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UNIVARIATE CONDITIONING OF COPULAS

RADKO MESIAR, VLADIIR JAGR, MONIKA JURANOVA
AND MAGDA KOMORNIKOVA

The univariate conditioning of copulas is studied, yielding a construction method for
copulas based on an a priori given copula. Based on the gluing method, g-ordinal sum
of copulas is introduced and a representation of copulas by means of g-ordinal sums is
given. Though different right conditionings commute, this is not the case of right and
left conditioning, with a special exception of Archimedean copulas. Several interesting
examples are given. Especially, any Ali-Mikhail-Haq copula with a given parameter A > 0
allows to construct via conditioning any Ali-Mikhail-Haq copula with parameter u € [0, A].
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1. INTRODUCTION

Bivariate truncation of copulas was introduced and studied by Charpentier and Juri
[3] in the framework of bivariate conditioning of (bivariate) copulas, see also [8, 9]
showing a prominent role of the strict members of Clayton family of copulas. Re-
cently, n-ary extensions of truncation were discussed in [1]. In this paper, we discuss
the univariate conditioning of bivariate copulas. Though our approach is based on
the representation of 2-increasing aggregation functions by means of copulas given
in [5, 6], it turns out that the formula for univariate conditioning is a special case
of Charpentier — Juri truncation. However, observe that while our formula can
be applied to any copula, the approach introduced in [3] deals with copulas hav-
ing strictly increasing horizontal and vertical sections only. Observe, that these
restrictions can be relaxed, see [4]. When studying copulas invariant with respect
to univariate conditioning, also some nonstrict Archimedean copulas should be con-
sidered, especially the Fréchet—Hoeffding bound W. Note that the class of copulas
invariant with respect to univariate conditioning is larger than the class of bivariate
truncation-invariant copulas.

The paper is organized as follow. In the next section, the univariate conditioning
is introduced and some examples are given. Section 3 is devoted to the representation
of conditional copulas by means of a generalization of gluing construction recently
introduced [13]. In Section 4, the relations among left and right conditioning are
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considered, including the case of Archimedean copulas conditioning. Finally, some
concluding remarks are given.

2. UNIVARIATE CONDITIONING OF COPULAS

Recall that a (bivariate) copula C : [0,1]* — [0,1] is a function with annihilator 0
(C(z,0) = C(0,x) = 0 for all € [0,1]), neutral element 1 (C(x,1) = C(l,z) =z
for all = € [0,1]) satisfying the 2-increasing property (supermodularity) C(x V y) +
C(xAy) > C(x)+C(y) for all z,y € [0,1]%, where V and A are the standard lattice
operations on [0,1]?, see [14, 12]. An aggregation function A : [0,1]*> — [0,1] is a
nondecreasing function such that A(1,1) =1 and A(0,0) = 0, see [2]. Hence copulas
are 2-increasing aggregation functions with neutral element 1.

Note that copulas can be understood as bivariate distribution function of a ran-
dom vector Z = (X,Y) with marginals uniformly distributed over [0, 1], C(xz,y) =
P(X <z,Y <wy). Let g : [0,1] — [0,1] be a continuous nondecreasing function
satisfying g(0) =0, g(1) > 0.

For a given copula C, evidently the function A¢c , : [0,1]* — [0, 1] given by

C(z,9(y))
Ac.qo(x,y) = 1
is a 2-increasing aggregation function with annihilator 0, and with continuous mar-
gins ¢,n : [0,1] — [0,1], ¢(x) = W and n(y) = ZE?; Due to [6], there is a

copula D such that
AC,g(xay) = D(‘)O('T)a W(y))

Consequently, D(u,v) = Ac 4(pV (u),n=V(v)). Here the pseudo-inverse (=1 :
[0,1] — [0,1] is given by ¢~ (x) = sup {t € [0,1] | ¢(t) < x}, and similarly 5~
[0,1] — [0,1] is given by 7=V (z) = sup {t € [0,1] | n(t) < x}, see [10]. Observe that
¢ depends on C and g(1) = a €]0, 1] only and that g(n(="(v)) = g(g=Y (¢(1)v)) =
g(1)v, and thus

D(u,v) = Ce" D (u), g(n"(9(1)v))) _ O(w(fl)(u),av).

g(1) o

The previous formula shows that the copula D depends on the a priori given
copula C' and the constant a €]0,1[ only, and formally it can be therefore seen
as the copula of the conditional distribution of (X,Y") given that ¥ < «, see [3].
Evidently, if « = 1, then D = C.

