A REVIEW OF AGGREGATION FUNCTIONS

R. MESIAR, A. KOLESAROVA, T. CALVO, AND M. KOMORNIKOVA

ABSTRACT. Several local and global properties of (extended) aggregation func-
tions are discussed and their relationships are examined. Some special classes
of averaging, conjunctive and disjunctive aggregation functions are reviewed.
A special attention is paid to the weighted aggregation functions, including
some construction methods.

1. INTRODUCTION

Aggregation of a finite number of observed values from a scale I into a single
output value from the same scale is an indispensable tool in each discipline based
on data processing. The variability of spheres dealing with aggregation (fusion)
techniques is so rich that we frequently meet the same results and techniques under
different names. Nowadays, when aggregation theory becomes a well established
field of mathematics, it is the time to unify the notations and terminology. This
is one of the aims of the monograph on aggregation [25] which is currently under
preparation by Grabisch, Marichal, Mesiar and Pap. Therefore in this chapter we
will use the notations and terminology from [25]. The main aim of this chapter is
to bring a review of some recent results in aggregation. To achieve the readability,
we will also recall some older results whenever necessary. Note that comprehensive
state-of-art overviews on aggregation can be found in [20] (dated to 1985) and
in [6] (dated to 2002). The chapter is organized as follows. In the next section,
basic notions, notations and properties are given, including the classification of
aggregation functions. In Section 3, averaging aggregation functions are discussed.
Section 4 is devoted to conjunctive aggregation functions, and by duality, also to
disjunctive aggregation functions. Weighted aggregation functions are discussed in
Section 5. Finally, some conclusions are given.

Note that though aggregation can be discussed on an arbitrary scale I (equipped
with linear order), we restrict our considerations to the real intervals. Moreover, a
major attention will be put to the case I = [0, 1].

2. BASIC NOTIONS, NOTATIONS AND PROPERTIES

Unless otherwise stated, the letter I will denote a subinterval of the extended
real line, I = [a,b] C [—o0,00]. Aggregation on I for a fixed number n of inputs
always means a processing of input data by a special n—ary function defined on
I™. Similarly, aggregation on I for an arbitrary (but fixed) finite number of inputs
can be seen as a data processing by a system of such functions. One of the crucial
problems in that case is the relationship of the functions from the system differing
in the number of inputs.

Note that to shorten some expressions, we will write x instead of (z1,...,z,).
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Definition 1.
(i) An n-ary aggregation function is a function A™ : I™ — I that is non-
decreasing in each place and fulfills the following boundary conditions

inf AW (x)=infl and sup A™(x)=supl.
xeln xeln

(il) An eatended aggregation function is a function A : [J I™ — I such that
neN

for allm > 1, A = A, is an n-ary aggregation function and AWM is the
identity on I.

We first recall several examples of extended aggregation functions on I:
e The sum X,

n
S(z1,...,20) = in,
i=1

in the case of an interval I with the left—end point —oo or 0, the right—end
point 0 or oo, and with the convention (—o00) + 0o = —o0 if necessary.
e The product II,

n
M(zq,...,zn) = Hxi,
i=1

if I is an interval with the left-end point 0 or 1, the right—end point 1 or
oo and with the convention 0. oo = 0 if necessary.
e The arithmetic mean M,

1 n
M(xy,...,2,) = -~ E Zi,
i=1

on an arbitrary interval I, and if I = [—o0, 00], the convention (—oo0) 400 =
—o0 is adopted.
e The geometric mean G,

n 1/n
G(z1,...,xp) = <H$l> )
i=1

where I C [0, 00], and 0.0c0 = 0 by convention.
e The minimum Min,

n
Min(xy,...,z,) = min{z,...,z,} = /\ ;.
i=1
e The maximum Max,
mn
Max(zy,...,x,) = max{zy,...,z,} = \/ zi.
i=1

In all above mentioned extended aggregation functions there is some relation-
ship between aggregation functions A and A(™) for all n, m € N. This is not
guaranteed by Definition 1, in general. Before discussing this problem in more
details, we recall some basic properties of (n—ary/extended) aggregation functions.
Unless otherwise specified, a property of a discussed extended aggregation func-

tion A : |J I — I means that each n-ary aggregation function A : 1" — T
neN
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possesses the mentioned property. Therefore we will define the next properties for
n—ary aggregation functions only.

Definition 2. For a fixed n € N\ {1}, let A7 : I" — T be an n-ary aggregation
function on I. Then A™ is called:

(i) symmetric (anonymous) if for each permutation o : {1,...,n} — {1,...,n}
and each x € I"

A(n) (X) = A(n) (xcr(l)a ey xa’(n)) ;
(ii) idempotent (unanymous) if for each c € T
AM (e, .. e)=¢;

(iii) strictly monotone if for all z;, y; € I, i € {1,...,n} such that z; < y; and
(1,--.,%n) # (Y1,.--,Yyn) it follows that

AWy, xn) < A (yy, . )
(iv) continuous if for each x¢ € I™,

lim A™ (x) = A (xo),

X—X0

ie., if A™ is a continuous function of n variables in the usual sense;
(v) 1-Lipschitz, if for all (z1,...,zy), (y1,.-.,yn) € I"™,

A (@1, ) = A (g1, )| <Y e — il
i=1
(vi) bisymmetric if for all n x n matrices X = (z;;), with entries x;; € I for all
i,j€e{1,...,n},
A(n) (A(n) (.'1711, e ,.'Eln), e ,A(n) (.'Enl, e ,:L'nn))

= A(n) (A(n) (.'1711, .o ,.'Enl), .o ,A(n)(.'lfln, .o ,:L'nn)) .

We can equivalently say that, for example, an n-ary aggregation function A"
is symmetric if and only if for all x € I"™ it holds

AM(x) = A (2, 21,25, . .., 20) = A (22, ..., 20, 21).
Similarly, the idempotency of A(™ is equivalent to the property
Min™ < A < Maz™.
Definition 3. For a fixed n € N\ {1}, let A" : " — I be an n-ary aggregation
function on I.

