially loweolatility of the log-volatility process for US stocks,

even if the overallevel of the volatility of returns (estimated Hy) is roughly the same.

P h var(@y)

CEZ 0.7507 -4.179 0.1087
(0.0391) (0.056) (0.0141)

Telefénica O2 0.6848 -4.6395 0.1593
C.R. (0.041) (0.0521) (0.0168)
Erste Bank 0.5855 -4.6564 0.1681
(0.0464) (0.0439) (0.017)

General Electric 0.8718 -4.8384 0.0147
(0.0326) (0.0426) (0.0047)

Microsoft 0.7974 -4.6484 0.0292
(0.0221) (0.037) (0.0023)

Intel 0.5036 -4.3656 0.0446
(0.0301) (0.0211) (0.0072)

Table 4. Quasi-maximum likelihood estimates obtiefactor model (asymptotic standard errors
appear in parentheses)

) P h var(y,) var(z, )

CEZ 0.9427 0.3992 -4.1688 0.0156 0.0941
(0.0234) (0.0944) (0.0917) (0.0066) (0.0143)

Telefénica 02 0.9403 0.4938 -4.6317 0.013 0.1427
CR. (0.0385) (0.0955) (0.0919) (0.0117) (0.021)
Erste Bank 0.9395 0.4235 -4.6493 0.0081 0.1542
(0.0369) (0.0838) (0.0699) (0.0065) (0.0185)

General Electric 0.9551 0.1602 -4.8295 0.0039 0.0299
(0.0228) (0.0666) (0.0579) (0.002) (0.008)

Microsoft 0.946 0.1086 -4.6366 0.0056 0.0404
(0.0225) (0.1292) (0.0604) (0.0024) (0.0093)

Intel 0.9799 0.3444 -4.3664 0.0004 0.0457
(0.0171) (0.1141) (0.0387) (0.0004) (0.0083)

Table 5. Quasi-maximum likelihood estimates otwlefactor model (asymptotic standard errors
appear in parentheses)



First factor Second factorr  Total variange
CEZ 0.1401 0.1119 0.2520
Telefénica O2 C.R 0.1122 0.1887 0.3009
Erste Bank 0.0690 0.1879 0.2569
General Electric 0.0444 0.0307 0.0751
Microsoft 0.0533 0.0409 0.0942
Intel 0.0101 0.0518 0.0619

Table 6.Variances of individual factors and thetatariance of the estimated log-volatility.

3. Conclusion

We have analysed the volatility of returns of mpresentative Czech and US stocks
using a simple but quite flexible two-factor modethich specifies the log-volatility as a
superposition of two independent autoregressiveqases with different persistence rates.
This approach offers a much richer dynamics thanuual autoregressive models allowing
to model the temporal dependence in a parsimoniays Moreover, the availability of a
nearly Gaussian proxy contaminated with a low amadirihe measurement error allows to
estimate parameters of the model and extract tiemtldog-volatility in a computationally
efficient way. The main empirical finding of thisyper is that Czech and US stock markets
seem to differ considerably in the variability dietlog-volatility process rather than in the
overall level thereof. Given the importance of th@per volatility modelling in the risk
management area it would be interesting to extamdamalysis to a multivariate setting.
However, this issue is left for further research.
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Figures

Figure 1. Example of an autocorrelation function tiee two-component model

Figure 2a. Log range, its sample autocorrelationdtion and QQ plots fofEZ, Telefénica O2 C.R.
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Figure 2b. Log range, its sample autocorrelationdtion and QQ plots for General Electric,
Microsoft and Intel (from top to bottom).
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Figure 3a. Smoothed extractions of volatility fastfor the two-factor model fafEZ, Telefonica O2
C.R. and Erste Bank (from top to bottom).
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Figure 3b. Smoothed extractions of volatility fastfor the two-factor model for General Electric,
Microsoft and Intel (from top to bottom).
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