Definition 1. Let C : [0,1]> — [0,1] be a copula and « €]0,1[. The copula
Clay : [0,1]* — [0,1] given by
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where (=1 (u) = sup {t € [0,1] | C(t,a) < a u} is called right a-conditional copula
of C. Similarly, the copula
Clau,n=Y(v
(o) = Clon00)
fe!
where (=Y (v) = sup {t € [0,1]|C(a, t) < a v}, is called left a-conditional copula
of C.

Analogously, C|,) can be seen as the copula of the conditional distribution of
(X,Y) given that X < a.

Example 1.
(i) Consider the Fréchet—-Hoeffding bound W given by W (xz, y) = max {0,z +y — 1}.
For « €]0, 1],
o V(w)=sup{te[0,1]t+a—-1<au}=1—a+au
and thus
Wi (1, 0) = Wl —-a+au,av) _ max {0,au+av—a} — W(uv),

« «
i.e., W is invariant with respect to a-conditioning for each « €]0, 1].
(ii) Ali-Mikhail-Haq copula C': [0,1]?> — [0, 1] with parameter A = 1 is given by
Yy

Clz,y) = .
@) = T a -y
Let « €]0, 1[, then
Dy = *2=a)
o) l+u(l—a)
u (2—a)
Ca(u v)—0(1+“(1_“)’av) _ uv
a « I+5(1-u)(1-v)’

i.e., all members of Ali-Mikhail-Haq family with parameter p € [0,1] can
be obtained by its conditioning (for the limit member one should take the
pointwise limit). In general, starting from an Ali-Mikhail-Haq copula C with
parameter A > 0, any Ali-Mikhail-Haq copula with parameter u €]0, A] can be
obtained by conditioning. Due to the continuity of the Ali-Mikhail-Haq family
in parameter, also the boundary case u = 0 can be obtained as lim,_, g+ Cl,.

(iii) Conditioning of a symmetric copula need not be symmetric (and vice versa).
For example, for a singular copula with support on segments connecting points
(0, %) with (%, 1), and (%, 0) with (1, %) (i. e., strongest copula with diagonal
section 6(x) = max{0,2x — 1} = dw(z)), the conditional copula O(g) is a

4
singular copula with support on segments connecting the points (O, %) with
(%, 1), and (%70) with (1, %) Evidently, C' is symmetric while C(

%) not.

Note that the conditioning based on « and  commutes.
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Proposition 1. For any copula C and «, 8 €]0, 1], (C(a))(ﬁ) = (C(ﬁ))(a) = Clap)-

Proof. Denote p,(z) = C(z’a), Yo plz) = C(zioﬁ‘ﬁ) and ¢, 5(z) = % Then
the equality (C(a))
equality, it holds

@ = Cla py 18 equivalent to ¢4, g 0 0o = Yo g. To see the last

) € (52) (%) 0

C
@a,ﬁo@a(m>:¢a,ﬁ< (a = =

g af

C’(sup{tE[O,lH@<@}vaﬁ) C(x,a )
— ol = ap :Soaﬁ(x)'

Similarly, the equality (C(g)) )= C(a ) can be shown. O

(e

Remark 1. There is also a probabilistic proof of Proposition 1. Indeed, the copula
Cl(a) is linked to joint distribution function F,), Fia(z,y) = w (compare (1)),
while the copula (C(q))(g) is linked to joint distribution function (F(a))s)(z,y) =

Flo (I,ﬁ ) _ C(z,a B —
( )B v) _ (Jcaaﬁ ) —F(a ﬁ)(fﬂyy)-

3. G-ORDINAL SUMS AND CONDITIONING

Recently, a gluing construction method for copulas was introduced in [13].