(i) An element e € I is called neutral element of A™ if for each i € {1,...,n}
and each x; € I it holds that

A (e, . e zie, ... €)= ;.
(ii) An element a € I is called annihilator of A™ if for all (z1,...,x,) € I" it
holds that
if z; = a for some i € {1,...,n} then A (zy,... 2,) = a.

For extended aggregation functions we can also introduce stronger versions of
idempotency, neutral element and bisymmetry.
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Definition 4. Let A: |J I"™ — I be an extended aggregation function. Then
neN

(i) A is strongly idempotent whenever
Alx,...,x) = A(x)

—

k—times

forallk e Nandx e |J I™
neN
(ii) An element e € I is said to be a strong neutral element of A if for each
neN eachx€ [J I"and ¢ € {1,...,n+ 1} it holds
neN

AX) = A(Z1, .oy Ti1,€, T4y o, Ty

(iii) A 1is strongly bisymmetric if for any n x m matrix X = (z;;) with all entries
x;; € I, it holds

A (A (1), 0 AM (x,)) = A (A (x ), AN (x ),
where for all ¢ € {1,...,n}, j € {1,...,m},
xi‘:(xil,...,xim) and X‘j=(.’171j,...,.’lﬁnj).

Classical properties linking different input arities of extended aggregation func-
tions are:

e associativity, that is, foreachn,meN, x € I", y € I™
A (x,y) = AP (A (x), AT () ;
o decomposability, that is, for all integers 0 < k <n,n € N, and all x € I"
A (T1y ey Tl g1y - -5 Tpy) = A(”)(A(k) (z1,... ,xk),A(”_k) (Tht1y -y Tn))-

-~

k—times (n—k)—times

The associativity of an extended aggregation function A is equivalent to the
standard associativity of the corresponding binary aggregation function A(?),

AP (2, AP (y, 2)) = AP (AP (2, ), 2)
for all z, y, z € I, and A™ for n > 2, being the genuine n-ary extension of A
given by
A (T1y.. ) = A®) (A("_l)(xl, e, wn_l),xn)

defined by induction. Evidently, using this way, any binary aggregation function
A® can be extended to an extended aggregation function A® = A. More generally,
a huge class of extended aggregation functions can be constructed from a system
A= (A%Q))neN of binary aggregation functions by induction. We define A4 = A as
follows:

A(l)(.'lfl) =7,

A(Q) (.131,.132) = Ay) (.Z'l, .Z'g),

o

Al (T1,...,xp) = A(2)1 (A("_l)(wl, . ,wn_l),wn)

Extended aggregation functions A 4 = A were called recursive by Montero, see e.g.
[35], compare also [17]. Evidently, each associative extended aggregation function
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is recursive but not vice-versa.
From the examples introduced above, the sum ¥ is symmetric, associative and
bisymmetric. If 0 € I, then 0 is the strong neutral element of 3, if —oco € I then
this element is the annihilator of ¥, and if +o00 € I and —co ¢ I then +oo is the
annihilator of 3. The extended aggregation function X is 1-Lipschitz and strictly
monotone if I C R, continuous if I # [—o0, c0].

The arithmetic mean M is recursive, symmetric, strongly idempotent and bisym-
metric on any interval I. It is 1-Lipschitz and strictly monotone if I C R and con-
tinuous if I # [—o0, 00]. It has an annihilator a only if I is an unbounded interval,

namely, a = —c0 if —co € [; a =00, if oo € [ and —o0 ¢ I.
Let the extended aggregation function A : |J I™ — I be given by
neN

A(zy,...,zy) = min <$1,H$i>
i=2

whenever n > 1. Evidently, e = 1 is the neutral element of A, but it is not a strong
neutral element. Indeed, if we take (z1,z2) = (0.5,0.5) then, for i = 1 we have
A(1l,z1,22) = 0.25, for i = 2 and i = 3 we have A(x1,1,22) = A(z1,22,1) = 0.5.
Observe that A is a quasi—copula, see Section 4, i.e., A is 1-Lipschitz.

To simplify notation, if no confusion can arise, n—ary aggregation functions A(")
will simply be denoted by A without stressing their arity.

The basic classification of aggregation functions takes into account the main
fields of applications. Following Dubois and Prade [21], we will distinguish four
classes of (n—ary/extended) aggregation functions:

e conjunctive aggregation functions: aggregation functions A < Min;

e averaging aggregation functions: aggregation functions A, Min < A <
Mazx, or, equivalently, idempotent aggregation functions;

o disjunctive aggregation functions: aggregation functions A > Max;

o mized aggregation functions: aggregation functions which do not belong to
any of other three classes.

Observe that the interval I may be crucial for the classification of a discussed
aggregation function. For example, the product II is a conjunctive aggregation
function on [0, 1], disjunctive on [1, co] and mixed on [0, co].

For any decreasing one-to—one mapping ¢ : I — I, A: |J I™ — I is a con-
neN
junctive (disjunctive) extended aggregation function if and only if the function

Ay J I™ — I given by
neN

AQO(wlv s 7wn) = 90_1 (A(w(xl)v s 790(wn))

is a disjunctive (conjunctive) extended aggregation function. This duality allows
to investigate, construct and discuss conjunctive aggregation functions only, and to
transfer all the results by this duality to the disjunctive aggregation functions.

3. AVERAGING AGGREGATION FUNCTIONS

We first recall the basic averaging aggregation functions, for more details we
recommend [6]:
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e The arithmetic mean M,

n

1
M(:L'l,...,xn):Ein.

1=

o Quasi—arithmetic means My, where f : I — [—o00,00] is a continuous
strictly monotone function and

My (@1, .own) = fTHM(f(x1), - f(20)),
as, for example, the geometric, harmonic and quadratic means.
n
o Weighted arithmetic means My, where w = (wy, ..., wy), w; > 0, > w; =

i=1
1 and

n
My (z1,...,2,) = Zwixi,
i=1

see also Section 5.
o Weighted quasi—arithmetic means My w,

n
Myw(@y,.. . xn) = f (ZWf(%‘)) :
i=1
o OWA (ordered weighted average) operator M,,,
M, (z1,...,2n) = My (2, ... 2)) = Zwix;,
i=1

where 2 is the i—th order statistics from the sample (z1,...,z,).
o OWQA (ordered weighted quasi-arithmetic) operator M} .,

M}’w(ﬂjl, PN ,ajn) = Mf7w(£13,1, .. ,:L“;L) = f_l (Z w; f(xé)) .
i=1

o Idempotent uninorms, [14].
o Idempotent nullnorms, i.e., a—medians, given for a fixed a € I by

Medy(z1,...,2,) = med(z1,a,%2,6,23,0,...,0,Ty)-
o Fuzzy integrals, [28, 46].

Recall that for any 2-copula C : [0,1]?> — [0,1] (for the definition of a copula
see the next section) and for any fuzzy measure m : P({1,...,n}) — [0,1], i.e.,
a non—decreasing set function such that m(@) = 0 and m({1,...,n}) = 1, we can
define a fuzzy integral Fc , : [0,1]" — [0,1] by

FCﬂn(xl? s 75”71) = Z (C (x;7m({.7 | Ty > ZU;})) -C (x;—lvm({j | Ty > x;}))) ’

i=1
with the convention x, = 0, where z} is the i~th order statistics from the sample
(x1,...,2n). Then Fi,, is the Choquet integral [11, 18, 37] and Fasin,m is the
Sugeno integral [42, 37]. Also observe that if m is additive then Fiy,,, = My is the
weighted arithmetic mean with the weights given by w; = m({i}). Similarly, if m
is symmetric, i.e., m(A) = h (£22%4) for some increasing function h : [0,1] — [0, 1],
then Fir,,, is the OWA operator My, with the weights w; = h (L) — h (&2).

n
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Note that averaging aggregation functions are closed under composition, i.e.,

for any averaging (extended) aggregation functions A, Ay, ..., A, on I, also the
function D = A(44,...,A4,) : U I" = I, given by D(x) = A(41(x),...,4n(x)),
neN

is an averaging extended aggregation function.

An interesting class of averaging aggregation functions are the internal aggrega-
tion functions characterized by A(z1,...,z,) € {z1,...,2,}. Continuous internal
aggregation functions are exactly lattice polynomials, whose prescription formula
contains inputs z1,...,Z,, symbols for join V and meet A, i.e., Maz and Min in
infix form, and parentheses. Independently of the interval I, they have the same
formula, and on any open interval I they are the only aggregation functions in-
variant under any increasing I — I one-to-one transformation ¢. On [0, 1], they
are in a one-to-one correspondence with {0, 1} valued fuzzy measures (and then
we can apply any fuzzy integral based on a copula C, e.g., the Choquet or Sugeno
integrals). As an example we give all 18 ternary aggregation functions which are
internal and continuous on any interval I:

A(3)(.’E]_,$2,$3) =

Ty; T2; T3;

I /\.'172; I /\.'173; .'172/\1173;

I V.'I?Q; I V.'I?3; .'I?QVIL'g;

x1 A (z2 V 23); x2 A (z1 V 23); To A (21 V X2);
1 V (22 A 23); a2 V (21 A 23); 3V (11 A 22);

xi Az ANzs=af; (1 Az2)V(zr Aas)V(x2a Axg) =xh; 21 VaEa Vs =2ah.

Another interesting and still not completely described family of averaging ex-
tended aggregation functions are the mixture operators M9 : |J I — I given

neN
by

where g : I —]0,00[ is a given weighting function [32, 45]. Evidently, mixture op-
erators are idempotent and they generalize the arithmetic mean M, since M = MY
for any constant weighting function g. Mixture operators are extended aggrega-
tion functions if and only if they are monotone, which is not a general case. For
example, let I = [0,b] and let g : I —]0,00[ be given by g(x) = x + 1. Then
MY is an averaging extended aggregation function only if b €]0,1]. Till now, only
some sufficient conditions ensuring the monotonicity of mixture operators MY are
known, as, for example, for a non—decreasing differentiable function g the next two
conditions:

(i) g(z) > ¢'(x)I(I) for all z € I, where I(I) is the length of the interval I;
(ii) g(z) > ¢'(x) (x —inf I) for all z € I.
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Also other generalizations of mixture operators are interesting, as, for example,
the quasi—mizture operators MY, defined by

Zl 9(@i) f (i)
Mi(zr,..ap) = [ | T5—— |,
> 9(xi)
i=1
generalized mizture operators M®, where g = (g1,...,9n) iS a vector of weighting
functions, defined by
> gi(xi)

M8(zy,...,2p) =
Zgi(%’)

i=1

)

and ordered generalized mizture operators M'S,
1 _ ' 1]
M'8&(xy,...,xy) = M8(x3,...,2,,).

These operators can be seen as generalizations of the quasi—arithmetic means,
weighted arithmetic means and OWA operators, respectively. In general, the mono-
tonicity of such operators is not still clarified.

An interesting composition method of aggregation functions was recently pro-
posed in [10]. For any extended aggregation functions A, B and a binary aggrega-

tion function C on I, we define D = Agc: |J I™ = I by
n€eN

D(z1,...,zn) = A(C(x1,B(x1,...,20)),. .., C(xn, B(x1,...,2,))).