Proposition 2. Letne N, 0=qap <a; <...a, =1, and Cy,...,C, be copulas.
Then the function C : [0,1]2 — [0,1] given by

T — ;-1 .
,y) ifx € [ai_l,ai]
G; — A5—1

C(r,y) = ai—1y + (a; — a;—1)C; (

is a copula.

Note that C(a;,y) = a; y = I(a;, y) for ¢ = 0,1,...,n. Similarly to the ordinal
sum of copulas, gluing methods can be introduced also for an infinite number of
intervals (and copulas), the result being both a construction method and a repre-
sentation.

Theorem 1. A function C : [0,1]> — [0,1] is a copula if and only if there is a
disjoint system (Ja;, b;[);ecs of nonempty open subintervals of [0, 1] (thus J is at
most countable) and a system (C;),;ecs of copulas such that for each Cj,j € J, and
for each x €]0, 1] there is y, ; €]0, 1] such that C;(z, ys ;) # 2Ys,; (copulas with no
trivial product vertical section), so that

Ty otherwise.

C(x,y) = { a3y + (b; = 4;)C; (liiijj’y) if © €lay, by, (2)
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Proof. The sufficiency is trivial, following the same ideas as in [13]. To see the
necessity, denote S = {z €[0,1] | C(x,y) = zy for all y € [0,1]}. Evidently, S is a
closed subset of [0, 1] containing as trivial members 0 and 1. Then the complement
[0,1]\S is an open (possibly empty) subset of [0,1] and hence there is a disjoint
system (Ja;, bj[);jes such that S = J;c ;la;, b;[.

For j € J, define C; : [0,1]> — [0,1] by

Cla; + (bj — aj)z,y) — a;y
bj — CL]' ’

Ci(z,y) =

Then C; is a copula and the representation (2) of C' is immediate. Moreover, S; =
{z €[0,1]| Cj(z,y) = zy for all y € [0,1]} = {0, 1} is trivial for all j € J. O

Note that the construction (2) can be applied to any system (C;);cs of copulas,
still yielding a copula C. This construction will be called g-ordinal sum (gluing
ordinal sum), with notation C' = g — ({a;,b;,C;) | j € J). Formally, J can be also
empty and then C' = II is the product copula. Observe that g-ordinal sums belongs
to patchwork techniques for copulas studied recently by [7]. Moreover, the idea of
g-ordinal sums (based on the product copula II) is similar to the idea of ordinal sums
based on M, or W-ordinal sums based on W, see [11]. In all cases, the first step is
based on the set of all elements x of [0,1] for which the vertical sections of copula
C' coincide with the vertical section of the background copula. Note that Durante,
Saminger—Platz and Sarkoci [7] have used the construction (2) as a rectangular
patchwork with the notation ((a;, b;, C’j)>?€J.
and its relationships with ordinal sums based on M and W, we prefere to call (2) a
g-ordinal sum. Based on Theorem 1, it is not difficult to show the next results.

To stress the representation part (2)

Corollary 1. A nontrivial g-ordinal sum copula C' with all summands equal to
Cj, Cj = C is necessarily the product copula, C' = II. Moreover, a g-ordinal sum
copula C' is PQD (positive quadrant dependent, see [12]) if and only if all summands
C; are PQD.

Corollary 2. A g-ordinal sum copula C' is absolutely continuous if and only if all
its summands C; are absolutely continuous. The same holds for singular copulas,
but additionally we should require that the intervals ([a;, b;]);jes form a covering of
the unit interval [0,1].

Based on ([13], Theorem 3.2) one can show the next result.

Proposition 3. Let C =g — ({a;,b;,C;) | j € J), then Spearmann rho
po =Y (b —a;)*pc;.

=
Similarly, for Kendall tau we have

TC = Z(b] — aj)zch.

jeJ

g-ordinal sums are well compatible with the conditioning of copulas.
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Theorem 2. Let C' = g — ({(a;,b;,C;) | j € J) be a g-ordinal sum copula and
a €]0,1[. Then C(a) =g— (<aj,bj,0j(a)> |jeJ).