Evidently, if all A, B, C' are idempotent then D is also idempotent. As a special
case of this method, consider C = Min®), A = Fii,,,, i.e., the Choquet integral
with respect to a fuzzy measure m; on {1,...,n}, and B = Fprinm,, i-€., the
Sugeno integral with respect to a fuzzy measure my on {1,...,n}. Then D = Ap ¢
is the two—fold integral introduced by Narukawa and Torra in [47]. Observe that
for my equal to the strongest fuzzy measure m* given by

m*(E):{ 0 if =0,

1 otherwise,
we get Ap.c = Fumin,m,. Similarly, if mys = m*, then Agpc = Fi,m,. Thus
the two—fold integral is an averaging aggregation function generalizing both the
Choquet and Sugeno integrals.

4. CONJUNCTIVE AGGREGATION FUNCTIONS

In this section we restrict our considerations to the interval I = [0,1] only. As
the conjunctive aggregation functions are bounded from above by Min, the weakest

extended aggregation function 4, : {J [0,1]™ — [0, 1] given by
neN

n
1 if [[a=1,
Ay(@1,. . a0) = il;[l
0 otherwise,
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is also the weakest conjunctive extended aggregation function, and, obviously, Min
is the strongest one. Evidently, a = 0 is the annihilator of any conjunctive ag-
gregation function A. Depending on the field of applications, often some kind of
neutrality for the element e = 1 is required [3, 13].

Definition 5. An (n—ary) aggregation function A on [0,1] is called a (an n-)
semicopula whenever e = 1 is its neutral element. An extended aggregation function
A on [0,1] with the strong neutral element e = 1 is called a conjunctor.

Recall some distinguished classes of conjunctive aggregation functions.

o Triangular norms (t-norms for short) [40, 27] are associative symmetric
conjunctors.

o Quasi—copulas [2, 26] are 1-Lipschitz conjunctive aggregation functions.
Observe that each quasi—copula is necessarily a semicopula.

e Copulas [41, 36] are n—increasing semicopulas, where the n—increasing prop-
erty means the non—negativity of all n-th differences. For n = 2 this means
that A : [0,1]? — [0,1] is 2-increasing if and only if for all (z1, z2), (y1,y2) €
[0,1]? such that z; < y; and z2 < y2, it holds

(Ay1,y2) — Ay, 22)) — (A(z1,92) — A(z1,72)) > 0.

Each copula is 1-Lipschitz, and thus a quasi—copula.

Observe that conjunctive aggregation functions, semicopulas, conjunctors, quasi—
copulas and copulas are convex classes, which is not the case of triangular norms.
Because of the existence of exhaustive monographs on t-norms [27] and copulas [36]
we will not discuss these classes in detail. However, there are some new interesting
results worth mentioning.

Recall that each 1-Lipschitz t-norm is an associative copula (as a binary func-

tion) and vice—versa. Thus each associative copula is an ordinal sum [27] of
Archimedean 1-Lipschitz t-norms. These later are characterized by the convex-
ity of their additive generator, that is, a strictly decreasing continuous function
t:[0,1] = [0, 0], t(1) = 0.
A related problem concerning k—Lipschitz Archimedean t-norms, k > 1, was stated
as an open problem in [1]. Mesiarova has recently characterized [34] k—Lipschitz
Archimedean t-norms by the k—convexity of their additive generators. The k-
convexity of an additive generator ¢ means that for all 0 < z < y < 1 and
€ €]0,min(1 —y,1 — kz)] it holds

t(x+ke) —t(x) <ty +¢€) —t(y).

Evidently, the 1-convexity reduces to the standard convexity.

The weakest 1-Lipschitz conjunctor is the Lukasiewicz t-norm T7,, in the framework
of copulas also called the lower Fréchet—Hoeffding bound, which in the binary form
is given by T (z,y) = max(z +y — 1,0), (z,y) € [0,1]?.

Note that the class of all k—Lipschitz t-norms for & > 1 has no weakest element,
though there are several minimal k-Lipschitz t-norms. The weakest k—Lipschitz
conjunctor in the binary form is given by Cy(x,y) = max(z+ky—k,kx+y—k,0).

For each ternary conjunctive aggregation function C' : [0,1]> — [0,1] we can
introduce three binary functions Cia, Ca3, Ci3 : [0,1]? — [0, 1] given by

012(737:[/) = C(ZU,y, 1)7 C23(£va) = O(]-vx?y)a 013($,y) = C(ZU, ]-72/)
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All functions C1s2, Cs3, Ci3 are conjunctive. Evidently, if C is the ternary form
of some conjunctor, then C12 = Cs3 = Ci3. In general these equalities fail even
for semicopulas (quasi—copulas, copulas). An interesting problem is also the reverse
compatibility problem, namely, under which conditions binary functions A, B, D of
some type are the marginal functions of a ternary conjunctive aggregation function
C of the same type. In the case of t-norms it is evident that A = B = D are
necessarily the binary forms and C' is the ternary form of the same t-norm. In the
case of semicopulas (quasi—copulas), for any A, B, D there is a ternary semicopula
(quasi—copula) C, not necessarily unique, such that C1o = A, Cy3 = B, C13 = D,
for example, C : [0,1]> — [0, 1] given by

o) C(z,y,2) = Min(A(z,y), B(y, 2), D(x, 2)) -

However, for 2—copulas A, B, D the ternary operation C' given by (1) need not be a
copula, in general. This is, e.g., in the case A = B = D = T, when C is a 3—quasi—
copula but not a 3—copula. For any 2-copulas 4, B, let Ax B =D :[0,1]* — [0,1]
be given by

1
0A(x,t) 0B(t,y)
ot ot

D(z,y) = dt.

0
Then D is also a 2—copula [12], and C : [0,1]® — [0,1] given by

)
C(z,y,2) =/8A§§’t) 9B(t2) 4
0

ot

is a 3—copula and moreover, C1» = A, Co3 = B, C13 = D, compare also [30]. For
example, if A = B = Ty, then A B = Min® and (Ty,Ty, D) are marginal 2—
copulas of a 3—copula C : [0,1]> — [0,1] if and only if D = Ty, * Ty, = Min(® and
C(z,y,2) = max (min(zx, z) + y — 1,0).

Let C = ( 7(12)) N be a system of binary conjunctive aggregation functions.
ne
Then the recursive extended aggregation function C = Cg,

(2) C’(")(:Ul,...,xn) = 07(12_)1 (C’("_l)(xl,...,a:n_l),xn)
(3) = 2 (. (P (@ 22).25) o )

is conjunctive. If all C',(Lz), n € N, are semicopulas (quasi—copulas) then C' is an
extended semicopula (quasi—copula). In the case of copulas, it is an open problem
under which conditions C(™) is a copula and C' is an extended copula. In the case
when C = C? ie., €2 = C® for all n € N, and C\? : 0,1]2 = [0,1] is an
Archimedean 2—copula, then C is an extended copula, that is, an n—copula for each
n € N, if and only if C' is generated by a decreasing bijection ¢ : [0,1] — [0, co]
whose inverse t~1 : [0, 00] — [0, 1] is totally monotone, that is, whose all derivatives
at each point from ]0, oco[ exist and are non—negative [36]. Each such copula is
necessarily bounded by the product, C' > II, which is an important example of an
extended copula, reflecting the independence of random variables. To see a negative
example, let CP) =1® and O = Min® for all n > 1. Then C is an extended
quasi—copula but not an extended copula. Also note that not each extended copula
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is recursive. For example, the extended aggregation function C : J [0,1]™ — [0, 1]
neN
given by

C(x1,...,20) =21 Min(za,...,2,), n>2,

is an extended copula which is not recursive.
Finally, we introduce a useful proposition.

Proposition 1. Let F be a class of (n—ary/extended) aggregation functions on
[0,1] and let Hz be the set of all binary aggregation functions D : [0,1]* — [0, 1]
such that for all A, B € F also C = D(A, B) given by C(x) = D(A(x), B(x)), is
an element of F. Then
(i) For the class F = A of all (n—ary/extended) aggregation functions on [0, 1]
it holds H4 = A®), that is, D can be an arbitrary binary aggregation
function.
(ii) For the class F = B of all conjunctive (n—ary/extended) aggregation func-
tions we have Hp = {D € A® | D < Maz™}.
(iii) For the class F = S of all (n—ary/extended) semicopulas we have

Hs = {D € A? | D is idempotent}.
(iv) For the class F = Q of all quasi—copulas we have
Ho =1{D € A?|||D||o = 1}.

Note that the Chebyshev norm of a binary aggregation function D is given
by

1D]|o0 = sup(

where the supremum is taken over all (z,y), (u,v) € [0,1]%, (z,y) # (u,v).
(v) For the class F = C of all copulas we have

He = {D € AP | D is a weighted mean}.

|D(x,y) — D(u, v)| )
max(|z —ul,ly —vl) )’

(vi) For the class F =T of all t-norms we have
Hr ={Pr, Pr},

where Pp(z,y) = x and Pp(x,y) =y for all (z,y) € [0, 1]%.
Evidently,

Hr CHe CHo CHs CH CHx.

By duality, similar notions can be introduced and similar results can be obtained
for disjunctive aggregation functions. For an (n-ary/extended) aggregation function
A on I = [0,1], the standard duality, here called simply duality, is related to the
order reversing bijection n : [0,1] — [0,1], n(xz) = 1 — 2, the so—called standard
negation on [0,1]. Then an (n-ary/extended) aggregation function A¢ on [0,1] is
called the dual of A, if for all x it holds A%(x) =1 — A(1 — x).

For example, duals of t—norms are t—conorms, that is, associative symmetric ag-
gregation functions with 0 as the strong neutral element. For binary 1-Lipschitz
aggregation functions another type of duality was introduced, see [31], compare also
[44]. For an aggregation function A : [0, 1]? — [0, 1] its reverse A* : [0,1]* — [0, 1] is
given by A*(z,y) = x +y — A(z,y). Evidently (4*)" = A. An interesting problem
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is under which conditions A* = A¢, i.e., for which binary 1-Lipschitz aggregation
functions it holds

(4) Alz,y) =z +y—1+A(l—2,1—y) for all (z,y) € [0, 1]

Restricting our considerations to the associative aggregation functions we end up
with the famous Frank functional equation [24] and the only solutions to equation
(4) are Frank’s t-norms and the symmetric ordinal sums of Frank’s t-norms, see
[29].

5. WEIGHTED AGGREGATION FUNCTIONS

This section is devoted to a proposal how to introduce weights (importances) into

aggregation. For an input vector x = (x1,...,x,), the corresponding weights
wi,...,w, can be understood as cardinalities of single inputs x1,...,x,, respec-
tively. We will deal with Welghtmg vectors w = (wy,...,wy), w; € [0,00[,i €

{1,...,n}, and Z w; > 0. If Z w; = 1, w will be called a normal weighting

i=1 i=1

vector.

For an extended aggregation function 4 : [J I — I, and a weighting vector
neN

w = (wq,...,wy) (for some n € N), we will discuss an n—ary aggregation function

Aw : I™ — I, which will be called a weighted aggregation function. We expect the
next quite natural properties of weighted aggregation functions, compare also [4].

(W1) f w=(1,...,1) =1 then
Ar(x1,...,mn) = A(x1, ..., Tp)

for all (x1,...,x,) € I™.
(W2) For any (z1,...,2,) € I" and any w = (wq,...,wy,),

Aw(x1, . x0) = Aw Ty s -+ o Ty )

where {mq,...,mg} ={i € {1,...,n} | w; >0}, m1 < ... < my, w* =
(Winyy-e s Wiy )-

(W3) If w is a normal weighting vector then A, is an idempotent aggregation
function.