Proof. The proof is based on the commuting of pseudo-inverse operation and
increasing affine transform. It holds C(,(a;,y) = a;y for all j € J, y € [0,1],
and similarly C(4)(b;,y) = bjy. Due to C(a;,y) = ajy we have that, for a fixed
a €]0,1], =Y (a;) = sup{t € [0,1]| C(t,a) < aa;} = ¢ < a; and C(c,a) = aaq;.
However, then the volume Ve ([c, a;] x [0,a]) =0, i.e., C(e,y) = C(as,y) = ay for
all y € [0,1]. Similarly, C(4)(bj,y) = bjy, y € [0,1], j € J. Consequently, C(,y can
be represented as a g-ordinal sum, C(o) = g — ({a;,b;, D;) | j € J) for some copulas
D;, jeJ.

For z € [07 1]\UjeJ]aj’bj[7 C(x,y) = C(a)(xuy) =g - (<aj7bj7cj(a)> |J €
I(z,y) = zy. If © €lag,by| for some k € J, and C(z,a) = Clag, @) = apa,
evidently C' ( ‘”_“kk7a) =0and Cy(z,y) =g — (<aj, bj, Cj(a)> |7 € J)(x,y) = ary.

bkfa

Finally, if z €]ag, bg[ for some k € J and C(z,a) > axg, i.e., C ( s a) > 0,

br—ay’

then ¢~V (z) = sup {t €1[0,1] | @ < ;v} € [ak, bg] and thus, for all y € [0,1]

V(@) —ak
C(e=D(z), ay (b, — ak)C b —a , QY
Cloy(ry) = & _2how) a( 209 _ oyt <a )
(b — ai)C ()" ) ay
el () )
(0%
xr — ag
_ be — a)C LTk
ary + (br, — ar)Cr(a) <bk _ak,y>

where <p,(;1)(u) = sup {t €10,1] | @ < u}
Thus, the proof is complete. O

4. LEFT AND RIGHT CONDITIONING OF COPULAS

As already shown in Proposition 1, (Ca)) ) = (C(8))(a) = C(a p)- Similarly we can
show (Cia))181 = (Cig1)ia] = Cla g)- Moreover, Coy(x,y) = Cla1(y, ) whenever the
copula C' is symmetric (then C(,) need not be symmetric, in general).

However, the left and the right conditioning of copulas do not commute, in gen-
eral. This can be checked easily in the Cuadras—Augé family, taking as C any of its
proper (not boundary) member. Moreover, this example shows also that (C|y))(s) as
well as (Cg))[q] differs from Charpentier—Juri [3] conditioning C|,, 5, also in cases
when all conditional copulas are well-defined (the first two copulas are always de-
fined, while so is the third one only for copulas with strictly increasing horizontal
and vertical sections, excluding the boundary sections).
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Example 2. Let C = M 3112 be the Chadras—Angé copula with parameter %
Then C(q) = g— ({0, v/, C)), Clay(z,y) = Cay (¥, %), (Cra)) (5] = C(B%) if @ < 82 and
(Ca)ig = C[\/%] if « > 32. Similarly, C)a) = C[%] if 3 < a? and (Cia)(a) =
C[%] if > o2 Thus (C(%))[%] = C while (C[%})(i) = C(%). Moreover, applying
Charpentier—Juri approach [3], when copula Cj, g is related to the distribution
function F(z,y) = %, C(B,a) > 0, we have in our case Cp, 5 = C’(Lz) ifa <

B and Clq 5 =C if « > . Hence C; =C).

=

32 11
(£3) 13

We introduce another example of a copula C for which the right and the left
conditioning do not commute.

Example 3. Let C : [0,1]> — [0,1] be a singular copula with support on seg-

ments connecting points (O7 %) with (%, 1), and (%, %) with (1,0). Then C(o5) =

W, Clo.5) = M (the upper Fréchet-Hoeffding bound), and thus (C(o.5))j0.5) = W #
M= (C[o.s])(0.5)~

Nevertheless, for strict Archimedean copulas we have the next important result
connecting the left and right types of univariate conditioning of copulas.

Theorem 3 . Let C': [0,1]> — [0, 1] be a strict Archimedean copula, i. e., there is
a decreasing convex bijection f : [0,1] — [0, co] such that

Clz,y) = [ (f(2) + f(y))- (3)
Then for any a, 3 €]0, 1[, it holds:
() Cray = Cla
(i) (Cla)@) = (C(8))ia) = Cla p)-

Proof.

C(U(fl)(u),av)
e ’

(i) Recall that Cy(u,v) =

where o(=1) (u) = sup {t €10,1] | @ < u} Due to (3), C(Z’a) = fﬁl(f(?'f(o‘))
and thus o~ 1(u) = f~1(f(au) — f(a)). Consequently,
f7 (flow) + flav) = f(e) @)

(07

C(a) (ua U) =

Observe that the family (C,) given in (4) is, in general, a new parametric
family of copulas (up to special case of invariant copulas).

(f(au)+f(av)7f(a))’ i. e., O(a) = C[O‘]'

[e3%

Similarly, Cio)(u,v) = 1

(ii) This is a corollary of (i) and Proposition 1. O
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Example 4. For A > 1, the function f) : [0,1] — [0, 00] given by fi(x) = (1*—1))\

xT
is an additive generator of a copula C. The family ((Cx)(a)) is given by

ael0,1]

(CN) (o) (1 0) =

1
x
at (52 + 052) — (- )
for @ > 0, and the limit member
(Cx)o) = QIL%+(CA)(a)
is the Clayton copula with parameter A,
(Ch) o) (u:v) = (™ 407 = 1) 7%,

Remark 2.

(i) Asalready shown in Example 2, for any symmetric copula C it holds Cl, (7, y) =
C(a)(y,z), compare also Theorem 3 (i). However, (Cl4))(5) = (C(3))[a) need
not hold for symmetric copulas in general, see Example 2.

(ii) Observe that also for non-strict copula C' generated by an additive generator
f, it can be shown that

Cla (1, v) = Cay (u,v) = f (min(f(0), f(au) + f(av) = f(a))), a €]0,1].

(iii) For any Archimedean copula C' generated by an additive generator f, the
copulas Co) = C(qay, o €]0,1][, are again Archimedean and they are generated
by an additive generator f, : [0,1] — [0, oc] given by

fa() = flax) = f(a).

Compare [8], Proposition 3.2 for extreme tail dependence copulas.

Consequently, for an associative copula C, also C/, is associative for all a €]0, 1[.
To be more precise, if C = ({a;,b;,C;) |j € J) is an ordinal sum with Archimedean
summands C; generated by additive generators f;, j € J, then

a; b; .
Cla) = (<E]7gja0j> ljed, bj< 04)) ;

if o € [0, 1\ U;eslay, bj[, and if o €]ay, by[ for some k € J, then

ag " a; b )
O(a) = (<a717ck>a<ojaajvcj> |.] € J’ bj < OZ>7

where C;: = (Ck)( a—ay )

b —ay
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5. CONCLUDING REMARKS

We have studied a new method for constructing copula families from any given 2-
copula C. This method preserves some special classes of copulas. Indeed, if C' is
absolutely continuous (singular, associative), then, for each a €]0, 1], also C(, is
absolutely continuous (singular, associative). As a by-product, we have introduced
the concept of g-ordinal sums, which is closely related to conditioning. Indeed, for
any g-ordinal sum C' = g — ({a;,b;,C;) | j € J) and any a € [0, 1]\ U;¢ s]a;, b;[ it

holds
a; bj )
Clay =9 — <<Ojoicj> ey, bjga).

Especially, if aj, = 0 for some k € J, then Cig,; = Cj.
In our next investigation, we aim to discuss copulas invariant with respect to
conditioning, i.e., copulas such that C,y = C (C|y = C) for all a €]0,1].
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