Observe that (W1) simply embeds the aggregation function A into weighted
aggregation functions. Further, due to (W2), a zero weight w; in a weighting vector
w means that we can omit the corresponding score z; (and the weight w; = 0) from
aggregation. Finally, the property (W3) expresses the standard boundary condition
for extended aggregation functions, namely, that the aggregation of a unique input

n
x results in x, A(z) = z. Then Aw(z1,...,2,) with > w; = 1 can be seen as the
i=1
n
aggregation of z with cardinality > w; = 1, i.e., Aw(x,...,2) = A(xz) = x, which
i=1
is exactly the idempotency of the function A .
The standard summation on [0, +o0] can be understood as a typical aggregation
on [0,+00]. For a given weighting vector w = (wy,...,w,), the weighted sum
n
> w; x; is simply the sum of inputs x; transformed by means of weights w; into
i=1
new inputs y; = w; ;. Note that the common multiplication of reals applied in the
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next transformation can be straightforwardly deduced from the original summation
(and the standard order of real numbers), i.e., for w > 0, z € [0, +o0]

w - T = sup (ye [0,+00] | i, € N, % < w and u € [0,400] such that

J [
Su<zandy= Zu)
k=1

k=1

(5)

n n
Recall that the weighted sum Y w; x; for weights w; such that Y w; = 1 is just
i=1 i=1
the weighted arithmetic mean. The above discussed approach can be applied to any
continuous symmetric associative aggregation function defined on I = [0, ¢] with
neutral element 0, as, for example, to any continuous t—conorm S. The weighted

t—conorm Sy, : [0, 1] — [0, 1], where n = dim w, is simply defined as

(6) Sw(T1,...,xpn) = Slwy O x1,...,wy O xyp)

where the transformed input data w; ® x; are obtained from the weights w; and
the original inputs z; by means of a binary operation ® : [0, +o0[x[0, 1] — [0, 1],

woOz=sup (ye€l0,1]]3i,j€N, §<wandu€[0,1] such that

(7) S(u,...,u) <z and y = S(u,...,u)).
S—— N——
j—times i—times

Evidently, (7) is an appropriate modification of (5). Note that 0 ® z = 0 and
1oz =z for all x € [0,1]. In the case when S has unit multipliers, i.e., S(z,y) =1

for some z, y € [0, 1] we should require »_ w; > 1 to keep the boundary condition
i=1
Sw(l,...,1) = 1. Obviously, the weighted t-conorm Sy, for any continuous t—
conorm S fulfills axioms (W1), (W2), (W3). More details about weighted t—conorms
can be found in [5], including several examples. Recall some facts:
o Mazw(z1,...,2,) = max(z; | w; > 0), (due tow ® z = z if w > 0);
e Sy is lower semi—continuous (left continuous);
e Sw (with some nontrivial w; ¢ {0,1}) is continuous if and only if either
S = Mazx or S is a continuous Archimedean t—conorm;
e If S is continuous Archimedean t—conorm with an additive generator g :
[0,1] — [0, 4+00], and w is a normal weighting vector, then Sy (x1,...,2,) =

n
g > wig(z;) ), ie., Sw is a weighted quasi-arithmetic mean (because
i=1

wor =g Y w-g(x)) for w € [0,1]). It is either cancelative (if S is a
nilpotent t—conorm; e.g., the Yager t—conorm for p = 2, see [27], leads to
the weighted quadratic mean) or it has annihilator a = 1 (if S is a strict
t—conorm).
Dual operators to t—conorms are t-norms [27]. Weighted t-norms can be defined
in the spirit of (6) and (7), or, equivalently, by the duality, i.e.,

(8) Tw(z1,...,xn) =1 = Su(l—2q,...,1—x,),
where T is an arbitrary continuous t-norm and S = T is the corresponding dual

t—conorm. Note that axioms (W1), (W2) and (W3) are also fulfilled for weighted
t—norms. Similarly as in the case of weighted t—conorms we have the following facts:
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Miny(x1,...,2,) = min(z; | w; > 0);

Ty is upper semi—continuous (right continuous);

Tw (with some nontrivial w; ¢ {0,1}) is continuous if and only if either
T = min or T is a continuous Archimedean t—norm;

If T is a continuous Archimedean t—-norm with an additive generator f :
[0,1] — [0, 4+00], and w is a normal weighting vector, then

Tw(ay,...,an) = f" (ZMf(%’)) ;

i.e., Ty is a weighted quasi—arithmetic mean. It is cancelative whenever T
is nilpotent and it has annihilator 0 whenever T is a strict t—norm.

For example, for the product t—norm II, the relevant normal weighted function Il
is just the weighted geometric mean.
n
Observe that if Y w; = n, then for a continuous Archimedean t-norm T' gen-
i=1
erated by an additive generator f the corresponding weighted operator is given by
n
Tw(z1,...,x,) = fCV (Z wif(xi)> what is just a weighted generated t-norm as
i=1
proposed by Dubois and Prade in [20].

Several aggregation functions can be built by means of t—norms and t—conorms,
for example, nullnorms, uninorms, ['-operators, etc. Their weighted versions are
then built from the corresponding weighted t—norms and t—conorms. For more
details we recommend [?].

The basic idea of quantitative weights as cardinalities can be straightforwardly
illustrated on the example of the weighted mean arising from the arithmetic mean.
In statistics, starting with integer weights n;, which are simply frequencies of ob-
servations x;, the weighted mean is

mn
Do niTi
Mp(z1,...,%,) = %,
an‘
i=1

where n = (n1,...,mny). Because of the strong idempotency of the standard arith-
metic mean, My, can be easily generalized into the form

n n
Mw(.’ljl,,xn):Z'wll’l, w2207 Zwlzl
i=1 i=1

The previous property of the standard arithmetic mean we can apply on any sym-
metric strongly idempotent extended aggregation function A. The strong idempo-
tency of a symmetric extended aggregation function A allows to introduce integer
and rational quantitative weights — simply looking at them as cardinalities. In fact,
we repeat the standard approach applied to the arithmetic mean as mentioned
above. Indeed, for inputs z1,...,z, € I and integer weights w = (wy,...,w,) €
(NU{0})", we put

9) Aw(x1, .o yxpn) = A(T1, ., T1, T2, 3Ty ooy Ty e ooy L)
——— ——

w1 —times  wa—times wn —times
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Obviously, if k = (k,..., k), k € N, is a constant weighting vector, the symmetry
and the strong idempotency of A result in Ax(x) = A(x). This fact allows to define
consistently the weighted aggregation in the case of rational weights w; € Q. In
that case we find such an integer k € N that kw; € NU{0} foralli =1,...,n, and
we put

(10) Aw(x) = Apw (Xx).

The resulting fused value in (10) does not depend on the actual choice of £ € N.
Further, because of (10) and (9), Aw = Apw for each positive rational p and each

rational weighting vector w € (Qt)", w # (0,...,0). Therefore we can deal with
normed (rational) weighting vectors only, that is, we may suppose that Y w; = 1.

K3
The last problem we need to solve, is the case when also irrational weights w; are
admitted.

Definition 6. Let A: |J I™ — I be a symmetric strongly idempotent extended ag-
neN
gregation function. For any non-zero weighting vector w = (wy, ..., w;) € [0, 00[",
the corresponding n—ary weighted function Ay, : I™ — I is defined as follows:
(i) If all weights w; are rational, we apply formulas (10) and (9).
(ii) If there is some irrational weight w;, denote w* = (w7, ..., w}) the corre-

sponding normed weighting vector, that is, w = (Z w; | w¥.
i
Foranyme N, i € {1,...,n}, let

wgm):min(%UENU{O}, %wa),

and w(m) = (an), ce w%m)).
Then wﬁm) €Q and ) w,(;m) > 1for allm € N (and if already all weights w} € QT
( 1

(11) Aw(x) = liminf Ay (x) for all x € I"™.
m—o0

then also w'™ = wy for all i and all sufficiently large m) and we define

The following result can be straightforwardly checked from Definition 6.

Proposition 2. Let A = (w(™)%_, be a weighting triangle, i.e., for each n € N,

n=1
let w(™ = (Win,---,Wnn) be a non-zero weighting vector. Under the notations
and requirements in Definition 6, define the function Ax : |J I™ — I, Aa(x) =
neN

Ay (x), whenever x € I". Then Aa is a well defined idempotent extended
aggregation function.

Note that the approach allowing to introduce integer (rational) weights as given
in formulas (9) and (10) was already applied to decomposable idempotent symmet-
ric extended aggregation functions, see [23]. However, our results cover a wider class
of symmetric strongly idempotent extended aggregation functions. For example, let
g :10,1] = [0,1] be given by g(x) = 2z — 2?. Define the function A: |J I" — I

neN
b
y s =3 (o(2) o (51)) =

=1
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where 2} is the i—th order statistics from the sample (z1,...,,). Then A, which is
an extended OWA operator, is a symmetric strongly idempotent extended aggrega-
tion function which is not decomposable. Further observe that the limit in formula
(11) need not exist, in general.

The idea of qualitative weights incorporation into aggregation is linked to the
transformation of the inputs by means of the corresponding weights from [0, 1] (as
parameters expressing the importance of the corresponding input coordinates/criteria),

(12) Aw(x) = A(h(wy,21), ..., h(wp, Ty)),

where h : [0,1] x I — [0, 1] is an appropriate binary function. This idea was already
applied, e.g., in expert systems, and for I = [0, 1] it was introduced by Yager in [50],
where h is a function called a RET operator. More details about RET operators
can also be found in [43].

To ensure (W1), the following property of A is required:

(RET1) h(l,z)==zforallzel.

Similarly, to ensure (W2), A is supposed to have a neutral element e and then
(RET2) h(0,z) =eforallz € I.

Further, to ensure the monotonicity of Ay, one requires

(RET3) h(w,-) is non-decreasing for all w € [0, 1].

Finally, to ensure the boundary conditions of aggregation functions, one requires
(RET4) h(-,b) is non-decreasing for all b > e;

(RET5) h(-,b) is non-increasing for all b < e.

Proposition 3. Let A : |J I™ — I be an extended aggregation function with
neN
neutral element e and let h : [0,1] x I — I fulfil properties (RET1)-(RET5). For

any weighting vector w € [0, 1]", maxw; = 1, define the function Ay by (12). Then
Ay is an n-ary aggregation function satisfying axioms (W1), (W2) and (W3).

We only recall a typical example of a RET operator given by h : h(w,z) =
(z—e)w+e.If e =0 and I =0, 1], any binary semicopula fulfills (RET1)-(RET5),
while for e = 1, any fuzzy implication satisfying the neutrality principle, which
corresponds to (RET1), see, e.g. [27], can be applied.

In some special cases, h can also be defined for weights exceeding 1, that is, h
maps [0, oo[x I into I. For example, recall the introduction of weights for continuous
t—norms and t—conorms. Take, e.g., a strict t-norm 7" with an additive generator
f:10,1] = [0,00]. Then h(w,z) = f~! (wf(z)), and for an arbitrary weighting
vector w (the only constraint is > w; > 0) we can put Tw(x) = f~1 O wif(z;)) .

Recall that special classes of anonymous (i.e., symmetric) aggregation functions
with neutral elements appropriate for qualitative weights incorporation are trian-
gular norms, triangular conorms, uninorms.

Projections to a distinguished subspace of some metric space are often applied
operators which are usually related to some (constraint) optimization problem.
The crucial role is played here by the underlying metric, and in fact, we are always
looking for the best approximation of a discussed point by some point from the
considered subspace. A similar philosophy can be found in defuzzification methods
[19, 49], where a fuzzy quantity is characterized by a unique real number. Based
on the just mentioned ideas, we introduce a metric-like function on the space of
all possible scores (finitely dimensional inputs from some real interval or ordinal
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scale). Next we transform our metric-like function into a fuzzy relation. This
approach is already standard in the domain of T—equivalence relations where the
transformation was done, see, e.g., [16, 38, 39]. For a fixed score (z1, s, ..., z,), we
will look for an appropriate “projection” to the subspace of all unanymous scores
(ryry...,7r), r € I, applying some defuzzification method. Thus, in fact, we will
define a function with inputs and outputs from some real interval I. In the special
case of the MOM defuzzification method we will rediscover a generalization of the
penalty method introduced by Yager and Rybalov [51], see also [8].
For a fixed real interval I and n € N we introduce a dissimilarity function D :
I x I" — [0, 0o[ by

™
(13) D(x,y) =Y Di(xi,yi),

i=1
where all D; : I? — [0, 00 are particular one-dimensional dissimilarity functions,
D;(z,y) = K;(fi(z) — fi(y)), with K; :] — 00,00 = ] — 00, 00[ a convex function
with the unique minimum K;(0) =0, and f; : [ — ] — 00, o0], a strictly monotone
continuous real function. For more details see [33]. Note that if K; are even
functions then D is a metric on I™.

Definition 7. For a given dissimilarity D, the function U : I™ — [0,1]! which
assigns to a score x the fuzzy subset Ux of I with the membership function

1
(14) Ux(r) = T+ DED)’
where r = (r,...,r), will be called a D—fuzzy utility function.

Proposition 4. Each D—fuzzy utility function U assigns to each score x € I" a
continuous quasi-convex fuzzy quantity U, i.e., for all r;s € I, A € [0, 1],

Ux(A-r+ (1 = A)s) > min(Ux(r), Ux(s)),

and thus for any a €]0,1] the a—cut Ug = {r € I | Ux(r) > a} is a closed
subinterval of I in the standard topology.

For each defuzzification method DEF acting on quasi—convex (continuous) fuzzy
quantities, we can assign to each score x a characteristic DEF(Ux). Supposing
that for any fuzzy quantity Q, DEF(Q) € supp(Q), DEF(U) is an I™ — I func-
tion. In general, this function must be neither idempotent nor non—decreasing.
Note that in [33], the conditions on DEF ensuring the idempotency and mono-
tonicity of the aggregation function DEF(U) are discussed. Observe that the
MOM defuzzification method (Mean of Maxima) satisfies these conditions and
thus we will illustrate our approach on the M OM defuzzification. Note that
MOM(U)(x) = L (inf UZ" +sup UZ"), where o* = sup{a €]0,1]| U2 # 0}.
Definition 8. For a given dissimilarity D, the M OM-based operator MOM (U)
will be denoted by Ap.

As already mentioned above, for any dissimilarity D, Ap is an idempotent aggre-
gation function.

Example 1.
(i) For D(x,y) = 3 (f(z:) — £(y))*, we have Ap(x) = /! (% 5 f(x»),

=1
i.e., Ap is a quasi—arithmetic mean.
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(ii) For D(x,y) = Y, | ®;i — y; |, we have Ap(x) = med(zy,...,zy), i.e., the
i=1

median operator.
(iii) Forn =2, D(x,y) =| 21 —y1 | +(x2 —y2)?, we have Ap(x) = med(x1, x> —

1/2,25 +1/2).
(iv) For D(x,y) = 3 D.(,y;), where D.(z,y) = { cly—=z), ifz<y
i=1

T -, else ’

Ap is the a-quantil (order statistics) with @ = 1.

n min x;+max x; . .

(v) For D(x,y) = max | z; — yi | we have Ap(x) = ———5———,ie, Apisa
1=

special OWA operator.

Dissimilarity based approach to aggregation functions allows a straightforward in-
corporation of weights. For a weighting vector w = (wy,...,wy), the weighted

dissimilarity Dy, will be given by Dy (x,y) = > w; D;(z;,y;) and then we will
i=1

i=
apply Definition 8 to obtain the corresponding weighted aggregation function. In
the case of standard aggregation functions we have obtained in Example 1 (i) and
(ii), the standard weighted quasi—arithmetic mean and the weighted median are
obtained, respectively. The weighted aggregation function corresponding to Exam-

ple 1 (iii) is given by Ap,, (x) = med(z1, 22 — 55, @2 + 500).

Finally, following the ideas of Yager [48], we propose to introduce OWAF (or-
dered weighted aggregation functions) as follows.

Definition 9. Let Ay, : I™ — I be a weighted aggregation function. Then the op-
erator Ay, : I" — I given by Ay, (x) = Aw(Ts(1),- -3 To(n)), Where o : {1,... ,n} —
{1,...,n} is a permutation for which z,(;) < ... < 2,(,), will be called an OWAF.

Evidently, starting from a weighted arithmetic mean M,,, Definition 9 yields
the OWA operator M],. Note that the ordered weighted t—norm T(Io,1,1)(wv Y,z) =
B -~ and its dual ordered weighted ¢t—conorm SEI,LO) (z,y,2) =a+ 0 —af, a=
min(z,y, z), 8 =med(x,y, z), v = max(z,y, z), were found to be important in the
study of fuzzy preference structures [15].

6. CONCLUSION

We have discussed some aspects of the theory of aggregation functions, includ-
ing the review of some properties and classes of aggregation functions, and some
construction methods. Especially, we have splitted the properties of extended ag-
gregation functions into local properties, i.e., the properties of relevant n—ary ag-
gregation functions for each fixed n, and into global properties which are often
called “strong”. Global properties properties constraint different arities functions
involved in each extended aggregation function and thus, in the next development
of the theory of aggregation functions they should be investigated in more detail.
We expect interesting generalizations based on modifications of these standard ap-
proaches in the near future. For example, copulas are due to their probabilistic
nature strongly connected with the standard operations, especially with the sum.
Switching to the possibilistic background, we end up with semicopulas. However,
there are many appropriate pseudo—additions (t—conorms) varying between the sum
and maximum.
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